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Abstract

Sentence simplification aims to reduce the
complexity of a sentence while retaining its
original meaning. Current models for sen-
tence simplification adopted ideas from ma-
chine translation studies and implicitly learned
simplification mapping rules from normal-
simple sentence pairs. In this paper, we ex-
plore a novel model based on a multi-layer and
multi-head attention architecture and we pro-
pose two innovative approaches to integrate
the Simple PPDB (A Paraphrase Database
for Simplification), an external paraphrase
knowledge base for simplification that cov-
ers a wide range of real-world simplification
rules. The experiments show that the inte-
gration provides two major benefits: (1) the
integrated model outperforms multiple state-
of-the-art baseline models for sentence sim-
plification in the literature (2) through anal-
ysis of the rule utilization, the model seeks
to select more accurate simplification rules.
The code and models used in the paper
are available at https://github.com/
Sanqiang/text_simplification.

1 Introduction

Sentence simplification aims to reduce the com-
plexity of a sentence while retaining its original
meaning. It can benefit individuals with low-
literacy skills (Watanabe et al., 2009) including
children, non-native speakers and individuals with
language impairments such as dyslexia (Rello
et al., 2013), aphasic (Carroll et al., 1999).

Most of the previous studies tackled this task
in a way similar to machine translation (Xu et al.,
2015a; Zhang and Lapata, 2017), in which models
are trained on a large number of pairs of sentences,
each consisting of a normal sentence and a simpli-
fied sentence. Statistical and neural network mod-
eling are two major methods used for this task.
The statistical models have the benefit of easily in-
tegrating with human-curated rules and features,

thus they generally perform well even they are
trained with a limited number of data. In con-
trast, neural network models could learn the sim-
plifying rules automatically without the need for
feature engineering, but at the cost of requiring a
huge amount of training data. Even though models
based on neural networks have outperformed the
statistical methods in multiple Natural Language
Processing (NLP) tasks, their performance in sen-
tence simplification is still inferior to that of statis-
tical models (Xu et al., 2015a; Zhang and Lapata,
2017). We speculate that current training datasets
may not be large and broad enough to cover com-
mon simplification situations. However, human-
created resources do exist which can provide abun-
dant knowledge for simplification. This motivates
us to investigate if it is possible to train neural net-
work models with these types of resources.

Another limitation to using existing neural net-
work models for sentence simplification is that
they are only able to capture frequent transforma-
tions; they have difficulty in learning rules that
are not frequently observed despite their signifi-
cance. This may be due to nature of neural net-
works (Feng et al., 2017): during training, a neu-
ral network tunes its parameters to learn how to
simplify different aspects of the sentence, which
means that all the simplification rules are actu-
ally contained in the shared parameters. There-
fore, if one simplification rule appears more fre-
quently than others, the model will be trained to
be more focused on it than the infrequent ones.
Meanwhile, models tend to treat infrequent rules
as noise if they are merely trained using sentence
pairs. If we can leverage an additional memory
component to maintain simplification rules indi-
vidually, it would prevent the model from forget-
ting low-frequency rules as well as help it to dis-
tinguish real rules from noise. Therefore, we pro-
pose the Deep Memory Augmented Sentence Sim-
plification (DMASS) model. For comparison pur-
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pose, we also introduce another approach, Deep
Critic Sentence Simplification (DCSS) model, to
encourage applying the less frequently occurring
rules by revising the loss function. It this way,
simplification rules are encouraged to maintained
internally in the shared parameters while avoiding
the consumption of an unwieldy amount of addi-
tional memory.

In this study, we propose two improvements
to the neural network models for sentence sim-
plification. For the first improvement, we pro-
pose to use a multi-layer, multi-head attention ar-
chitecture (Vaswani et al., 2017). Compared to
RNN/LSTM (Recurrent Neural Network / Long
Short-term Memory), the multi-layer, multi-head
attention model would be able to selectively
choose the correct words in the normal sentence
and simplify them more accurately.

Secondly, we propose two new approaches
to integrate neural networks with human-curated
simplification rules. Note that previous studies
rarely tried to incorporate explicit human lan-
guage knowledge into the encoder-decoder model.
Our first approach, DMASS, maintains additional
memory to recognize the context and output of
each simplification rules. Our second approach,
DCSS, follows a more traditional approach to en-
code the context and output of each simplification
rules into the shared parameters.

Our empirical study demonstrates that our
model outperforms all the previous sentence sim-
plification models. They achieve both a good cov-
erage of rules to be applied (recall) and a high ac-
curacy gained by applying the correct rules (preci-
sion).

2 Related Work

Sentence Simplification For statistical model-
ing, Zhu et al. (2010) proposed a tree-based sen-
tence simplification model drawing inspiration
from statistical machine translation. Woodsend
and Lapata (2011) employed quasi-synchronous
grammar and integer programming to score the
simplification rules. Wubben et al. (2012) pro-
posed a two-stage model PBMT-R, where a stan-
dard phrase-based machine translation (PBMT)
model was trained on normal-simple aligned sen-
tence pairs, and several best generations from
PBMT were re-ranked based how dissimilar they
were to a normal sentence. Hybrid, a model pro-
posed by Narayan and Gardent (2014) was also a

two-stage model combining a deep semantic anal-
ysis and machine translation framework. SBMT-
SARI (Xu et al., 2016) achieved state-of-the-art
performance by employing an external knowledge
base to promote simplification. In terms of neu-
ral network models, Zhang and Lapata (2017) ar-
gued that the RNN/LSTM model generated sen-
tences but it does not have the capability to sim-
plify them. They proposed DRESS and DRESS-
LS that employ reinforcement learning to reward
simpler outputs. As they indicated, the perfor-
mance is still inferior due to the lack of external
knowledge. Our proposed model is designed to
address the deficiency of current neural network
models which are not able to integrate an external
knowledge base.

Augmented Dynamic Memory Despite posi-
tive results obtained so far, a particular problem
with the neural network approach is that it has
a tendency towards favoring to frequent observa-
tions but overlooking special cases that are not fre-
quently observed. This weakness with regard to
infrequent cases has been noticed by a number of
researchers who propose an augmented dynamic
memory for multiple applications, such as lan-
guage models (Daniluk et al., 2017; Grave et al.,
2016), question answering (Miller et al., 2016),
and machine translation (Feng et al., 2017; Tu
et al., 2017). We find that current sentence sim-
plification models suffer from a similar neglect of
infrequent simplification rules, which inspires us
to explore augmented dynamic memory.

3 Our Sentence Simplification Models

3.1 Multi-Layer, Multi-Head Attention

Our basic neural network-based sentence simplifi-
cation model utilizes a multi-layer and multi-head
attention architecture (Vaswani et al., 2017). As
shown in Figure 1, our model based on the Trans-
former architecture works as follows: given a pair
consisting a normal sentence I and a simple sen-
tence O, the model learns the mapping from I to
O.

The encoder part of the model (see the left part
of Figure 1) encodes the normal sentence with a
stack ofL identical layers. Each layer has two sub-
layers: one layer is for multi-head self-attention
and the other one is a fully connected feed-forward
neural network for transformation. The multi-head
self-attention layer encodes the output from the
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Figure 1: Diagram of the Transformer architecture

previous layer into hidden state e(s,l) (step s and
layer l) as shown in Equation 1, where αenc

(s′,l) indi-
cates the attention distribution over the step s′ and
layer l. Each hidden state summarizes the hidden
states in the previous layer through the multi-head
attention function a() (Vaswani et al., 2017) where
H refers to the number of heads.

The right part of Figure 1 denotes the decoder
for generating the simplified sentence. The de-
coder also consists of a stack of L identical layers.
In addition to the same two sub-layers as those
in the encoder part, the decoder also inserts an-
other multi-head attention layer aiming to attend
on the encoder outputs. The bottom multi-head
self-attention plays the same role as the one in the
encoder, where the hidden state d(s,l) is computed
in the Equation 2. The upper multi-head attention
layer is used to seek relevant information from en-
coder outputs. Through the same mechanism, con-
text vector c(s,l) (step s and layer l) is computed in

the Equation 3.

e(s,l) =
∑
s′

αenc
(s′,l)e(s′,l−1), αenc

(s′,l) =a(e(s,l), e(s′,l−1), H)1

(1)

d(s,l) =
∑
s′

αdec
(s′,l)d(s′,l−1), αdec

(s′,l) =a(d(s,l), c(s′,l−1), H)2

(2)

c(s,l) =
∑
s′

αdec2
(s′,l)e(s′,L), αdec2

(s′,l) =a(d(s,l), e(s′,L), H)

(3)

The model is trained to minimize the negative
log-likelihood of the simple sentence, Lseq =
−logP (O|I, θ) where θ represents all the param-
eters in the current model.

3.2 Integrating with Simple PPDB

A previous study (Xu et al., 2016) has demon-
strated the benefits of using an external knowledge
base in conjunction with a statistical simplification
model. However, as far as we know, no efforts
have been made to integrate neural network mod-
els with the knowledge base, and our study is the
first to meet this goal.

Weight Type Rule
0.99623 [VP] recipient→ have receive
0.75530 [NN] recipient→ winner
0.58694 [NN] recipient→ receiver
0.46935 [NN] recipient→ host

Table 1: Examples from the Simple PPDB

Simple PPDB (Pavlick and Callison-Burch,
2016) refers to a paraphrase knowledge base for
simplification. It is a refined version of another
knowledge, PPDB (Ganitkevitch et al., 2013),
which was originally designed to support para-
phrase. Simple PPDB contains 4.5 million para-
phrase rules, each of which provides the mapping
from a normal phrase to a simplified phrase, the
syntactic type of the normal phrase, and the sim-
plification weight. Table 1 shows four examples,
where “recipient” can be simplified to “winner”
with a weight 0.75530 if “recipient” is a singular
noun (NN).

3.2.1 Deep Critic Sentence Simplification
Model (DCSS)

The Simple PPDB offers guidance about whether
a word needs to be simplified and how it should

1The lowest hidden state e(:,0) is the word embedding.
2The lowest context vector c(:,0) is the word embedding.
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be simplified. The Deep Critic Sentence Simpli-
fication (DCSS) model is designed to apply rules
identified by the Simple PPDB by introducing a
new loss function. Different from the standard loss
function that minimizes the distance away from
the ground truth, the new loss function aims to
maximize the likelihood of applying simplification
rules. It also reweights the probability of generat-
ing each word by its simplification weight in order
to relieve the problem of overlooking infrequent
simplification rules.

For example, given a normal sentence in the
training set, “the recipient of the kate greenaway
medal”, the simplified sentence is “the winner of
the kate greenaway medal.”, where “recipient” is
simplified to “winner”, which is identified by Sim-
ple PPDB. The major goal of the loss functions is
to support the model in generating the simplified
word “winner” while deterring the model from
generating the word “recipient”. Specifically, for
an applicable simplification rule, our new loss
function maximizes the probability of generating
the simplified form (word “winner”) and mean-
while minimizes the probability of generating the
original form (word “recipient”). As in Equation
4, where wrule indicates the weight of the simpli-
fication rule provided by the Simple PPDB, once
the model generates “recipient”, the model is criti-
cized to generate word “winner”; when model pre-
dicts correctly with “winner”, the model is trained
to minimize the probability of “recipient”. In this
way, the model avoids selecting normal words and
instead becomes inclined to choose the simplified
words.

Lcritic =


−wrulelogP (winner|I, θ)

if model generates recipient
wrulelogP (recipient|I, θ)

if model generates winner
(4)

The Lcritic merely focuses on the words identi-
fied by the Simple PPDB and Lseq focuses on the
entire vocabulary. So, the model is trained in an
end-to-end fashion by minimizing Lseq and Lcritic

alternately.

3.2.2 Deep Memory Augmented Sentence
Simplification Model (DMASS)

DCSS, similar to the majority of neural network
models, uses a piece of shared memory, i.e. the
parameters, as the media to store the learned rules
from the data. As a result, it still focuses much

more on rules that are frequently observed and ig-
nores the rules observed infrequently. However,
infrequent rules are still important, particularly
when the training data is limited.

In order to make full use of the rules in the
knowledge base, we introduce the Deep Memory
Augmented Sentence Simplification (DMASS)
model. DMASS has an augmented dynamic mem-
ory to record multiple key-value pairs for each rule
in the Simple PPDB. The key vector stores a con-
text vector that is computed based on the weighted
average of encoder hidden states and the current
decoder hidden states. The value vector stores the
output vector.

Our DMASS model is illustrated in Figure 2.
Given the same example normal sentence “ the re-
cipient of kate greenaway medal”, Simple PPDB
determines that the word “recipient” should be
simplified to “winner”. The encoder represents the
normal sentence as a list of hidden states, [e(1,L),
e(2,L), ...] where L indicates the final layer of
encoder hidden states. When predicting the next
word in the simplified sentence, the decoder of
layer j represents the previous words as hidden
states [d(1,j), ... ]. c(1,j) refers to the current con-
text vector following attention layer, which is the
weighted average of [e(1,L), e(2,L), ...] based on
d(1,j). A feed-forward fully connected neural net-
work (FFN) combines the output of the decoder
and the output from memory read module into the
final output rwinner. In addition to the word pre-
diction, c(1,j) and rwinner will be sent to memory
update module.

In the remainder of this section, we will in-
troduce the two modules of DMASS mentioned
above: Memory Read Module and Memory Up-
date Module.

Memory Read Module The memory read mod-
ule incorporates rules into prediction. As shown
in Figure 2, current augmented memory contains
three candidate rules for the word “recipient”,
which indicates that it can be simplified into “win-
ner”, “receiver” or “host”, respectively. The cur-
rent context vector c(1,j) is treated as a query
to search for suitable rules by using Equation 5,
where αr

i denotes the weight for ith rule, which is
computed through the dot product between current
context vector c(1,j) and ci. Then using Equation
6, αr

i weights each output vector to generate mem-
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Figure 2: Diagram of DMASS Model

ory read output.

αr
i =

ei∑
j ej

ei = exp(c(1,j) · ci) (5)

ro =
∑

αr
i rr rr ∈ [rwinner, rreceiver, rhost] (6)

Memory Update Module The task of the mem-
ory update module is to update the key and value
vectors in the augmented memory. Once the
model predicts the output vector rwinner, both
rwinner and the current context vector c1,j are sent
to the memory update module. If the augmented
memory does not contain the key-value pair for the
rule, c1,j and rwinner are appended to the memory.
If the augmented memory contains the key-value
pair, the key vector is updated as the mean of cur-
rent key vector and c1,j . Similarly, the value vector
is also updated as the mean of current value vector
and rwinner.

4 Experiments

Dataset We utilize the dataset WikiLarge (Zhang
and Lapata, 2017) for training. It is the largest
Wikipedia corpus, constructed by merging previ-
ously created simplification corpora. Specifically,
the training dataset contains 296,402 normal-
simple sentence pairs gathered from (Zhu et al.,
2010; Woodsend and Lapata, 2011; Kauchak,
2013). For validation and testing, we use the
dataset Turk created by (Xu et al., 2016). In this
dataset, eight simplified reference sentences for
each normal sentence are used as the ground-truth,
all of which are generated by Amazon Mechani-
cal Turk workers. The Turk dataset contains 2,000

data samples for validation and 356 samples for
testing. We consider the Turk to be the most reli-
able data set because (1) it is human-generated and
(2) it contains multiple simplification references
for each normal sentence due to the existence of
multiple equally good simplifications of each sen-
tence. We also include the second test set Newsela,
a corpus introduced by (Xu et al., 2015b) who ar-
gue that only using normal-simple sentence pairs
from Wikipedia is suboptimal due to the automatic
sentence alignment which unavoidably introduces
errors, and the uniform writing style which leads
to systems that generalize poorly. The test set
contains 1,419 normal-simple sentence pairs3. To
demonstrate that our models are able to perform
well on a different style of corpus, we report the
results of Newsela test set by using the models
trained/tuned on Turk dataset. Following Zhang
and Lapata (2017)’s way, we tag and anonymize
name entities with a special token in the format of
NE@N, where NE includes {PER,LOC,ORG}
and N indicates the N th distinct NE type of entity.
We also replace those tokens occurring three times
or less in the training set with a mark “UNK” as
mentioned in (Zhang and Lapata, 2017).

Evaluation Metrics We report the results of
the experiment with two metrics that are widely
used in the literature: SARI (Xu et al., 2016)
and FKGL (Kincaid et al., 1975). FKGL com-
putes the sentence length and word length as a
way to measure the simplicity of a sentence. The
lower value of FKGL indicates simpler sentence.
FKGL measures the simplicity of a sentence with-
out considering the ground truth simplification ref-
erences and it correlates little with human judg-
ment (Xu et al., 2016), so we also use another
metric, SARI. SARI, which stands for “System
output Against References and against the normal
sentence”, computes the arithmetic mean of N-
grams (N includes 1,2,3 and 4) F1-score of three
rewrite operations: addition, deletion, and keep-
ing. Specifically, it rewards addition operations
where a word in the generated simplified sentence
does not appear in the normal sentence but is men-
tioned in the reference sentences. It also rewards
words kept or deleted in both the simplified sen-
tence and the reference sentences. In our experi-
ment, we also present the F1-score of three rewrite

3Because the earlier publications don’t provide pre-
process details, we use our own script to pre-process the arti-
cles into sentence pairs.
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operations: addition, deletion, and keeping. Xu
et al. (2016) demonstrated that SARI correlates
most closely to human judgments in sentence sim-
plification tasks. Thus, we treated SARI as the
most important measurement in our study.

Because SARI rewards deleting and adding sep-
arately, we also include another metric to measure
the correctness of lexical transformation, namely
word simplification, verified by Simple PPDB. By
comparing the normal sentence and ground truth
simplified references, we collect rules that are cor-
rect to be used for simplifying each normal sen-
tence. Then we calculate the precision, recall,
and F1 score for using the correct rules. As a re-
sult, the recall expresses the coverage of rules to
be applied, and the precision implies the accuracy
gained by applying the correct rules.

Training Details We initialized the encoder and
decoder word embedding lookup matrices with
300-dimensional Glove vectors(Pennington et al.,
2014). The word embedding dimensionality and
the number of hidden units are set to 300. During
the training, we regularize all layers with a dropout
rate of 0.2 (Srivastava et al., 2014). For multi-
layer and multi-head architecture, 4 encoder and
decoder layers (set L as 4) and 5 multi-attention
heads (set H as 5) are used. We will discuss
the trade-off between different layers and differ-
ent heads in Sections 4.1. For DMASS, we use
the context vector based on the first layer of the
decoder (set j as 1). For optimization, we use Ada-
grad (Duchi et al., 2011) with the learning rate set
to 0.1. The gradient is truncated by 4 (Pascanu
et al., 2013).

4.1 Impacts of Multi-Layer, Multi-Head
Attention Architecture

The reason to employ the Transformer architec-
ture in the sentence simplification task is that we
believe that its multi-layer, multi-head attention
provides a better capability of modeling both the
overall context and the important cues for sentence
simplification. In this section, we examine the
applicability of multi-layer, multi-head attention
architecture to the sentence simplification task.
We compare our results against the RNN/LSTM-
based sentence simplification models. Note that
the results of our models presented here have not
been integrated with the Simple PPDB.

Table 2 shows the experiment results where
LxHy indicates a run with Transformer using x

layers and y heads. When compared with results
of RNN/LSTM, our Transformer-based model
performed better in terms of SARI and FKGL val-
ues. In addition, with the increased number of lay-
ers or heads, the values of SARI and FKGL im-
prove accordingly. In the remainder of this sec-
tion, we analyze the insights of these results in de-
tail.

In our tasks, FKGL measures the sentence
length and the word length as two factors for
evaluating a simplified sentence. Therefore, we
include Wlen(Word Length) and Slen(Sentence
Length) into our analysis. As shown in Ta-
ble 2, models with higher numbers of layers and/or
heads do generally reduce the average word length
and the average sentence length, which indicates
that the higher number of layers and/or heads in
the model leads to simpler outcomes.

It has been found that SARI correlates most
closely to human judgment (Xu et al., 2016). To
further analyze the effects of SARI, we study the
impacts of three rewrite operations in SARI: add,
delete, and keep. As shown in Table 2, we find
that the improvement mostly results from cor-
rectly adding simplified words and deleting nor-
mal words, but not from keeping words. By an-
alyzing the outputs, the increased number of lay-
ers or heads results in better capability to simplify
the words. Specifically, models with the greater
number of layers or heads tend to remove the nor-
mal words and add simplified words. However,
they may introduce inaccurate simplified words,
thereby driving down the F1 score for keeping
words. We believe the Simple PPDB, which offers
guidance about whether words need to be simpli-
fied and how they should be simplified, provides
an ideal method to alleviate this issue.

4.2 Impacts of Integrating the Simple PPDB

In order to make comprehensive comparisons with
the state-of-the-art models, we include multiple
baselines from the literature, including PBMT-
R (Wubben et al., 2012), Hybrid (Narayan and
Gardent, 2014), and SBMT-SARI (Xu et al.,
2016). We also include several strong baselines
based on neural networks such as RNN/LSTM,
DRESS, DRESS-LS (Zhang and Lapata, 2017) as
shown in Tables 3 and 4 We developed three mod-
els for this experiment. They are DMASS, DCSS,
and DMASS+DCSS, where DMASS+DCSS indi-
cates the combination of DMASS and DCSS. The
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Model FKGL Factors in FKGL SARI F1 for operations in FKGL
WLen SLen Add Delete Keep

RNN/LSTM 8.67 1.34 21.68 35.66 3.00 28.95 75.03
Transformer (L1H5) 8.59 1.34 21.39 35.88 2.69 30.46 74.50
Transformer (L2H5) 8.11 1.33 20.52 36.88 3.48 33.26 73.91
Transformer (L3H5) 7.71 1.32 19.77 38.02 4.14 37.41 72.51
Transformer (L4H1) 7.49 1.31 19.41 37.88 4.05 37.35 72.23
Transformer (L4H2) 7.40 1.31 19.19 38.35 4.58 39.77 70.70
Transformer (L4H5) 7.22 1.30 19.00 38.84 4.78 41.19 70.53

Table 2: Comparison of transformers with different layers and heads of attention on Turk dataset

Model FKGL Factors in FKGL SARI F1 for operations of SARI Rule Utilization
WLen SLen Add Delete Keep Prec Recall F1

PBMT-R 8.35 1.30 22.08 38.56 5.73 36.93 73.02 14.60 22.29 15.01
Hybrid 4.71 1.28 13.38 31.40 5.49 45.48 46.86 10.62 7.61 7.62
SBMT-SARI 7.49 1.18 23.50 39.96 5.97 41.43 72.51 13.30 28.96 15.77
RNN/LSTM 8.67 1.34 21.68 35.66 3.00 28.95 75.03 13.67 14.83 11.65
DRESS 6.80 1.34 16.55 37.08 2.94 43.14 65.16 13.06 12.50 10.77
DRESS-LS 6.92 1.35 16.76 37.27 2.82 42.21 66.78 12.40 11.36 9.83
DMASS 7.41 1.29 20.00 39.81 5.04 41.94 72.46 17.97 25.54 18.12
DCSS 7.34 1.31 19.30 39.26 5.29 41.24 71.26 13.14 21.30 13.87
DMASS+DCSS 7.18 1.27 20.10 40.42 5.48 45.55 70.22 16.25 30.42 18.98
DMASSbeam=4 8.20 1.30 21.66 39.16 4.90 38.41 74.18 18.53 25.46 18.40
DCSSbeam=4 7.97 1.32 20.56 39.11 5.10 38.87 73.36 14.36 20.96 14.48
DMASS+DCSSbeam=4 7.93 1.28 21.49 40.34 5.73 42.55 72.74 18.55 31.56 20.81
DMASSbeam=8 8.23 1.30 21.68 39.15 4.95 37.80 74.69 18.44 25.34 18.32
DCSSbeam=8 7.97 1.32 20.56 39.11 5.10 38.87 73.36 14.37 20.96 14.80
DMASS+DCSSbeam=8 8.04 1.29 21.64 40.45 5.72 42.23 73.41 19.46 31.99 21.51

Table 3: Performance of baselines and proposed models on the Turk dataset.

Model FKGL Factors in FKGL SARI F1 for operations of SARI Rule Utilization
WLen SLen Add Delete Keep Prec Recall F1

RNN/LSTM 6.09 1.22 18.67 21.09 11.10 38.78 13.39 12.62 22.63 14.68
DRESS 4.96 1.23 15.27 25.70 10.65 52.59 13.86 12.56 17.88 13.28
DRESS-LS 5.07 1.24 15.47 24.91 11.21 49.74 13.76 12.61 17.50 13.42
DMASS 5.38 1.20 17.47 25.41 11.88 50.39 13.97 16.32 34.79 20.00
DCSS 5.64 1.22 17.58 24.31 13.52 45.60 13.81 15.20 30.38 18.39
DMASS+DCSS 5.17 1.18 17.60 27.28 11.56 56.10 14.19 15.98 40.64 20.98
DMASSbeam=4 5.64 1.21 17.79 24.09 13.96 44.47 13.85 17.40 35.97 21.37
DCSSbeam=4 5.80 1.22 17.85 23.28 15.28 40.76 13.81 16.77 31.81 20.06
DMASS+DCSSbeam=4 5.42 1.19 17.81 26.39 13.92 51.13 14.13 18.71 43.36 24.23
DMASSbeam=8 5.68 1.21 17.83 23.95 14.25 43.74 13.86 17.69 36.37 21.74
DCSSbeam=8 5.77 1.22 17.76 23.18 15.65 40.08 13.82 17.18 32.18 20.50
DMASS+DCSSbeam=8 5.43 1.19 17.83 26.29 14.08 50.62 14.17 18.89 43.54 24.47

Table 4: Performance of baselines and proposed models on the Newsela dataset.

subscript beam indicates the size of beam search.

Results with FKGL Metric As shown in Tables
3 and 4, Hybrid achieves the lowest (thus the best)
FKGL score, and DRESS and DRESS-LS have the
second best FKGL scores. All the other models in-
cluding ours do not perform as well as these two.
But FKGL measures the simplicity of a sentence
without considering the ground truth simplifica-
tion references, so high FKGL may be at the cost
of losing information and readability.

To further analyze the FKGL results, we exam-

ine the average sentence length and word length of
the outcomes of the models and they are listed as
WLen (Word Length) and SLen (Sentence Length)
in Tables 3 and 4. Hybrid, DRESS, and DRESS-
LS are good at generating shorter sentences, but
they are not as good at choosing shorter words.
In contrast, SBMT-SARI, DCSS, and DMASS all
generate shorter words. Therefore, we believe
that, by optimizing language model as a goal for
the reinforcement learning, DRESS and DRESS-
LS are tuned to simplify sentences by shortening
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the sentence lengths. In contrast, with the help
of an integrated external knowledge base, SBMT-
SARI and our models have more capability to gen-
erate shorter words in order to simplify sentences.
Therefore, these two sets of models complete sen-
tence simplification tasks via different routes, and
perhaps there should be an exploration of combin-
ing these two routes for even more successful sen-
tence simplification.

Another interesting finding is that the larger
beam search size increases average word length
slightly. This is because the larger beam search
size mitigates the issue of the inaccurate simplifi-
cation so that fewer words are simplified. To mea-
sure the correctness of simplification, we analyze
the SARI metric and Rule Utilization.

Results with SARI Metric SARI is the most
reliable metric for the sentence simplification
task (Xu et al., 2016), therefore we would like
to present more detailed discussion regarding the
SARI results. As shown in Tables 3 and 4,
DMASS+DCSS achieves the best SARI score,
which demonstrates the effectiveness of integrat-
ing the knowledge base Simple PPDB for sentence
simplification.

To further examine the impacts of the F1
scores for three operations in calculating the
SARI scores, as shown in Tables 3 and 4,
DMASS+DCSS, as well as other models with
high SARI performance benefit greatly by cor-
rectly adding and deleting words. We believe
these benefits mostly result from the integration
with the knowledge base, which provides reliable
guidance about which words to modify. SBMT-
SARI, which represents a previous state-of-the-art
model that also integrates with knowledge bases,
performs best in correctly adding new words but
performs inferiorly in deleting/keeping words. By
analyzing the outputs, SBMT-SARI acts aggres-
sively to simplify as many words as possible. But
it also results in incorrect simplification. DRESS
and DRESS-LS are inclined to generate the shorter
sentence, which leads to high F1 scores for delet-
ing words, but it lags behind other models in
adding/keeping words.

DMASS leverages an additional memory com-
ponent to maintain the simplification rules; DCSS
uses internal memory to store those rules. A
large number of simplification rules might con-
fuse the model with limited internal memory. This
might be the reason why DMASS works better

than DCSS. By taking a two-way advantage of
both models, DMASS+DCSS takes a two-fisted
approach to store the simplification rules in both
additional and internal memory. As a result,
DMASS+DCSS achieves the best performance in
SARI.

Results with Rule Utilization In this section,
we evaluate the models’ capabilities for word
transformation. The majority of previous ap-
proaches, except for the SBMT-SARI, perform
poorly in recall. We believe the knowledge base
Simple PPDB will reduce uncertainty in the word
selection.

As before, SBMT-SARI acts aggressively to
simplify every word in the sentence. Such an
aggressive action leads to relatively high perfor-
mance in recall. However, it does not achieve
a strong performance in precision. DMASS per-
forms better in terms of rule utilization as com-
pared to DCSS by leveraging an additional mem-
ory. DMASS+DCSS takes advantage of both ap-
proaches that store the simplification rules in addi-
tional and internal memory. This combined model
is guaranteed to apply more accurate rules.

As compared to the loose relationship between
SARI and beam search size, we find that that beam
search size correlates strongly with the perfor-
mance in rule utilization. Thus, we believe larger
beam search size contributes to good coverage of
rules to be applied as well as accuracy in applying
rules.

5 Conclusion

In this paper, we propose two innovative ap-
proaches for sentence simplification based on neu-
ral networks. Both approaches are based on multi-
layer and multi-head attention architecture and in-
tegrated with the Simple PPDB, an external sen-
tence simplification knowledge base, in differ-
ent ways. By conducting a set of experiments,
we demonstrate that the proposed models per-
form better than existing methods and achieve new
state-of-the-art in sentence simplification. Our ex-
periments firstly prove that the multi-layer and
multi-head attention architecture has an excellent
capability to understand the text by accurately se-
lecting specific words in a normal sentence and
then choosing right simplified words. Secondly,
by integrating with the knowledge base, our mod-
els outperform multiple state-of-the-art baselines
for sentence simplification. Compared to previous
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models which integrated with the knowledge base,
our models, especially, DMASS+DCSS, provide
both good coverage of rules to be applied and ac-
curacy in applying the correct rules. In future, we
would like to investigate deeper into the different
effects of additional memory and internal memory.
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