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Abstract

Although sequence-to-sequence (seq2seq)
network has achieved significant success
in many NLP tasks such as machine trans-
lation and text summarization, simply ap-
plying this approach to transition-based
dependency parsing cannot yield a compa-
rable performance gain as in other state-
of-the-art methods, such as stack-LSTM
and head selection. In this paper, we
propose a stack-based multi-layer atten-
tion model for seq2seq learning to bet-
ter leverage structural linguistics informa-
tion. In our method, two binary vectors
are used to track the decoding stack in
transition-based parsing, and multi-layer
attention is introduced to capture multiple
word dependencies in partial trees. We
conduct experiments on PTB and CTB
datasets, and the results show that our pro-
posed model achieves state-of-the-art ac-
curacy and significant improvement in la-
beled precision with respect to the baseline
seq2seq model.

1 Introduction

Deep learning models have been proven very ef-
fective in solving various NLP problems such as
language modeling, machine translation and syn-
tactic parsing. For dependency parsing, one line
of research aims to incrementally integrate dis-
tributed word representations into classic depen-
dency parsing (Chen and Manning, 2014; Weiss
et al., 2015; Andor et al., 2016; Cross and Huang,
2016; Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2016). Another line of research at-
tempts to leverage end-to-end neural network to
perform dependency parsing, such as stack-LSTM
and sequence-to-sequence (seq2seq) model (Dyer

et al., 2015; Zhang et al., 2017; Wiseman and
Rush, 2016). Recently seq2seq model has made
significant success in many NLP tasks, such as
machine translation and text summarization (Cho
et al., 2014; Sutskever et al., 2014; Rush et al.,
2015). Unfortunately, to our best knowledge, sim-
ply applying seq2seq model to transition-based
dependency parsing cannot achieve comparable
results as in other state-of-the-art methods like
stack-LSTM and head selection (Dyer et al., 2015;
Zhang et al., 2017).

One issue with the simple seq2seq neural net-
work for dependency parsing is that structural lin-
guistic information, which plays a key role in clas-
sic transition-based or graph-based dependency
parsing models, cannot be explicitly employed.
For example, classic transition-based parsing al-
gorithm utilizes a stack to manage the heads of
partial sub-trees and leverages these evidents for
action selection, while such information is missing
from current seq2seq models. Another problem is
related to the limit of the conventional attention
network being used in seq2seq network, which is
unable to capture dependencies between words in
the input. As a matter of fact, various types of fea-
tures (word unigram, bigram, trigram, . . . ) tradi-
tionally adopted by transition-based parsing algo-
rithm are usually ignored by the current attention
mechanism, but they are very important to capture
word dependencies in generated partial trees.

In this paper, we propose a stack-based multi-
layer attention mechanism to solve the above
problems. To simulate the stack used in the
transition-based dependency parsing, we intro-
duce two binary vectors, one indicates whether a
word is pushed into the stack, and another indi-
cates whether a word is popped out from it. To
model the complex structural information, we pro-
pose a multi-layer attention based on the stack
information, previous action and input sentence.
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The multi-layer attention aims to capture multiple
word dependencies in partial trees for action pre-
diction.

We evaluate our model on English and Chinese
datasets. Experimental results show that our pro-
posed model can significantly outperform the ba-
sic seq2seq model with 1.87 UAS (English) and
1.61 UAS (Chinese), matching the state-of-the-art
parsing performance. With 4 models ensembled,
we obtain further improvements with accuracies of
94.16 UAS (English) and 87.97 UAS (Chinese).

2 Neural Model for
Sequence-to-Sequence Learning

In this work, we follow the encoder-decoder archi-
tecture proposed by Bahdanau et al. (2015). The
whole architecture can be divided into three com-
ponents: encoder, decoder and attention.

Encoder: The encoder reads in the source sen-
tence X = (x1, x2, ... , xT ) and transforms it into
a sequence of hidden states h = (h1, h2, ... , hT ),
using a bi-directional recurrent neural network
that is usually implemented as Gated Recurrent
Unit (GRU) (Cho et al., 2014) or Long Short-
Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997).

Attention Mechanism: The context vec-
tor ci is a weighted sum of the hidden
states (h1, h2, ... , hT ) with the coefficients
αi,1, αi,2, ... , αi,T computed by

αi,t =
exp (ei,t)∑
k exp (ei,k)

(1)

ei,t = v>a tanh(Wazi−1 + Uaht) (2)

where va,Wa, Ua are the weight matrices.
Decoder: The decoder uses another recurrent

neural network to generate a corresponding target
sequence Y = (y1, y2, ... , yT ′) based on the en-
coded sequence of hidden state h. At each time i,
the conditional probability of target symbol yi is
computed by

zi = RNN([yi−1; ci], zi−1) (3)

p(yi|y<i, h) = softmax(g(yi−1, zi, ci)) (4)

where g is a non-linear function, zi is the ith hid-
den state of the decoder, and it is calculated condi-
tional on the previous hidden state zi−1, previous
target symbol yi−1 and source context vector ci.
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Figure 1: The architecture of sequence-to-
sequence parsing model. SH, LR(d), RR(d) de-
note the SHIFT, LEFT-ARC(d), RIGHT-ARC(d)
transitions in arc-standard algorithm and d is arc-
label.

3 Sequence-to-Sequence Parsing Model

Transition-based dependency parsing conceptual-
izes the process of transforming a sentence into a
dependency tree as a sequence of actions. It can
be formulated as a sequence-to-sequence problem,
and seq2seq framework can be applied. Compared
with other tasks, such as machine translation, de-
pendency parsing not only considers the previous
action and input sentence, but also requires many
structure information, such as the subtree structure
during the parsing. Such information plays an im-
portant role in transition-based dependency pars-
ing, so traditional methods adopt a stack to save
structure information and design different type of
features (word unigram, bigram, trigram, . . . ) to
model them. However, vanilla seq2seq models
have no explicit structure to model these neces-
sary structure information. To better leverage the
structure information, we extend the basic seq2seq
architecture with a simulated stack and multi-layer
attention, as illustrated in Figure 1. The main
structure (encoder, decoder and attention part in
Figure 1) of our parsing model is detailed below.

Encoder: As shown in the encoder part of Fig-
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ure 1, to utilize POS tag information, each word
wi is additionally represented by xi, the concate-
nation of two vectors corresponding towi’s lexical
and POS tag ti embedding: xi = [We∗e(wi);Wt∗
e(ti)], where e(wi) and e(ti) are one-hot vector
representations of token wi and its POS tag ti, We

and Wt are embedding matrices. The rest part
of the encoder is the same with the basic seq2seq
model.

Attention Mechanism: We improve the atten-
tion part in two aspects: introduction of stack in-
formation and multi-layer attention structure.

Stack information, which plays an essential role
in the conventional algorithm, is simulated with
two binary vectors s = (s1, . . . , sT ) and r =
(r1, . . . , rT ) to record the state of each word wi

and initialized to zero. When parser pushes word
wi into stack, si is assigned to 1, while ri is as-
signed to 1 only if word wi is removed from stack.
Intuitively, at each time step i in the decoding
phase, stack information serves as an additional
input to the attention model, which provides com-
plementary information of that the source words
is in the stack or not. We expect the stack infor-
mation would guide the attention model to focus
more on words in the stack. More formally, the
coefficients α1, α2, ... , αT used in attention mech-
anism can be rewritten as

αi,t =
exp (ei,t) ∗ (1− rt)∑
k exp (ei,k) ∗ (1− rk) (5)

ei,t = v>a tanh(Wazi−1 + Uaht + Sast) (6)

where Sa is the weight matrix.
To extract complex structure information to

help action prediction, we apply a l-layers net-
work structure for attention mechanism as shown
in the attention part of Figure 1. To further en-
hance connection between adjacent layers, we re-
place the state zi−1 in Equation 6 by the concate-
nation of zi−1 and context vector cm−1

i at each
layer m(m > 1). The Equation 6 can be rewritten
as:

emi,t = v>a tanh(Wm
a [zi−1; cm−1

i ] + Uaht + Sast)
(7)

where Wm is the weight matrix. With this net-
work structure, we obtain different context vec-
tors (c1i , c

2
i , . . . , c

l
i), and the final context vector

ci, which is considered as complex context infor-
mation, is replaced by the concatenation of those
vectors: ci = [c1i ; c

2
i ; . . . ; c

l
i].

Decoder: Unlike machine translation and text
summarization in which seq2seq model is widely
applied, a sequence of action in dependency pars-
ing must satisfy some constraints so that they can
generate a dependency tree. Following the arc-
standard algorithm (Nivre, 2004), the precondition
can be categorized as 1) SHIFT(SH): There exists
at least one word that is not pushed into the stack;
2) LEFT-ARC(LR(d)) and RIGHT-ARC(RR(d)):
There are at least two words in the stack. These
two constraints can be defined as indicator func-
tions

I(yi) =


0 yi = SH,Wc ≤ 0
0 yi = LR(d) or RR(d), Sc < 2
1 otherwise

(8)

where Sc represents the number of words in the
stack and Wc is the number of source words that
are not pushed into the stack. To introduce these
constraints, the conditional probability of each tar-
get symbol yi can be rewritten as

p(yi|y<i, h) =
exp (gi) ∗ I(yi)∑
k exp (gk) ∗ I(yk)

(9)

where gi is the ith element of g(yi−1, zi, ci).

4 Experiments

In this section, we evaluate our parsing model on
the English and Chinese datasets. Following Dyer
et al. (2015), Stanford Dependencies (de Marn-
effe and Manning, 2008) conversion of the Penn
Treebank (PTB) (Marcus et al., 1993) and Chinese
Treebank 5.1 (CTB) are adopted. We leverage the
arc-standard algorithm for our dependency pars-
ing. In addition, we limit the vocabulary to con-
tain up to 20k most frequent words and convert
remaining words into the <unk> token.

4.1 Setup
For our model, 3-layers GRU is used for encoder
and decoder. The dimension of word embedding
is 300, the dimension of POS-tag/action embed-
ding is 32, and the size of hidden units in GRU
is 500. 3-layers attention structure is adopted in
our model. Following Chen and Manning (2014);
Dyer et al. (2015), we used 300-dimensional pre-
trained GloVe vectors (Pennington et al., 2014)
to initialize our word embedding matrix. Other
model parameters are initialized using a normal
distribution with a mean of 0 and a variance of
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Parser
PTB-SD CTB

Dev Test Dev Test
UAS LAS UAS LAS UAS LAS UAS LAS

Z&N11 - - 93.00 90.95 - - 86.00 84.40
C&M14 92.20 89.70 91.80 89.60 84.00 82.40 83.90 82.40
ConBSO - - 91.57 87.26 - - - -
Dyer15 93.20 90.90 93.10 90.90 87.20 85.90 87.20 85.70
Weiss15 - - 93.99 92.05 - - - -
K&G16 - - 93.99 91.90 - - 87.60 86.10
DENSE 94.30 91.95 94.10 91.90 87.35 85.85 87.84 86.15
seq2seq 92.02 89.10 91.84 88.84 86.21 83.80 85.80 83.53
Our model 93.65 91.52 93.71 91.60 87.28 85.30 87.41 85.40
Ensemble 94.24 92.01 94.16 92.13 88.06 86.30 87.97 86.18

Table 1: Results of various state-of-the-art parsing systems on English dataset (PTB with Stanford De-
pendencies) and Chinese dataset (CTB). The numbers reported from different systems are taken from:
Z&N11 (Zhang and Nivre, 2011); C&M14 (Chen and Manning, 2014); ConBSO (Wiseman and Rush,
2016); Dyer15 (Dyer et al., 2015); Weiss15 (Weiss et al., 2015); K&G16 (Kiperwasser and Goldberg,
2016); DENSE (Zhang et al., 2017).

√
6/(drow + dcol), where drow and dcol are the

number of rows and columns (Glorot and Ben-
gio, 2010). Our models are trained on a Tesla
K40m GPU and optimized with vanilla SGD algo-
rithm with mini-batch size 64 for English dataset
and 32 for Chinese dataset. The initial learning
rate is set to 2 and will be halved when unlabeled
attachment scores (UAS) on the development set
do not increase for 900 batches. To alleviate the
gradient exploding problem, we rescale the gradi-
ent when its norm exceeds 1. Dropout (Srivastava
et al., 2014) is applied to our model with the strat-
egy recommended in Zaremba et al. (2014) and the
dropout rate is 0.2. For testing, beam search is em-
ployed to find the best action sequence with beam
size 8. For evaluation, we report unlabeled (UAS)
and labeled attachment scores (LAS) on the devel-
opment and test sets. Following Chen and Man-
ning (2014), the punctuation is excluded from the
evaluation.

4.2 Main Results

Table 1 lists the accuracies of our parsing mod-
els, compared to other state-of-the-art parsers. For
the baseline, seq2seq model employs the same
encoder and decoder network structure with our
model. We can see that our proposed model
can significantly outperform the basic seq2seq
model with 1.87 UAS (English) and 1.61 UAS
(Chinese) improvements on the test set. This
demonstrates the effectiveness of our proposed

multi-layer attention mechanism. Besides, our
model achieves better UAS accuracy than Z&N11,
C&M14, ConBSO and Dyer15 on development
and test set, while slightly lower than Weiss15,
K&G16 and DENSE. Weiss15 adopts a structured
training procedure which can be easiely applied to
our model as well, and it will further improve the
performance of our model. K&G16 uses 11 bidi-
rectional LSTM vectors as features, which will be
fed to a transition-based parser. It suggests a new
direction that combines our model with feature en-
gineering of the traditional transition-based parser
to gain better performance. DENSE formalizes
dependency parsing as head selection and applies
MST algorithms to correct non-tree outputs, while
our model doesn’t require any post-processing at
test time. Dozat and Manning (2016) use deep bi-
affine attention instead of traditional attention in
the graph-based architectures of K&G16, achiev-
ing 95.74 UAS and 89.30 UAS on PTB-SD and
CTB datasets respectively. For ensemble, we train
4 models using the same network with different
random initialization. When we ensemble these
4 models, we simply average the output probabil-
ities from different models and obtain the better
result with accuracies of 94.16 UAS (English) and
87.97 UAS (Chinese) as shown in the Table 1.

4.3 Impact of l

The hyper-parameter l represents the number of
layers in our proposed multi-layer attention mech-
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Dev Test
UAS LAS UAS LAS

seq2seq 92.02 89.10 91.84 88.84
l = 1 92.85 90.44 92.70 90.40
l = 2 93.30 91.13 93.21 90.98
l = 3 93.65 91.52 93.71 91.60
l = 4 93.49 91.29 93.42 91.24

Table 2: Impact of l on English PTB dataset.

anism. Larger l would bring more capacity, but
lead to more computational complexity and aggra-
vate the risk of over-fitting.

We conduct a group of experiments to investi-
gate the impact of l. The results are shown in Ta-
ble 2. Seq2seq model can be viewed as a special
case of our model without any stack information.
With l = 1, we can see that the introduction of
stack information can strongly improve the pars-
ing performance, especially for LAS. When l is
small (l < 4), the general trend is that larger l
leads to better result. However, further increasing l
bring slightly damages to the parsing performance
due to the over-fitting problem.

Although larger l would bring more capacity,
multiple layers structure will double the training
time compared with the vanilla seq2seq. In our
implementation, our model costs about 500 sec-
onds for a round of training data on English PTB
dataset, while the vanilla costs about 260 seconds.

4.4 Additional Results

We perform some ablation experiments in order to
quantify the effect of the different components on
our models. As shown in Table 3, the POS-tag
information plays the most important role in our
model. We note that, different from Dyer et al.
(2015), we don’t utilize an external word embed-
ding to tackle OOV problem, and it may cause our
model to be more dependent on the POS-tag infor-
mation. For s and r vectors, same as discussion in
last section, we find that the introduction of stack
information can strongly improve the parsing per-
formance.

5 Conclusion

In order to leverage structure information for
seq2seq based dependency parsing, in this pa-
per, we propose a stack based multi-layer atten-
tion method, in which, stack is simulated with
two binary vectors, and multi-layer attention is in-

Dev Test
UAS LAS UAS LAS

Our model 93.65 91.52 93.71 91.60
–pretraining 93.19 90.92 93.22 91.11
–POS 92.73 89.86 92.57 90.05
–s vector 93.18 90.68 93.02 90.89
–r vector 93.16 90.90 93.27 91.02

Table 3: Impact of the different components on
English PTB dataset.

troduced to capture multiple word dependencies
in partial trees. Experimental results demonstrate
that our proposed model significantly outperforms
the basic seq2seq model, and achieves a state-of-
the-art parsing performance.

In the future, we plan to apply our approach in
more languages and other transition-based system,
such as arc-eager or arc-hybrid. Another direction
we are interested in is to train our model with com-
plex training approaches proposed in Weiss et al.
(2015) and Andor et al. (2016).
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