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Abstract

State-of-the-art networks that model relations
between two pieces of text often use complex
architectures and attention. In this paper, in-
stead of focusing on architecture engineering,
we take advantage of small amounts of la-
belled data that model semantic phenomena
in text to encode matching features directly in
the word representations. This greatly boosts
the accuracy of our reference network, while
keeping the model simple and fast to train.
Our approach also beats a tree kernel model
that uses similar input encodings, and neu-
ral models which use advanced attention and
compare-aggregate mechanisms.

1 Introduction

Modeling a match between pieces of text is at the
core of many NLP tasks. Recently, manual feature
engineering methods have been shadowed by neu-
ral network approaches. These networks model
the interaction of two pieces of text, or word-to-
word interactions across sentences, using sophis-
ticated attention mechanisms (Wang et al., 2016a;
Santos et al., 2016) and compare-aggregate frame-
works (He and Lin, 2016; Wang et al., 2017).

Architectural complexity is tied to longer train-
ing times 1. Meaningful features may take long
time to emerge by only leveraging word represen-
tations and the training data of the task at hand.
This is especially problematic with little data, as it
often happens in question answering (QA) tasks,
e.g., answer sentence selection (Wang et al., 2007;
Yang et al., 2015). Thus, effective word represen-
tations are crucial in neural network models to get
state-of-the-art performance.

∗Now at Google
†This work was partially carried out when the author was

at the University of Trento
1http://dawn.cs.stanford.edu/

benchmark/

In this work, we try to answer the following re-
search questions: (i) in addition to lexical links,
can we incorporate higher-level semantic links be-
tween the words in a question and a candidate an-
swer passage, and (ii) can we show that such infor-
mation has an impact on the quality of our model,
and also allows us to keep the architecture simple?

We show that modeling semantic relations im-
proves the performance of a neural network for an-
swer sentence selection with (i) a little number of
semantic annotations, and (ii) a little increase in
training time w.r.t. more complex architecture.

2 Related Work

Traditional work on QA makes heavily use of syn-
tactic and semantic features (Hickl et al., 2007;
Ferrucci et al., 2010). A different direction con-
sists in using structural kernels on text encoded
as trees (Severyn and Moschitti, 2012; Severyn
et al., 2013a,b; Tymoshenko et al., 2014; Ty-
moshenko and Moschitti, 2015). Recently, deep
learning methods have been very successful in
NLP tasks. Words and sentences are mapped
into low dimensional representations using con-
volutional (Krizhevsky et al., 2012) and recur-
rent networks (Schuster and Paliwal, 1997), and
then adoperated for classification. Complex net-
works for such a task include attentive networks
and compare-aggregate networks.

Attentive Networks (Bahdanau et al., 2015;
Parikh et al., 2016; Yin et al., 2016) build a sen-
tence representation by also considering the other
sentence, weighting the contribution of its parts
with the so-called attention mechanism.

Compare-Aggregate Networks (Wang and
Jiang, 2017) apply several decompositions to
each sentence in a pair. The resulting vectors are
compared or composed with multiple functions,
and possibly some attention mechanisms. All the
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intermediate results are then aggregated into a
fixed size vector to quantify the final match.

In this work, we take some elements of the
traditional QA research, i.e., semantic features,
and use them to model relationships between sen-
tence pairs, in the context of a neural network,
which is less complex than attentive and compare-
aggregate counterparts.

3 Question Analysis

Question Analysis is an important part of a QA
system (Lally et al., 2012) and can give us syn-
tactic and semantic clues that greatly help in scor-
ing answer passages, and in identifying the final
answer. Leveraging a relatively small number of
annotated examples, we can automatically extract
question properties that may be exploited by a QA
model to increase the accuracy of its answers. We
use classifiers to extract the question category and
the question focus.
Question Category. Questions can be broadly
classified into categories according to a given tax-
onomy. When the category is indicative of the an-
swer type, the latter can be furtherly characterized
by the Lexical Answer Type (LAT), which accord-
ing to Lally et al. (2012) is a word or noun phrase
in the question that specifies the type of the answer
without any attempt to understand its semantics.
Question Focus. In the literature there are mul-
tiple definitions of question focus. According
to Ferrucci et al. (2010), the focus is the ques-
tion part that substituted with the answer, renders
the question a stand-alone statement. According
to Bunescu and Huang (2010), the focus is the “set
of all maximal noun phrases in the question that
corefer with the answer”. Their definition allows
a question to have multiple focuses or an implicit
focus. Additionally, it is more tied to the LAT and
indeed the focus can be used to infer the answer
type. We adopt such definition since we build our
question focus identifier using the annotated data
they provide. Note that we do not consider multi-
word or implicit focus.

4 Answer Sentence Selection with CNNs

Given a query or question q and a candidate an-
swer passage a, the task of answer selection can
be defined as learning a function f(q, a) that out-
puts a relevancy probability s ∈ [0, 1]. Multi-
ple answers associated with a question are sorted
in descending order by the score s. A good an-

swer selection system places the highest number
of correct answers at the top of a candidate answer
list. In this paper, we use convolutional neural net-
works, referred to as CNNs (Kim, 2014; Kalch-
brenner et al., 2014), to (i) classify a question into
a category, (ii) identify the focus word in a ques-
tion, and (iii) build a question and answer repre-
sentations for QA.

4.1 Sentence Matrix Encoding
A sentence s of length n is a sequence of words
(w1, ..., wn), which are drawn from a vocabulary
V . Each word is encoded with an integer id from
1 to |V |, and then represented as a vector, w ∈ Rd,
looked up into an embedding matrix, E ∈ Rd×|V |.
The matrix E is obtained by concatenating all the
embeddings of the words in V . The id 0 is used
for padding and it is mapped to the zero vector.
The ith column in E corresponds to the word with
integer id i to facilitate the lookup.

4.2 Question Analysis Networks
We use CNNs for question analysis. The ques-
tion category network applies convolutions of
different width and then pooling on the question.
The results are concatenated and fed to a multi-
layer perceptron (MLP) that outputs a probability
distribution over the possible categories seen dur-
ing training. The question focus network applies
convolutions that operate on windows centered on
each question word. Therefore, the input and out-
put resolutions are the same. We stack a number of
convolutions to increase the receptive field. Every
output vector from the last convolution of the stack
is passed through an MLP, which produces a scalar
value. All those values are normalized across each
sentence with a softmax, to form a probability dis-
tribution over the sentence tokens.

4.3 Answer Sentence Selection Network
Our neural model is based on the Severyn and
Moschitti (2015, 2016) model (S&M from now
on), showed in Figure 1. This model is simple,
fast and well studied. It has also been reproduced
in other work (Rao et al., 2017; Chen et al., 2017;
Sequiera et al., 2017).

The S&M model embeds the question and an-
swer passage and operates independent convolu-
tional and max-pooling layers on each. A bilin-
ear transformation (Bordes et al., 2014) produces
a similarity value xsim for the pair. The similar-
ity, the encoded question and passage, and a vec-
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Figure 1: The S&M CNN model. Diagram from Severyn
and Moschitti (2016).

tor of real valued features xfeat are concatenated
in the join layer. The latter is fed to a hidden layer
with a non-linearity, and the final softmax layer
outputs the matching probability. The word vec-
tors of the question and the answer are augmented
with an additional feature, which is embedded in a
small dimensional space. This feature signals if a
word appears in both the question and answer. We
found that the real valued features and the simi-
larity matrix do not increase the network accuracy
and we removed them from our model. This find-
ing is consistent with recent reproduction papers
by Rao et al. (2017); Sequiera et al. (2017).

4.4 Our QA Network with Semantic Overlap
We propose to add semantic features to the sen-
tence matrix to establish links between words that
go beyond lexical matching. Figure 2 describes
our network. The key addition to the S&M model
is the semantic overlap vector. Each word is there-
fore represented by concatenating three vectors:
the word embedding vector, a feature embedding
vector which can represent two values – if a word
is contained or not in both question and answer –
and the semantic overlap embedding vector. The
semantic vector wso, with dimensionality s, em-
beds a feature so which can assume C + 1 values,
if we consider the C question classes plus a no-
match value. Each feature value is looked up into
an embedding matrix Wso ∈ Rs×|C|+1. Analo-
gously, the word overlap binary feature is looked
up into an embedding matrix Wwo ∈ Rr×|2|. The
final word representation will be the concatenation
of all these vectors: w

′
= [w;wwo;wso].

Here we describe how the semantic word over-
lap feature is computed. For each question we col-
lect the output of our question analysis CNNs. The
question focus CNN determines which word in the

Cat. Named Entity Type

HUM Person
LOC Loc, Gpe
NUM Date, Time, Percent, Quantity, Ordinal,

Cardinal
ENTY Norp, Org, Facility, Product, Event,

Work of art, Law, Language
DESC Norp, Org, Facility, Product, Event,

Work of art, Law, Language, Date,
Time, Percent, Quantity, Ordinal, Car-
dinal

ABBR Norp, Org, Facility, Product, Event,
Work of art, Law, Language

Table 1: Mapping between question categories
and OntoNotes entity types.

question is the focus. The question category CNN
assigns a class to the question. After that, each
word is associated with a semantic overlap fea-
ture so (which will eventually be embedded using
Wwo) according to the following strategy:

1. for each word in the question which is not
the question focus so is equal to 0. For the
question focus word so is equal to the id of
the question category (the question focus and
category are output by our CNN classifiers);

2. for each answer word so is equal to 0, with
the exeception of words covered by named
entities (NEs), for which so is equal to the
id of the question category that is compatible
with their entity type, according to the map-
ping in Table 1.

The Wwo and Wso matrices are parameters
of the model, and they are learned during train-
ing. The question category and question focus
annotations for the QA datasets are produced by
our neural network classifiers. The NEs are ob-
tained with an off-the-shelf processor 2, trained on
OntoNotes (Weischedel et al., 2012).

5 Experimental Results

Here we describe how we train our networks for
question analysis and then we present the an-
swer sentence selection experiments. More details
about preprocessing, training and hyperparameter
choice can be found in the appendix.

5.1 Question Classification
Dataset. The CNN question classifier is trained
on the UIUC dataset (Li and Roth, 2006). We use
the 6 coarse classes to train the classifier.

2In the future, we will also train the NE recognizer.
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Figure 2: Our model with word and semantic overlap vectors. The convolution of size 3 is not padded, and the filters are 4.
The semantic overlap vectors of the question focus word boss, and the answer word claire are the same, because the latter is
an entity of type Person. The question has HUM category. Ignoring stopwords, the word boss appears in the question and the
answer, and this is reflected in the word overlap embedding space.

Results. The classifier has accuracy of 91.2%
on the UIUC test set. Our goal is to annotate
new questions with reasonable accuracy. Since the
model convergences well, we annotate the ques-
tions in the QA datasets after training on the UIUC
data, and select the best model on the test data.

5.2 Question Focus Identification

Dataset. The CNN focus identifier is trained
on the dataset from Bunescu and Huang (2010),
which contains the first 2,000 UIUC questions an-
notated with focus information. After removing
the questions with implicit and multi-focus, we
end up with 1,030 questions.
Results. The cross-validation accuracy of the clas-
sifier is 92.3%. After convergence, we annotate
the focus words in the QA datasets.

5.3 TrecQA

Dataset. We test our model on TrecQA (Wang
et al., 2007), one of the most popular benchmarks
for answer selection. The dataset contains factoid
questions and candidate answer sentences.

We use the same splits of the original data, but
we run our experiments using the larger provided
training set (TRAIN-ALL). This is noisier data,
which, on the other hand, gives us more exam-
ples for training. We remove from the dev. and test
sets questions without answers, and questions with

System MAP MRR

Santos et al. (2016) 75.30 85.11
He and Lin (2016) 75.88 82.19

Severyn and Moschitti (2016) 76.54 81.86
Wang et al. (2016b) 77.14 84.47

Rao et al. (2016) 80.10 87.70
Wang et al. (2017) 80.20 87.50
Shen et al. (2017) 82.20 88.90

CNNWO TRAIN-ALL 76.49 (0.4) 84.22 (0.5)
CNNWO+SO TRAIN-ALL 77.93 (0.7) 84.89 (0.9)

Table 2: MAP and MRR (%) on the TrecQA Clean dataset.

only correct or incorrect answer sentence candi-
dates. The resulting dev. and test sets contain
respectively 65 and 68 questions. This setting
follows a standard in recent work on TREC-QA
which is referred to as TrecQA Clean (See Shen
et al. (2017)).
Results. Table 2 contains results from previ-
ous work, and the performance of our models.
CNNWO is our variant of the S&M model. It
has comparable performance in terms of MAP,
but it is 2.4% points higher in MRR. Our model
CNNWO+SO that integrates the semantic over-
lap improves over CNNWO by 1.44% points in
MAP, and 0.67% points in MRR. It approaches
the model by Rao et al. (2016), which uses a
triplet ranking loss, and several strategies to build
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System MAP MRR

Miao et al. (2016) 68.86 70.69
Yin et al. (2016) 69.21 71.08

Severyn and Moschitti (2016) 69.51 71.07
Chen et al. (2017) 70.10 71.80
Rao et al. (2016) 70.90 72.30

Tymoshenko et al. (2016) 71.25 72.30
Guo et al. (2017) 71.71 73.36

Wang et al. (2017) 71.80 73.10
Shen et al. (2017) 73.30 75.00

Wang et al. (2016a) 73.41 74.18
Wang and Jiang (2017) 74.33 75.40

CNNWO 69.53 (0.5) 71.35 (0.5)
CNNWO+SO 72.24 (0.5) 73.91 (0.5)

Table 3: MAP and MRR (%) on the WikiQA dataset.

training instances with difficult negative exam-
ples. Our system beats several others that use word
alignments and attention mechanisms. The better
systems employ expensive bidirectional networks,
sophisticated attention mechanisms, and extract
multiple views of questions and answers for com-
paring and aggregating them.

5.4 WikiQA

Dataset. TrecQA and its test set are small, so re-
sults may be unstable. In addition, lexical over-
lap between questions and answer candidates is
high (Yih et al., 2013). This means that simple
lexical similarity features are highly discrimina-
tive. Therefore, we also experiment with Wik-
iQA (Yang et al., 2015), which is an order of mag-
nitude larger than TrecQA. We use the Yin et al.
(2016) experimental setting.
Results. Table 3 contains the results on Wik-
iQA. Again the MAP score is comparable with
the S&M model, while the MRR is slightly
higher. Our model CNNWO+SO improves over
CNNWO by 2.71% points in MAP, and 2.56%
points in MRR, with a higher margin with respect
to TrecQA. Interestingly, our approach improves
upon the Tymoshenko et al. (2016) tree-kernel
model by 1 MAP point. This model includes rela-
tional information in terms of question focus, en-
tities and question categories too, but uses addi-
tional syntactic information (i.e., syntactic trees).
Our network is able to make better use of the pro-
vided semantic clues. Surprisingly, CNNWO+SO

also achieves higher MAP than the model by Wang
et al. (2017), which is a state-of-the-art complex
approach mixing attention and interaction factors

of multiple sentence perspectives.

5.5 Discussion

The results with the CNNWO+SO model suggest
that the semantic overlap vectors are an effective
way of linking questions and answers. This is es-
pecially true, given the results on WikiQA, where
the questions and answers have little lexical over-
lap. With the additional semantic information, the
CNN is able to better model the relevancy of can-
didate passages. It also surpasses the accuracy of
more complex systems, which have higher train-
ing time. The annotation networks (which can be
trained only once) and the answer selection net-
works take little time to train: from 10 to 20 min-
utes in total, depending on the number of ques-
tion/answer pairs. CNNs are faster at training and
inference time with respect to RNNs, especially
when the latter incorporate attention mechanisms,
which increase the number of computations. We
argue that annotating a relatively small number
of examples with semantic information, could be
time well spent to increase model accuracy, with-
out increasing its architectural complexity. We
would like to add that we also experimented with
RNNs (LSTM and GRU) in place of the CNN sen-
tence model. Such encoders easily overfitted, re-
quiring careful regularization, and did not yield
better results for us.

6 Conclusion and Future Work

In this paper, we presented a neural network that
models semantic links between questions and an-
swers, in addition to lexical links. The annota-
tions for establishing such links are produced by
a set of fast neural components for question anal-
ysis, trained on publicly available datasets. The
evaluation on two QA datasets shows that our ap-
proach can achieve state-of-the-art performance
using a simple CNN, leading to a low complex-
ity and training time. Our approach is an inter-
esting first step towards a future architecture, in
which we will jointly optimize the semantic anno-
tators and the answer sentence selection model, in
an end-to-end fashion.
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