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Abstract

One of the weaknesses of Neural Ma-
chine Translation (NMT) is in handling low-
frequency and ambiguous words, which we
refer as troublesome words. To address
this problem, we propose a novel memory-
enhanced NMT method. First, we investi-
gate different strategies to define and detect
the troublesome words. Then, a contextual
memory is constructed to memorize which tar-
get words should be produced in what situ-
ations. Finally, we design a hybrid model
to dynamically access the contextual memory
so as to correctly translate the troublesome
words. The extensive experiments on Chinese-
to-English and English-to-German translation
tasks demonstrate that our method signifi-
cantly outperforms the strong baseline models
in translation quality, especially in handling
troublesome words.

1 Introduction

Neural machine translation (NMT) based on the
encoder-decoder architecture becomes the new
state-of-the-art due to distributed representation
and end-to-end learning (Cho et al., 2014; Bah-
danau et al., 2015; Junczys-Dowmunt et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017).

However, the current NMT is a global model
that maximizes the performance on the overall
data and has problems in handling low-frequency
words and ambiguous words1, we refer these
words as troublesome words and define them in
Section 3.1.

Some previous work attempt to tackle the trans-
lation problem of low-frequency words. Sennrich
et al. (2016) propose to decompose the words into
subwords which are used as translation units so

1In this work, we consider a source word is ambiguous if
it has multiple translations with high entropy of probability
distribution.

  

Source:   阿尔卡特  宣称  去年  第四  季  销售

  成长 近 百分之三十
Pinyin:   aerkate cheng  qunian  disi ji  xiaoshou 
 chengzhang jin baifenzhisanshi 
Reference: alcatel  says  sales  in fourth quarter 
 last year grew nearly 30 %
NMT:  he said  sales  grew  nearly 30 percent in 
 fourth quarter of last year
NMT+LexiconTable: alcatel said sales growth 
 nearly 30 percent in fourth quarter of last year

Figure 1: The NMT model produces a wrong transla-
tion for the low-frequency word “aerkat”. While in-
troducing an external lexicon table without contextual
information, the model incorrectly translates the am-
biguous word “chengzhang” into “growth”.

that the low-frequency words can be represented
by frequent subword sequences. Arthur et al.
(2016) and Feng et al. (2017) try to incorporate
a translation lexicon into NMT in order to obtain
the correct translation of low-frequency words.
However, the former method still faces the low-
frequency problem of subwords. And the latter
one has a drawback that they use lexicons with-
out considering specific contexts. Fig. 1 shows
an example, in which “aerkate” is an infrequent
word and the baseline NMT incorrectly translates
it into a pronoun “he”. Incorporation of bilin-
gual lexicon rectifies the mistake but wrongly con-
verts “chengzhang” into an incorrect target word
“growth” since an entry “(chengzhang, growth)”
in the bilingual lexicon is somewhat wrongly used
without taking the contexts into account. Further-
more, these two kinds of methods mainly focus
on low-frequency words that are just a part of the
troublesome words.

In this paper, we categorize the words (includ-
ing infrequent words and ambiguous words) which
are difficult to translate as troublesome words and
propose a novel memory-augmented framework to
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address them. Our method first investigates dif-
ferent strategies to define the troublesome words.
Then, these words and their contexts in the train-
ing data are memorized with a contextual mem-
ory which is finally accessed dynamically during
decoding to solve the translation problem of the
troublesome words.

Specifically, we first decode all the source sen-
tences of the bilingual training data with baseline
NMT and define the troublesome source words
according to the distance between the predicted
words and the gold words. The troublesome words
associated with their hidden contextual represen-
tations are stored in a memory which memorizes
the correct translation and the corresponding con-
textual information. During decoding, we acti-
vate the contextual memory when we encounter
the troublesome words and employ the contextual
similarity between the test sentence and the mem-
ory to determine appropriate target words. We test
our methods on Chinese-to-English and English-
to-German translation tasks. The experimental re-
sults demonstrate that the translation performance
can be significantly improved and a large portion
of troublesome words can be correctly translated.
The contributions are listed as follows:

1) We are the first to define and handle the trou-
blesome words in neural machine translation.

2) We propose to memorize not only the bilin-
gual lexicons but also their contexts with a contex-
tual memory.

3) We design a dynamic approach to correctly
translate the troublesome words by combining the
contextual memory and the NMT model.

2 Neural Machine Translation

NMT contains an encoder and a decoder. The
encoder transforms a source sentence X =
{x1, x2, ..., xTx} into a set of context vectors C =
(hm1 , h

m
2 , ..., h

m
Tx) by using m stacked Long Short

Term Memory (LSTM) layers (Hochreiter and
Schmidhuber, 1997) . hmj is the hidden state of
the top layer in encoder. The bottom layer of en-
coder is a bi-direction LSTM layer to collect the
context from the left side and right side.

The decoder generates one target word at a time
by computing pNi (yi|y<i, C) as follows:

pNi (yi|y<i, C) = softmax(Wyi z̃i + bs) (1)

where z̃i is the attention output:

z̃i = tanh(Wz[z
m
i ; ci]) (2)

ci can be calculated as follows:

ci =
Tx∑
j=1

aijh
m
i (3)

where ai,j is the attention weight:

ai,j =
hmj z

m
i∑

j h
m
j z

m
i

(4)

where zmi is the hidden state of the top layer in
decoder. More detailed introduction can be found
in (Luong et al., 2015).

Notation. In this paper, we denote the whole
source vocabulary by VS = {sm}|VS |m=1 and target
vocabulary by VT = {tn}|VT |

n=1, where sm is the
source word and tn is the target word. We denote
a source sentence by X and a target sentence by
Y . Each source word in X is denoted by xj . Each
target word in Y is denoted by yi. Accordingly,
a target word can be denoted not only by tn, but
also by yi. This does not contradict. tn means
this target word is the nth word in vocabulary VT ,
and yi means this target word is the ith word in
sentence Y . Similarly, we denote a source word
by sm and xj .

3 Method Description

Our method contains three parts: 1) definition
and detection of the troublesome words (Section
3.1); 2) contextual memory construction (Section
3.2); and 3) hybrid approach combining contextual
memory and baseline NMT model (Section 3.3).

3.1 Troublesome Word Definition

Generally speaking, troublesome words are those
that are difficult to translate for the baseline NMT
systemBNMT . Fig. 2 shows the main process to
detect the troublesome words. Given each training
sentence pair (X,Y ),BNMT decodes the source
sentence X and outputs the predicted probability
of each gold target word pNi (yi). We call yi an ex-
ception if pNi (yi) satisfies the predefined excep-
tion criteria introduced below. The source word
xj is an exception (a candidate troublesome word)
if (xj , yi) is an entry in the word alignment A2.
Suppose xj appears N times in the training data
and there are M exceptions among all its aligned

2The word alignments A is extracted using the fast-align
tool (Dyer et al., 2013) on the bilingual training data with
both source-to-target and target-to-source directions.
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Source:  阿尔卡特  宣称  去年  第四 季  销售 

    成长 近  百分之三十
Pinyin:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 

Source:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 
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Figure 2: The main process to detect an exception.

gold target words. Then, the exception rate r(xj)
will be M/N .

Definition: xj is a troublesome word if
r(xj) > ε in which ε is a predefined threshold.

Exception Criteria. As discussed before, we
need an exception criterion to measure whether a
gold target word is an exception or not. In this pa-
per, we investigate three exception criteria. Here,
we introduce each of them through a toy exam-
ple shown in Fig. 3, in which the source sentence
is X = {x1, x2, x3} and the gold target sentence
is Y = {y1, y2, y3}. The left shows the proba-
bility distribution of all target vocabulary pNi (VT )
at each decoding step i, where the probability of
the gold target word is highlighted in yellow. The
right shows the word alignments between X and
Y .

1) Absolute Criterion. A gold target word yi
is an exception if its predicted probability pNi (yi)
is lower than a predefined threshold, namely
pNi (yi) < p0. In Fig. 3, pNi (yi) at each decod-
ing step is respectively 0.8, 0.31 and 0.2. If we
set p0 = 0.5, pN2 (y2) and pN3 (y3) are lower than
threshold p0. x1 and x3 are both exceptions ac-
cording to the alignments.

2) Gap Criterion. For this criterion, we utilize
the predicted probability gap between the gold tar-
get word and the top one. Specifically, the gap can
be calculated by:

g(yi) = max(pNi (VT ))− pNi (yi) (5)

where max(pNi (VT )) is the top one in the prob-
ability distribution at the ith decoding step. yi
is an exception if g(yi) > g0. In Fig. 3, the
largest predicted probabilities at each decoding
step max(pNi (VT )) are respectively 0.8, 0.35 and
0.75. Thus, the gap is 0.0, 0.04 and 0.55. If
g0 = 0.1, x3 is an exception since g(y3) > g0
and x3 aligns to y3.

Source:  阿尔卡特  宣称  去年  第四 季  销售 

    成长 近  百分之三十
Pinyin:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 

Source:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 
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Figure 3: A toy example to show the process: if pNi (yi)
(left) satisfies the predefined exception criteria and xj
aligns to yi, then xj is an exception.

3) Ranking Criterion. This criterion is based
on the ranking of pNi (yi) in pNi (VT ) (denoted by
rank(yi)). If rank(yi) > rank0, then yi is an
exception. In Fig. 3, the ranking of each gold tar-
get word is 1, 3 and 2. If we set rank0 = 2, then
rank(y2) = 3 > rank0 and x1 is an exception
due to the alignment between x1 and y2.

Using the above exception criteria and the def-
inition of troublesome words, we can detect all
the source-side troublesome words in the bilingual
training data.

3.2 Contextual Memory Construction

For a troublesome word, we now introduce how to
build a contextual memory M to store its transla-
tion knowledge. Specifically, the contextual mem-
ory contains five elements:{

sm, tn, c(sm, tn), p
L(sm, tn), r(sm)

}
(6)

each of them is described as follows:

• sm is a troublesome source word.

• tn is a gold target word for sm.

• c(sm, tn) is the context of lexicon pair
(sm, tn). Here, we use the hidden states of
encoder hj to represent the context, since it
contains the information from left (

−→
hj) and

right (
←−
hj). Note that when we traverse the

training data and memorize the contexts of
all troublesome words, there must be many
cases in which the same pair (sm, tn) appears
in different contexts. In order to reduce the
memory size and fuse different contexts of a
same lexicon pair, we merge these memories
by averaging the contexts. Assume there are
K different contexts for (sm, tn), and they
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Source:  阿尔卡特  宣称  去年  第四 季  销售 

    成长 近  百分之三十
Pinyin:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 
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Figure 4: The architecture of contextual memory-
augmented NMT.

are denoted by hk(sm, tn). The average con-
text of (sm, tn) can be calculated by:

c(sm, tn) =

∑K
k=1 hk(sm, tn)

K
(7)

Note that the context here is defined on the
source side.

• pL(sm, tn) is the lexicon translation proba-
bility. It is the average of source-to-target
and target-to-source probabilities calculated
through maximum likelihood estimation on
word alignments.

• r(sm) is the exception rate of sm introduced
in Section 3.1 and it can indicate the transla-
tion difficulty of a source word. We will use
r(sm) to determine the dynamic weights of
contextual memories in Section 4.

Noise Reduction. As we know, the training
data and word alignments are not perfect and may
introduce noise to the contextual memory. To re-
duce the noise, we employ two strategies.

1) To improve the quality of the alignments A,
we derive the alignment results from source-to-
target and target-to-source, respectively. We only
save the alignments which exist in both directions.

2) We eliminate the lexicon pairs whose trans-
lation probabilities are too small. For a lexicon
pair (sm, tn), if its lexicon translation probability
is smaller than 0.01, we treat this lexicon pair as a
noisy sample and eliminate it from our memory.

3.3 Integrating Contextual Memory into
NMT

In this section, we integrate the contextual mem-
ory into NMT to handle troublesome words. The

overall framework is depicted in Fig. 4 and the
integration process can be divided into four steps:

Step 1. Given a test sentence X , the first step
is to find the troublesome words in X and collect
corresponding local memories from the global
contextual memory M. For each source word xj ,
we retrieve from M if it is a troublesome word and
obtain the local memory as follows:{

xj , tn, c(xj , tn), p
L(xj , tn), r(xj)

}
(8)

Step 2. The next step is to measure the con-
textual similarity between the context in the test
sentence X and the context in M. For the trou-
blesome word xj ∈ X , we still use the encoder
hidden state hj to represent the context in X . The
corresponding context in M is c(xj , tn) in Eq. (8).
Here, we use a feed-forward network to measure
this similarity3:

dj(tn) =

sigmoid(vTd ∗ tanh(Wh ∗ hj +Wc ∗ c(xj , tn)))
(9)

where vd, Wh and Wc are learnable parameters.
The sigmoid function guarantees the similarity
score is in the range (0, 1). This similarity dj(tn)
will determine whether or not to adopt the target
translation word tn in M.

Step 3. The next task is calculating the prob-
ability pMi (tn) of tn at each decoding step i.
pMi (tn) is the probability predicted by the contex-
tual memory M and is calculated by:

pMi (tn) =
Tx∑
j

ai,j ∗ dj(tn) ∗ pL(xj , tn) (10)

where ai,j is the attention weight, dj(tn) is the
context similarity in Eq. (9), and pL(xj , tn) is the
lexicon translation probability.

Step 4. The final task is to combine the mem-
ory predicted probability (pMi in Eq. (10)) and the
NMT predicted one (pNi in Eq. (1)). Here, we
propose a dynamic strategy to balance these two
probabilities:

pFi (tn) = λi ∗ pMi (tn) + (1− λi) ∗ pNi (tn) (11)

where pFi (tn) is the final probability of the tar-
get word tn, λi is the dynamic weight to adjust

3In our preliminary experiment, we also try cosine dis-
tance to measure this similarity, while the performance of co-
sine distance is lower than the current feed-forward network
method.
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the contribution from the memory and NMT. Here
we explain the reason why we apply the dynamic
manner. Recall that for each source troublesome
word sm, we calculate its exception rate (similar
to error rate). If a troublesome word has a lower
exception rate, indicating that this source word is
easier to be translated for the neural model. In this
case, pNi is more reliable. Thus we design the dy-
namic weight λi according to the exception rate
r(xj):

λi = sigmoid(βγ ∗ γi)

γi =
Tx∑
j

ai,j ∗ r(xj)
(12)

where βγ is a learnable parameter. From Eq. (12),
the dynamic weight λi is determined by both of the
attention weight ai,j , and the exception rate r(xj).

Training the parameters. As discussed above,
our method contains some parameters (vd, Wh,
Wc and βγ) to be learned. We denote the pa-
rameters introduced by our method by θM and
the parameters in NMT by θN . To make it
efficient, given the aligned training data D ={
X(d), Y (d)

}|D|
d=1

, we keep θN unchanged and op-
timize θM by maximizing the following objective
function.

L(θM ) =
1

|D|

|D|∑
d=1

Ty∑
i

log pFi (y
(d)
i ; θM ) (13)

where pFi can be calculated by Eq. (11).

4 Experimental Settings

We test the proposed methods on Chinese-to-
English (CH-EN) and English-to-German (EN-
DE) translation. In CH-EN translation, we use
LDC corpus which includes 2.1M sentence pairs
for training. NIST 2003 dataset is used for vali-
dation. NIST04-06 and 08 datasets are used for
testing. In EN-DE translation, we use WMT 2014
EN-DE dataset, which includes 4.5M sentence
pairs for training. 2012-2013 datasets are used for
validation and 2014 dataset is used for testing.

We use the Zoph RNN toolkit4 to implement
all described methods. In all experiments, the en-
coder and decoder include two stacked LSTM lay-
ers. The word embedding dimension and the size
of hidden layers are both set to 1,000. The mini-
batch size is set to 128. We discard the training

4https://github.com/isi-nlp/Zoph_RNN.
We extend this toolkit with global attention.

sentence pairs whose length exceeds 100. We run
a total of 20 iterations for all translation tasks. We
test all methods based on two granularities: words
and sub-words. For word granularity, we limit the
vocabulary to 30K (CH-EN) and 50K (EN-DE) for
both the source and target languages. For sub-
word granularity, we use the BPE method (Sen-
nrich et al., 2016) to merge 30K (CH-EN) and
32K (EN-DE) steps. The beam size is set to 12.
We use case-insensitive 4-gram BLEU (Papineni
et al., 2002) for translation quality evaluation.

We compare our method with other relevant
methods as follows:

1) Baseline: It is the baseline NMT system with
global attention (Luong et al., 2015; Zoph and
Knight, 2016; Jean et al., 2015).

2) Arthur: It is the state-of-the-art method
which incorporates discrete translation lexicons
into NMT (Arthur et al., 2016). We implement
Arthur et al. (2016)’s method in two different
ways. In the first way, we fix the Baseline un-
changed, and utilize Arthur et al. (2016)’s method
in the test phase. We denote this system by
Arthur(test). In second way, we allow Baseline
to be retrained by Arthur et al. (2016)’s method,
and denote the system by Arthur(train+test). We
replicate the Arthurs work using the bias method
with the hyper parameter being set to 0.001 as re-
ported in their paper.

3) X+MEM: It is our proposed memory aug-
ment method for any neural model X, in which we
define the troublesome word by using the gap cri-
terion with threshold g0 = 0.1. We set threshold
ε = 0.05, which is fine-tuned in validation set. It
means if the exception rate of a source word ex-
ceeds 0.05, we treat this word as a troublesome
word.

5 Results on CH-EN Translation

5.1 Our methods vs. Baseline

Table 1 reports the main translation results of CH-
EN translation. We first compare Baseline+MEM
with Baseline. As shown in row 1 and row 5 in Ta-
ble 1, Baseline+MEM can improve over Baseline
on all test datasets, and the average improvement
is 1.37 BLEU points. The results show that our
method could significantly outperform the base-
line model.

https://github.com/isi-nlp/Zoph_RNN
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# Model 03 04 05 06 08 Avg. 4
1 Baseline 41.01 42.94 40.31 40.57 30.96 39.16 -
2 Arthur(test) 41.34 43.31 40.79 40.84 31.11 39.48 -
3 Arthur(train+test) 41.88 43.75 41.16 41.63 31.47 39.98 -
4 Baseline(sub-word) 43.93 44.74 42.46 43.01 32.53 41.33 -
5 Baseline+MEM 42.74† 43.94† 42.15† 41.94† 31.86† 40.53 +1.37
6 Arthur(train+test)+MEM 43.04† 44.65∗ 42.19† 42.59† 32.05∗ 40.90 +0.92
7 Baseline(sub-word)+MEM 44.98† 45.51† 43.93† 43.95† 33.33† 42.34 +1.01

Table 1: The main results of CH-EN translation. 4 shows the BLEU points improvement of system “X+MEM”
than system X. “*” indicates that system “X+MEM” is statistically significant better (p < 0.05) than system X and
“†” indicates p < 0.01.

Model #Pairs Size Time BLEU
Baseline - - 0.406 39.16
Arthur(test) 938K 58M 0.429 39.48
Tword 125K 7.4M 0.423 39.77
+Context 125K 893M 0.508 40.19
+Dynamic 125K 893M 0.511 40.53
All+Context 938K 6.4G 1.829 40.23

Table 2: The effects of lexicon pairs only contain-
ing troublesome words (Tword), context and dynamic
weights. Column #Pairs shows the number of lexicon
pairs. Column Time shows the average decoding time
(seconds) of per sentence.

5.2 Results on Sub-words

We also test the proposed method when the
translation unit is sub-word. The baseline
and our method using sub-word as translation
unit are respectively denoted by Baseline(sub-
word) and Baseline(sub-word)+MEM. The re-
sults are shown in row 4 and row 7. From the
results, Baseline(sub-word)+MEM outperforms
Baseline(sub-word) by 1.01 BLEU points, indi-
cating that adopting sub-words as translation units
still faces the problem of troublesome tokens, and
our method could alleviate this problem.

5.3 Our Method vs. Method Using
Translation Lexicon

We also compare our method with Arthur et al.
(2016)’s method which incorporates a translation
lexicon into NMT. Here, the comparison is con-
ducted in two ways based on whether the baseline
neural model is fixed or retrained.

Fixed Baseline. Comparing Arthur(test) (row
2 in Table 1) and Baseline+MEM (row 5 in Ta-
ble 1), we can see that our proposed method can
surpass Arthur(test) with 1.05 BLEU points. As
there are three differences between our methods
and Arthur(test), we take the following experi-
ments to evaluate the effect of each difference.

The first difference is that our memory only

Source:  阿尔卡特  宣称  去年  第四 季  销售 

    成长 近  百分之三十
Pinyin:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 

Source:  阿尔卡特  宣称  去年  第四 季  销售 

    成长 近  百分之三十
Pinyin:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 

Figure 5: An example to show that considering context
could produce a better translation result. In the exam-
ple, Arthur(test) translates chengzhang into a wrong
target word growth, while Baseline+MEM could over-
come this mistake with the help of the context model-
ing.

stores the lexicon pairs for troublesome words,
while Arthur(test) utilizes all the available lexi-
con pairs. We implement another system which is
similar to Arthur(test), except that we only utilize
the troublesome lexicon pairs. We denote the sys-
tem by Tword. The results are reported in Table 2.
From the results, we can find that Tword obtains
better translation results than Arthur(test) while
using much fewer lexicon pairs (125K vs. 938K).

The second difference is that we take the con-
text into consideration. When we add the con-
text on the basis of Tword (denoted by +Con-
text), it further improves the baseline system by
1.03 BLEU points, indicating the importance of
the context. Fig.5 shows the mentioned exam-
ple in Section 1, in which Arthur(test) trans-
lates chengzhang into a wrong target word growth,
while Baseline+MEM could overcome this mis-
take with the help of the context modeling.

We also implement another system, in which we
build the contextual memory for all source words.
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Memory Size

Figure 6: The comparison of different criteria. The
gap criterion outperforms others with the increase of
the memory size.

We denote the system by All+Context and the re-
sults are reported in Table 2. As shown in Table
2, All+Context surpasses Arthur(test) with 0.75
BLEU points while at the cost of 6.4G memory
footprint and 1.829s time consuming. However,
if we only build the contextual memory for the
troublesome words, comparing to All+Context,
there is only a slighter BLEU points decline (40.19
vs. 40.23) while sharply reduces memory size to
893M and decoding time to 0.511s, showing that
our strategy of only building the contextual mem-
ory for troublesome words is effective.

The final difference is that we employ the dy-
namic strategy to balance between NMT and the
contextual memory. When we employ this dy-
namic strategy (denoted by +Dynamic), the im-
provement can further reach 1.37 BLEU points.

Retrained Baseline. In the second compari-
son, we allow the baseline model to be retrained
by Arthur’s method (Arthur(train+test)).
We then implement our method using
Arthur(train+test) as baseline (denoted by
Arthur(train+test)+MEM). Comparing the
results of these two methods in Table 1 (line 3 and
6), our method is still effective on the retrained
model. The average gains are 0.92 BLEU points.

5.4 Effects of Different Exception Criteria
In our method, we investigate three exception cri-
teria to define the troublesome words. The fol-
lowing experiment is conducted to compare their
performances. For fairness, the comparison of the
three criteria is conducted under the same num-
ber of contextual memory, which can be achieved
by adjusting the respective thresholds (p0, g0 and
rank0). The results are reported in Fig. 6, in
which the x axis represents the size of contextual
memory, the y axis denotes BLEU score, and the
numbers in the bracket from left to right are the

Type Baseline Baseline+MEM
Low+Amb 38.15 39.75
Low 38.56 40.03
Amb 39.86 40.67
Others 40.49 40.76

Table 3: The BLEU score on different kinds of sen-
tences. Low denotes low frequency words, Amb de-
notes ambiguous words. Low+Amb denotes the low
frequency and ambiguous words.

Type Tword Error Rectify Deterio
Total 374 153 70 (45.8%) 11
Low+Amb 77 30 16 (53.3%) 3
Low 144 59 30 (50.8%) 4
Amb 117 48 20 (41.7%) 4
Others 36 16 4 (25%) 0

Table 4: The manual analysis on the word level. Col-
umn Tword shows the number of troublesome words
in sentence. Column Error shows the number of er-
rors made by Baseline when translates the troublesome
words. The number (ratio) of rectification caused by
our method is reported in column Rectify. Column
Deterio shows the number of deterioration (the orig-
inal translation is correct, while our method produces
the incorrect translation) caused by our method.

respective thresholds of gap, absolute and rank-
ing. As shown in Fig. 6, all the three criteria can
improve the translation quality. When the mem-
ory size is relatively small, absolute criterion per-
forms best. With the size increases, the gap crite-
rion achieves a higher performance than others.

Note that our current criteria only consider one
single factor. The combination of different criteria
may be more beneficial, and we leave this as our
future work.

5.5 Results on Low-Frequency Words and
Ambiguous Words

We further analyze our method on specific trou-
blesome words, such as low-frequency words and
ambiguous words. Here, we use the following def-
inition in our analysis.

Low-frequency words: The words whose fre-
quency is lower than 100.

Ambiguous words: Assume a word sm con-
tains K candidate translations with a probabil-
ity pLk . If the entropy of probability distribution
−
∑K

k=1 p
L
k logp

L
k > E0 ( E0 = 1.5 in this paper),

we treat this word as an ambiguous word.
Therefore, the sentences containing trouble-

some words can be divided into four different
parts: 1) sentences which contain both low-
frequency and ambiguous words (Low+Amb,



398

Model Rectify Deterio
Arthur(test) 51 17
Baseline+MEM 70 11

Table 5: The numbers of rectification (Rectify) and
deterioration (Deterio) caused by different models.

986 sentences), 2) sentences which contain low-
frequency words but no ambiguous words (Low,
1427 sentences). 3) sentences which contain am-
biguous words while do not contain low-frequency
words (Amb, 1301 sentences). 4) Other sentences
(Others, 832 sentences). The results are reported
in Table 3. From this table, we observe that our
proposed method improves the translation quality
on all kinds of sentences. Low+Amb performs
best (Low the second), indicating that our method
is most effective in dealing with low-frequency
words. The improvement on Amb is 0.81 BLEU
points, showing that our method can also well han-
dle the ambiguous words.

We also conduct a manual analysis to figure out
how many troublesome words could be rectified
by our method. We randomly select 200 testing
sentences, and count the following three numbers:
1) the number of troublesome words in the sen-
tence (Tword), 2) the number of mistakes pro-
duced by Baseline (Error), 3) the number (ra-
tio) of rectification using our method (Rectify). 4)
The number of deterioration caused by our method
(Deterio). The statistics are reported in Table 4.
From the results, we can get similar conclusions
that our method is most effective on low-frequency
and ambiguous words with the rectification rate
50.8% and 41.7% respectively.

We can notice that the proposed method also
produces 11 deterioration cases (Deterio) when
rectifying the troublesome words. As a compar-
ison, we also count the total rectification and dete-
rioration numbers of Arthur(test). The results are
reported in Table 5. These results show that our
method could rectify more words (51 vs. 70) with
less deterioration (17 vs. 11) than Arthur(test).

6 Results on EN-DE Translation

We also test our method on EN-DE translation and
the results are reported in Table 6. We can see that
our method is still effective on EN-DE translation.
Specifically, when the translation unit is word, the
proposed method improves the baseline by 1.13
BLEU points. The improvement is 0.76 BLEU
points when the translation unit is sub-word.

Model Unit EN-DE
dev test

Baseline word 20.28 21.04
Baseline+MEM word 21.34† 22.17†

Baseline sub-word 22.10 22.85
Baseline+MEM sub-word 23.05† 23.61∗

Table 6: The results on EN-DE translation. “*” in-
dicates that it is statistically significantly better (p <
0.05) than system X and “†” indicates p < 0.01.

7 Related Work

The related work can be divided into three cate-
gories and we describe each of them as follows:

Neural Turing Machine for NMT. Our idea
is first inspired by the Neural Turing Machine
(NTM) (Graves et al., 2014, 2016) and mem-
ory network (Weston et al., 2014). (Wang et al.,
2017a) used special NTM memory to extend
the decoder in the attention-based NMT. In their
method, the memory is used to provide tempo-
rary information from source to assist the decod-
ing process. In contrast, our work uses memory to
store contextual knowledge in the training data.

Smaller translation granularity. Our work
is also inspired by the other studies to deal with
the low-frequency and ambiguous words (Vickrey
et al., 2005; Zhai et al., 2013; Rios et al., 2017;
Carpuat and Wu, 2007; Li et al., 2016). Among
them, the most relevant is the work that decom-
poses the low-frequency words into smaller gran-
ularities, e.g, hybrid word-character model (Lu-
ong and Manning, 2016), sub-word model (Sen-
nrich et al., 2016) or word piece model (Wu et al.,
2016). These methods mainly focus on low-
frequency words that are just a subset of the trou-
blesome words. Furthermore, our experimental re-
sults show that even using a smaller translation
unit, the NMT model still faces the problem of
troublesome tokens and our method could allevi-
ate this problem.

Combining SMT and NMT. Our ideas are also
inspired by the work which combines SMT and
NMT. Earlier studies were mostly based on the
SMT framework, and have been deeply discussed
by the review paper in Zhang and Zong (2015).
Later, the researchers transfer to NMT framework,
e.g. (Wang et al., 2017b; Zhang and Zong, 2016;
Zhou et al., 2017; Tu et al., 2016; Mi et al., 2016;
He et al., 2016; Dahlmann et al., 2017; Wang et al.,
2017c,d; Gu et al., 2018; Zhao et al., 2018). The
most relevant studies are Arthur et al. (2016) and
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Feng et al. (2017). They incorporate the lexi-
con pairs into NMT to improve the translation
quality. There are three differences between our
method and theirs. First, we only utilize the lex-
icon pairs for the troublesome words, rather than
using all lexicon pairs. Second, we take contextual
information into consideration for memory con-
struction. Third, we design a dynamic strategy to
balance the memory and NMT. The experiments
show the superiority of our proposed methods.

8 Conclusions

To address troublesome words in NMT, we have
proposed a novel memory-enhanced framework.
We first define and detect the troublesome words,
then construct a contextual memory to store the
translation knowledge and finally access the con-
textual memory dynamically to correctly trans-
late the troublesome words. The extensive ex-
periments on Chinese-to-English and English-to-
German translation tasks demonstrate that our
method significantly outperforms the strong base-
line models in translation quality, especially in
handling the troublesome words.
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