
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4822–4828
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4822

Similar but not the Same: Word Sense Disambiguation
Improves Event Detection via Neural Representation Matching

Weiyi Lu† and Thien Huu Nguyen#‡

† Computer Science Department, New York University, USA
Montreal Institute for Learning Algorithms, University of Montreal, Canada
‡ Department of Computer and Information Science, University of Oregon, USA

weiyi.lu@nyu.edu,thien@cs.uoregon.edu

Abstract

Event detection (ED) and word sense disam-
biguation (WSD) are two similar tasks in that
they both involve identifying the classes (i.e.
event types or word senses) of some word in a
given sentence. It is thus possible to extract the
knowledge hidden in the data for WSD, and
utilize it to improve the performance on ED. In
this work, we propose a method to transfer the
knowledge learned on WSD to ED by match-
ing the neural representations learned for the
two tasks. Our experiments on two widely
used datasets for ED demonstrate the effec-
tiveness of the proposed method.

1 Introduction

An important aspect of natural language process-
ing involves understanding events mentioned in
text. Towards this end, event detection (ED) is
the task of locating event triggers (usually verbs
or nouns) within a given text, and classifying them
among a given set of event types. This task re-
mains challenging due to the inherent ambiguity
and flexibility of natural languages. The current
state-of-the-art methods for ED have involved ap-
plying deep learning (DL) models to automatically
extract feature representations of the text, and then
treating the task as a classification problem (Chen
et al., 2015; Nguyen and Grishman, 2015b).

The major intuition in this paper is that the task
of ED is closely related to the task of word sense
disambiguation (WSD) whose datasets can help
to improve the performance of the DL models for
ED. This is due to the goal of WSD to determine
the sense of a word within a particular context,
given a set of possible senses that the word can
take on. Our intuition is based on the two follow-
ing aspects:

(i) Similar Context Modeling: Given a word in a
context/sentence, both ED and WSD models need

to select/predict a correct label in a list of candi-
date labels for the word. For WSD, the candi-
date labels are the possible senses (e.g, sense ids
in WordNet) that the word of interest can have,
while for ED, they are the set of predetermined
event types (e.g, the event subtypes in the ACE
2005 dataset1). Consider the word “fired” in the
following sentence as an example:

The boss fired his secretary today.
For WSD, there are 12 possible senses for the

verb “fire” in WordNet in which the correct la-
bel for the word “fired” in this case is the sense
id “fire%2:41:00::” (i.e, “terminate the employ-
ment of ”). The ED task in the ACE 2005 dataset,
on the other hand, involves 33 possible event sub-
types with “End-Position” as the correct event sub-
type/label for the word “fired” in our example.

In order to make such label predictions, both ED
and WSD need to model the word itself and its
context (i.e, the words “fired”, “boss”, and “secre-
tary” in the example). This similar modeling al-
lows the same DL model to be adopted for both
ED and WSD, facilitating the use of WSD data to
improve the feature representations for ED via pa-
rameter/representation tying.

(ii) Close Semantic Consideration: As there are
some overlaps between the semantic differentia-
tion in WSD and ED, the knowledge/information
from WSD about a particular word in a context
can help to make a better prediction for that word
in ED. For instance, in the example above, the
knowledge from WSD that the word “fired” is
referring to a termination of employment would
clearly help ED to identify “End-Position” as the
correct event type (rather than the incorrect event
type “Attack”) for “fired” in this case.

How can we exploit this intuition to improve the
performance of the DL models for ED with WSD

1
https://www.ldc.upenn.edu/collaborations/past-projects/

ace

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace

4823

data? In this work, we propose a novel method
based on representation matching to transfer the
knowledge learned from the WSD data to the DL
models for ED. In particular, two separate deep
learning models are employed to model the con-
text for WSD and ED. The two models share the
network architecture, but involve different param-
eters that are specific to the tasks. We then trans-
fer the knowledge from the WSD network to the
ED network by ensuring that the feature represen-
tations learned by the two networks on the same
contexts are similar to each other.

We demonstrate the effectiveness of the pro-
posed method on two widely used datasets for ED.
To the best of our knowledge, this is the first work
to study the transfer learning/multi-task learning
methods for WSD and ED with DL.

2 Model

We consider the typical setting where we have two
separate datasets Dwsd = {Wwsd

i , pwsd
i , ywsd

i }
for WSD and Ded = {W ed

i , pedi , y
ed
i } for ED.

Here, W ed
i is the i-the sentence of Ded, pedi is

the index of the word of interest for event type
prediction in W ed

i , and yedi is the corresponding
event type label. The same conventions apply for
Wwsd

i , pwsd
i , ywsd

i . Also, let Y wsd and Y ed be
the label sets for WSD and ED respectively (i.e,
ywsd
i ∈ Y wsd and yedi ∈ Y ed). Our goal is to trans-

fer the knowledge learned from the Dwsd dataset
to improve the performance of the ED models
trained on the Ded dataset (multi-task learning).

In the following, we will first describe the deep
learning architectures to transform the sentences
W in the datasets Dwsd and Ded into representa-
tion vectors. We only focus on the deep learning
architectures proposed for ED in the literature to
achieve compatible comparisons for ED. The pro-
posed multi-task learning method for ED with the
WSD dataset will follow.

2.1 Computing the Feature Representations

Consider a sentence W in the datasets Dwsd or
Ded that is represented as a sequence of tokens
W = [w0, w1, . . . , wt]. Let p be the index of
the word of interest in this sentence. The con-
text for wp in W is constructed by taking the word
itself, the n preceding words, and the n follow-
ing words (padding or truncating when necessary).
The tokens in the context are re-indexed to form
an instance V = [v0, v1, . . . , vn, . . . , v2n−1, v2n],

where vn corresponds to wp in W .
Encoding
The first step to prepare the instance V for the

deep learning models is to map each token vj in V
into two real-valued vectors, which are then con-
catenated to form a vector representation xj for vj
(Nguyen and Grishman, 2015b; Chen et al., 2015):

1. The word embedding of vj obtained by look-
ing up the token vj in the pre-trained word embed-
ding table (Mikolov et al., 2013a).

2. The position embedding vector for vj : ob-
tained by looking up the relative distance j − n of
vj with respect to the token of interest vn in a posi-
tion embedding table (randomly initialized) (Chen
et al., 2015; Nguyen and Grishman, 2015a).

It is important to note that, different from the
prior works (Nguyen and Grishman, 2015b; Liu
et al., 2017), we do not include the entity type la-
bel of each token into its representation. This is
a more realistic setting for our work as the golden
entity mentions do not always exist in practice, es-
pecially for the datasets in WSD.

Once each token vj is converted into
the representation vector xj , the in-
stance V becomes a sequence of vectors
X = [x0, x1, . . . , xn, . . . , x2n−1, x2n] that would
be fed into the one of the following deep learning
models to learn a feature representation R for V .

Typical Deep Learning Models for ED

1. CNN: This is the convolutional neural net-
works in(Nguyen and Grishman, 2015b;
Chen et al., 2015). It features convolution op-
erations that are performed over the k consec-
utive vectors (k-grams) inX and followed by
a max-pooling layer to generate the represen-
tation vector R for V . Multiple window val-
ues k are used to enhance the coverage of the
model over the hidden k-grams in the con-
text.

2. NCNN (Nguyen and Grishman, 2016d): This
model is similar to CNN. The only differ-
ence is instead of running the convolution
over the k consecutive vectors, NCNN con-
volutes over the k arbitrarily non-consecutive
k vectors in V . This helps NCNN to explic-
itly model the non-consecutive words in the
context to improve ED.

3. BiRNN: This is the bidirectional recurrent
neural network (RNN) for event extraction
in (Nguyen et al., 2016a). The model is

4824

composed of two recurrent neural networks
(RNN), where one runs forward and the other
runs backward through the input sequence V .
The hidden vectors produced by the two net-
works are then concatenated at each position
in the context. The vector at the position of n
for the word of interest is used as the repre-
sentation vectorR for V . Due to the property
of RNN, R encodes the information over the
whole input V with a greater focus on vn.

4. CNN+BiRNN: In this model (Feng et al.,
2016), X is passed through both a CNN and
a BiRNN whose results are concatenated to
produce the hidden representation R for ED.
The expectation is to take advantage of the
modeling abilities from both the CNN and
BiRNN architectures for ED.

In practice, the representation vector R (ob-
tained from one of the deep learning models
above) is also concatenated with the word embed-
dings of the tokens surrounding the token of inter-
est wn to improve its expressiveness (Chen et al.,
2015; Nguyen and Grishman, 2016d). We would
use this extended version when we refer to R in
the following.

In the final step, the representation vector R is
fed into a feed-forward neural network followed
by a softmax layer to perform predictions for ED
and WSD.

For convenience, we denote the whole process
that a DL model M is used to compute the repre-
sentation vector R for the input sentence W with
the token index p of interest as: R =M(W,p).

2.2 Multi-task Learning Models
The previous section has described the deep learn-
ing methods that can be employed to train the
models for ED and WSD separately. This sec-
tion presents our proposed method to transfer the
knowledge from the WSD dataset to improve the
performance for ED.

A typical method for transfer learning/multi-
task learning in NLP is to alternate the training
process for the parameter-shared models of the re-
lated tasks (possibly with different datasets) (Guo
et al., 2016; Li et al., 2015; Liu et al., 2016). For
instance, in (Guo et al., 2016), the authors use the
same deep learning model to learn the feature rep-
resentations for the text inputs of two related tasks.
This is then followed by task-specific output lay-
ers to perform the corresponding tasks. Note that

the two tasks in (Guo et al., 2016) are provided
with two different datasets of different text inputs,
thereby being similar to the setting we consider
in this work. In order to learn the parameters for
this model, in each iteration, (Guo et al., 2016) se-
lect one of the tasks with some probabilities, sam-
ple a mini-batch of examples in the dataset of the
chosen task, and update the model parameters us-
ing the objective function specific to the chosen
task. Consequently, the model parameters for fea-
ture representation learning are updated at every
iteration while only the model parameters in the
output layer for the chosen task are updated at the
current iteration.

It has been demonstrated in (Guo et al., 2016)
that the alternating method (called ALT) is more
effective than pre-training the network on a related
task and fine-tuning it on the expected task. We
thereby consider ALT as the baseline for multi-
task learning in our work. However, we argue
that this baseline is not effective enough to trans-
fer the knowledge from the WSD dataset to ED
in our case. This stems from its employment of
a single DL model to induce the representations
for the text inputs in both tasks. In our case of
WSD and ED, although there are some overlap be-
tween the semantic differentiation of the two tasks,
the labels in the WSD datasets (i.e, the sense ids)
tend to be more fine-grained and exhaustive than
those in ED. For instance, for the word “fire”, there
might be 12 WSD labels for it in WordNet while
the number of possible event types for “fire” in the
ACE 2005 dataset is only 2 (i.e, “End-Position”
and “Attack”). Eventually, if a single DL model
is used to compute the representations for the text
inputs in both WSD and ED, the model would suf-
fer from a confusion to distinguish such subtlety
in the semantic differentiation.

In order to overcome this issue, we propose to
employ two versions Mwsd and M ed of the same
DL model (with different model parameters) to
compute the feature representations for WSD and
ED respectively. We then transfer the knowledge
from Mwsd to M ed by encouraging the represen-
tations generated by the two versions Mwsd and
M ed on the same text inputs to be similar. For-
mally, let (W t, pt, yt) be an example in the Dwsd

or Ded dataset (t ∈ {wsd, ed}). Also, let Rwsd

and Red be the representations for (W t, pt) in-
duced by Mwsd and M ed respectively:

Rwsd =Mwsd(W t, pt), Red =M ed(W t, pt)

4825

Such representation vectors are then followed by
a task-specific output layer F t (i.e, feed-forward
neural networks followed by a softmax layer) to
compute the probability distribution over the pos-
sible labels for (W t, pt): P t(Y t|Rt) = F t(Rt)
where Y t is the label set for the t task.

If the two models Mwsd and M ed were trained
separately, the objective function for the t task for
the current example would be the negative log-
likelihood: Ct(W t, pt, yt) = − logP t(yt|Rt). In
this work, instead of just optimizing this objective,
we optimize the joint function:

Ct(W t, pt, yt) = − logP t(yt|Rt)

+ λ
1

dR

dR∑
i=0

(
Rwsd

i −Red
i

)2
where λ is a trade-off parameter and dR is the di-
mension of the representation vectors.

The second term in the joint objective function
enforces that the feature representations learned
by Mwsd and M ed on the same input context
(W t, pt) are close to each other (t ∈ {wsd, ed}).
One the one hand, this representation matching
schema helps the two models to communicate to
each other so the knowledge from one model can
be passed to the other one. On the other hand, the
use of two separate models leaves a flexibility for
the models to induce the task-specific structures.

Presumably, the objective function (2.2) can si-
multaneously improve the performance for both
tasks of consideration. However, in our case of
ED and WSD, it turns out this mechanism actu-
ally worsen the performance of the WSD models
that were trained separately. We attribute this to
the fact that the semantic differentiation in ED is
more coarse-grained that that of WSD, causing the
ineffectiveness of the datasets for ED to improve
WSD performance. Eventually, we will just focus
on the ED performance in the experiments.

3 Experiments

3.1 Parameters and Datasets
We use the Semcor dataset (Miller et al., 1994) as
the dataset for WSD in this work. This dataset was
extracted from the Brown Corpus, and manually
annotated with WordNet senses. We evaluate the
models on two different datasets for ED:

1. ACE 2005: This dataset has 33 event sub-
types. We use the same data split with

the prior work (Chen et al., 2015; Nguyen
and Grishman, 2015b). In particular, 40
newswire documents are used for testing, 30
other documents are reserved for validation,
and the 529 remaining documents form the
training data.

2. TAC 2015: This dataset was released in the
Event Nugget Detection Evaluation of the
2015 Text Analysis Conference (TAC) (Mi-
tamura et al., 2015). It comes with 38 event
subtypes. We follow the data split in the of-
ficial evaluation to achieve compatible com-
parison. As TAC 2015 does not have a devel-
opment set, we use the best parameters tuned
on ACE 2005 for the experiments with TAC
2015.

We use the pre-trained word embeddings pro-
vided by (Nguyen and Grishman, 2016d). For
CNN, NCNN and CNN+BiRNN, we employ filter
sizes of {2, 3, 4, 5} with 300 filters for each size
as in (Nguyen and Grishman, 2015b), while Gated
Recurrent Units (Cho et al., 2014) with 300 hid-
den units are applied in BiRNN and CNN+BiRNN
(as do (Nguyen and Grishman, 2016d)). For
the other parameters, the best values suggested
by the development data include: a dropout rate
of 0.5, a feed-forward neural network with one
hidden layer of 1200 hidden units for the out-
put layers, and the penalty rate λ of 0.01 for
both CNN and BiRNN, 0.6 for NCNN, and 0.7
for CNN+BiRNN in the proposed transfer learn-
ing method (called MATCHING). For simplicity,
the same hyper-parameters are used for the two
versions of the same network architecture in the
MATCHING method. We utilize Adadelta (Zeiler,
2012) with back-propagation to train the models
in this work.

3.2 Experiments
In this section, we compare the proposed MATCH-
ING method with the transfer learning baseline
ALT in (Guo et al., 2016) and the separate training
mechanism for ED (called SEPARATE) employed
in the previous work for ED (Chen et al., 2015;
Nguyen and Grishman, 2015b). Note that in the
SEPARATE method, the models are only trained
on the datasets for ED without utilizing any trans-
fer learning techniques with external datasets. We
report the performance when each of the DL meth-
ods in Section 2.1 is used as the network to learn
the feature representations for ED and WSD.

4826

Tables 1 and 2 present the performance (i.e,
F1 scores) of the models on the ACE 2005 and
TAC 2015 datasets respectively. The first observa-
tion is that the proposed transfer learning method
MATCHING is consistently better than the base-
line method ALT across different deep learning
models and datasets with large performance gap.
This is significantly with p < 0.05 and confirms
our hypothesis in Section 2.2 about the advantage
of the proposed MATCHING over the alternating
training method ALT for ED and WSD. In fact,
the performance of the ALT method is even worse
than the traditional SEPARATE method also over
different network architectures and datasets. Con-
sequently, training a single deep learning model on
a combination of ED and WSD data (as in ALT)
does not automatically enable the model to learn
to exploit the similar structures of the two tasks.
In contrast, it hinders the model’s ability to effec-
tively extract hidden representations for ED.

Comparing MATCHING and SEPARATE, we
see that MATCHING helps to improve SEPARATE
with respect to difference choices of the DL mod-
els. The performance improvement is significant
for CNN and BiRNN on ACE 2005 and for all the
models on TAC 2015. Such results demonstrate
the effectiveness of the WSD dataset for ED and
the ability of the proposed method MATCHING
to promote knowledge transferring between WSD
and ED to improve ED performance.

Regarding the best reported performance, our
best performance on ACE (i.e, 71.2% with CNN)
is comparable with the recent state-of-the-art per-
formance (i.e, Table 1). However, we note that
such work heavily relies on the manual anno-
tation of the entity mentions in the documents.
Our current work do not employ such informa-
tion to better reflect the realistic setting. For the
TAC 2015 dataset, our best performance is 60.7%
with CNN+BiRNN although the performance of
the other models is also very close. This perfor-
mance is better than the best performance that has
been reported on the TAC 2015 (i.e, Table 2).

4 Related Work

Prior works on ED include statistical models with
manual feature engineering(Ahn, 2006; Ji and Gr-
ishman, 2008; Hong et al., 2011; Li et al., 2013;
Venugopal et al., 2014; Li et al., 2015), followed
by neural network models, such as CNNs (Nguyen
and Grishman, 2015b; Chen et al., 2015; Nguyen

Method CNN BiRNN NCNN CNN+BiRNN
SEPARATE 67.6 67.6 69.3 68.1
ALT 65.1 66.4 65.0 65.2
MATCHING 71.2 69.0 69.6 68.3
(Nguyen and Grishman, 2016d) 71.3*
(Liu et al., 2017) 71.9*
(Liu et al., 2018) 72.4*
(Nguyen and Grishman, 2018a) 73.1*

Table 1: Performance on the ACE 2005 dataset. * indi-
cates the use of entity mention annotation.

Method CNN BiRNN NCNN CNN+BiRNN
SEPARATE 57.6 59.4 58.3 58.0
ALT 57.6 54.9 48.5 57.5
MATCHING 60.0 60.4 60.0 60.7
TAC TOP (Mitamura et al., 2015) 58.4*
(Nguyen and Grishman, 2018a) 58.8*

Table 2: Performance on the TAC 2015 dataset. * indi-
cates the use of entity mention annotation.

et al., 2016b,e; Chen et al., 2017), RNNs (Nguyen
et al., 2016a; Jagannatha and Yu, 2016), and
attention-based methods (Liu et al., 2017; Nguyen
and Nguyen, 2018b).

A similar trend exists in methods proposed for
WSD, with feature based methods (Miller et al.,
1994; Zhong and Ng, 2010; Taghipour and Ng,
2015) succeeded recently by deep learning meth-
ods (Yuan et al., 2016; Raganato et al., 2017).

For multi-task learning in NLP, methods have
been proposed for jointly modeling structured
prediction tasks (Hatori et al., 2012; Li et al.,
2011; Bohnet and Nivre, 2012; Henderson et al.,
2013; Lluı́s et al., 2013; Duong et al., 2015), and
for sequence-to-sequence problems (Dong et al.,
2015; Luong et al., 2015; Liu et al., 2016; Klerke
et al., 2016). The prior work to solve multiple NLP
tasks using an unified architecture includes (Col-
lobert and Weston, 2008; Guo et al., 2016).

5 Conclusion

We present a method that improves the perfor-
mance of deep learning models for ED by training
two different versions of the same network archi-
tecture for ED and WSD, while encouraging the
knowledge transfer between the two versions via
representation matching. The proposed method
produces better results across a variety of deep
learning models.

4827

References
David Ahn. 2006. The stages of event extraction. In

ACL.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In
EMNLP-CoNLL.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In ACL.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In
ACL-IJCNLP.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In ICML.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL-IJCNLP.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network
parser. In ACL.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Heng Ji,
Bing Qin, and Ting Liu. 2016. A language-
independent neural network for event detection. In
ACL.

Jiang Guo, Wanxiang Che, Haifeng Wang, Ting Liu,
and Jun Xu. 2016. A unified architecture for se-
mantic role labeling and relation classification. In
COLING.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach
to word segmentation, pos tagging, and dependency
parsing in chinese. In ACL.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multilingual joint pars-
ing of syntactic and semantic dependencies with a
latent variable model. Computational linguistics,
39(4):949–998.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In ACL.

Abhyuday N Jagannatha and Hong Yu. 2016. Bidirec-
tional rnn for medical event detection in electronic
health records. In NAACL.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning
to predict gaze. arXiv preprint arXiv:1604.03357.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In ACL.

Xiang Li, Thien Huu Nguyen, Kai Cao, and Ralph Gr-
ishman. 2015. Improving event detection with ab-
stract meaning representation. In Proceedings of
ACL-IJCNLP Workshop on Computing News Story-
lines (CNewS).

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint models
for chinese pos tagging and dependency parsing. In
EMNLP.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018.
Event detection via gated multilingual attention
mechanism. In AAAI.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
ACL.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang Sui.
2016. Implicit discourse relation classification via
multi-task neural networks. In AAAI.

Xavier Lluı́s, Xavier Carreras, and Lluı́s Màrquez.
2013. Joint arc-factored parsing of syntactic and se-
mantic dependencies. ACL.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In ICLR.

George A Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In Proceedings of the workshop on Human Lan-
guage Technology. Association for Computational
Linguistics.

Teruko Mitamura, Zhengzhong Liu, and Eduard Hovy.
2015. Overview of tac kbp 2015 event nugget track.
In TAC.

Minh Nguyen and Thien Huu Nguyen. 2018b. Who
is killed by police: Introducing supervised attention
for hierarchical lstms. In COLING.

Thien Huu Nguyen, , Adam Meyers, and Ralph Gr-
ishman. 2016e. New york university 2016 system
for kbp event nugget: A deep learning approach. In
TAC.

4828

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016a. Joint event extraction via recurrent
neural networks. In NAACL.

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho, and
Ralph Grishman. 2016b. A two-stage approach for
extending event detection to new types via neural
networks. In Proceedings of the 1st ACL Workshop
on Representation Learning for NLP (RepL4NLP).

Thien Huu Nguyen and Ralph Grishman. 2015a. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st NAACL
Workshop on Vector Space Modeling for NLP
(VSM).

Thien Huu Nguyen and Ralph Grishman. 2015b. Event
detection and domain adaptation with convolutional
neural networks. In ACL-IJCNLP.

Thien Huu Nguyen and Ralph Grishman. 2016d. Mod-
eling skip-grams for event detection with convolu-
tional neural networks. In EMNLP.

Thien Huu Nguyen and Ralph Grishman. 2018a.
Graph convolutional networks with argument-aware
pooling for event detection. In AAAI.

Alessandro Raganato, Claudio Delli Bovi, and Roberto
Navigli. 2017. Neural sequence learning models for
word sense disambiguation. In EMNLP.

Kaveh Taghipour and Hwee Tou Ng. 2015. One mil-
lion sense-tagged instances for word sense disam-
biguation and induction. In Proceedings of the Nine-
teenth Conference on Computational Natural Lan-
guage Learning.

Deepak Venugopal, Chen Chen, Vibhav Gogate, and
Vincent Ng. 2014. Relieving the computational bot-
tleneck: Joint inference for event extraction with
high-dimensional features. In EMNLP.

Dayu Yuan, Julian Richardson, Ryan Doherty, Colin
Evans, and Eric Altendorf. 2016. Semi-supervised
word sense disambiguation with neural models.
arXiv preprint arXiv:1603.07012.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. In CoRR, abs/1212.5701.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In ACL.

