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Abstract

Named Entity Recognition is a well estab-
lished information extraction task with many
state of the art systems existing for a va-
riety of languages. Most systems rely on
language specific resources, large annotated
corpora, gazetteers and feature engineering
to perform well monolingually. In this pa-
per, we introduce an attentional neural model
which only uses language universal phonolog-
ical character representations with word em-
beddings to achieve state of the art perfor-
mance in a monolingual setting using super-
vision and which can quickly adapt to a new
language with minimal or no data. We demon-
strate that phonological character represen-
tations facilitate cross-lingual transfer, out-
perform orthographic representations and in-
corporating both attention and phonological
features improves statistical efficiency of the
model in 0-shot and low data transfer settings
with no task specific feature engineering in the
source or target language.

1 Introduction

Named Entity Recognition (NER) (Nadeau and
Sekine, 2007; Marrero et al., 2013) is an informa-
tion extraction task that deals with finding and clas-
sifying entities in text into a fixed set of types of
interest. It is challenging for a variety of reasons.
Named Entities (NEs) can be arbitrarily synthesized
(eg. people’s/organization’s names). NEs are often
not subject to uniform cross-linguistic spelling con-
ventions: compare France (English) and Frantsiya
(Uzbek). NEs occur rarely in data which makes gen-

eralization difficult. Skewed class statistics necessi-
tate measures to prevent models from merely favor-
ing a majority class.

Named entities must also be annotated in con-
text (eg. “[New York Times]ORG” vs. “[New
York]LOC”). Lexical ambiguity (Turkey—country
vs. bird), semantic ambiguity (“I work at the [New
York Times]ORG” vs. “I read the New York Times”)
and sparsity induced by morphology add complex-
ity.

Despite the challenges mentioned above, compe-
tent monolingual systems that rely on having suffi-
cient annotated data, knowledge and resources avail-
able for engineering features have been developed.
A more challenging task is to design a model that
retains competence in monolingual scenarios and
can easily be transferred to a low resource language
with minimum overhead in terms of data annotation
requirements and feature engineering. This trans-
fer setting introduces additional challenges such
as varying character usage conventions across lan-
guages with same script, differing scripts, lack of
NE transliteration, varying morphology, different
lexicons and mutual non-intelligibility to name a
few.

We propose the following changes over prior
work (Lample et al., 2016) to address the challenges
of the low-resource transfer setting. We use:

1. Language universal phonological character
representations instead of orthographic ones.

2. Attention over characters of a word while
labeling it with an NE category.
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Figure 1: Attentional LSTM-CRF architecture. li denotes
the encoding of a word and its left context (forward LSTM)
while ri includes only right context (backward LSTM). In-
puts to word LSTMs are obtained using character LSTMs
and word-embeddings. ai denotes an attentional context
vector concatenated with li and ri.

We show that using phonological character rep-
resentations instead does not negatively impact per-
formance on two languages: Spanish and Turkish.
We then show that using global phonological repre-
sentations enables model transfer from one or more
source languages to a target language with no extra
effort, even when the languages use different scripts.
We demonstrate that while attention over characters
of words has marginal utility in monolingual and
high resource settings, it greatly improves the sta-
tistical efficiency of the model in 0-shot and low
resource transfer settings. We do require a map-
ping from a language’s script to phonological feature
space which is script specific and not task specific.
This presents little or no overhead due to existence
of tools like PanPhon (Littell et al., 2016).

2 Our Approach

Figure 1 provides a high level overview of our
model. We model the words of a sentence at the
type level and the token level. At the type level (ig-
norant of sentential context), we use bidirectional
character LSTMs as in figure 2 to compose charac-
ters of a word to obtain its word representation and
concatenate this with a word embedding that cap-
tures distributional semantics. This can memorize
entities or capture morphological and suffixal clues

Figure 2: Type level word representations - l denotes a
word prefix encoding (by forward char LSTM) while r de-
notes a word suffix encoding (by backward char LSTM).

that can help at a discriminative task like NER. We
compose type level word representations with bi-
directional LSTMs to obtain token level (cognizant
of sentential context) representations. Using token
level word representations along with an attentional
context vector for each word based on the sequence
of characters it contains, we generate score functions
used by a Conditional Random Field (CRF) for in-
ference. To facilitate transfer across languages with
different scripts, we use Epitran 1 and PanPhon (Lit-
tell et al., 2016).

Epitran is a straightforward orthography-to-IPA
(International Phonetic Alphabet [language univer-
sal]) system including a collection of preprocessors
and grapheme-to-phoneme mappings for a variety of
language-script pairs. It converts a word from its na-
tive script into a sequence of IPA characters, each
of which approximately corresponds to a phoneme.
PanPhon is a database of IPA-to-phonological fea-
ture vector mappings and a library for querying, ma-
nipulating, and exploiting this database. It consumes
the output of Epitran and produces feature vectors
(21 dimensions) of phonological characteristics such
as whether a phoneme is articulated with (accom-
panied by) vibration of the vocal folds (voiced),
with the tongue in a high, low, back, or front po-
sition, with the lips rounded or unrounded, with
tongue tip or blade (coronal), etc. Figure 3 depicts
the sequence of operations applied to the same NE

1https://github.com/dmort27/epitran
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Figure 3: Use of Epitran and PanPhon to enable transfer
across orthographies

in Uyghur (Perso-Arabic script) and Turkish (Latin
script), thus making the equivalence across scripts
apparent. We concatenate the feature vectors from
PanPhon and 1-hot encodings of the corresponding
IPA characters and use these as inputs to the charac-
ter bi-LSTMs.

This shift to IPA space is motivated by prior work
(Tsvetkov et al., 2015; Tsvetkov and Dyer, 2015)
which demonstrated the value of projecting ortho-
graphic surface forms of words into a phonologi-
cal space for detecting loan words, transliteration
and cognates even in language pairs that exhibit sig-
nificant typological, morphological and phonologi-
cal differences. Our underlying assumption is that
named entities are likely to be transliterated or re-
tain pronunciation patterns across languages. Addi-
tionally, phenomena such as vowel harmony mani-
fest explicitly in IPA representation and can poten-
tially be helpful for NER. Foreign named entities for
example, need not obey vowel harmony rules preva-
lent in languages like Turkish. A powerful sequence
model such as a LSTM could be tolerant to the noise
created by lexical aberrations, lack of spelling con-
ventions, vowel raising etc. when given a phonolog-
ical representation of an NE in different languages.

Our second proposed change is to incorporate at-
tention over the sequence of IPA segments in a word
when predicting scores for its possible labels. Atten-
tion is an unsupervised alternative to convolution or
feature engineering to capture helpful localized phe-
nomena like capitalization of first letter, presence of
case markers, special characters, helpful morpho-
logical suffixes etc. or the conjunction of multiple

such phenomena. Such features have been the main-
stay of most prior work for NER. Most of these fea-
tures are subtle and occur at the type level, whereas
the CRF performs inference at the token level. We
show (empirically) that attention makes the CRF
more sensitive to such useful type level phenom-
ena during inference and improves the statistical ef-
ficiency of the model in certain scenarios. Having
described our intuitions, we now provide mathemat-
ical details of our model.

2.1 Model Description
2.1.1 LSTM

Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) belongs to a special breed
of neural networks called Recurrent Neural Net-
works (RNNs) which are capable of processing se-
quential input of unbounded and arbitrary length.
This makes them suitable for a sequence labeling
task. LSTMs incorporate gating functions at each
time step to allow the network to forget, remember
and update contextual memory and mitigate prob-
lems like vanishing gradient. We use the following
implementation:

it =σ (Wxixt +Whiht−1 +Wcict−1 + bi)

ct =(1− it)� ct−1+
it � tanh(Wxcxt +Whcht−1 + bc)

ot =σ (Wxoxt +Whoht−1 +Wcoct + bo)

ht =ot � tanh(ct)

where � indicates element-wise product and σ indi-
cates element-wise sigmoid function.

In practice we use bi-directional LSTMs (each
with its own parameters) to mitigate cases where the
LSTM may be biased towards the last few inputs it
reads. This is done both at the word-level and the
character level. Let the hidden state at time step t
of the forward LSTM be denoted by

−→
ht and the cor-

responding state of the backward LSTM be denoted
by
←−
ht . At the character level, for a word with L

characters, we only take the final hidden states in
each direction i.e. [

−→
hL;
←−
h0] and concatenate them

to get a representation of the word that comprises
these characters. At the word level, we concatenate
corresponding forward and backward LSTM states
for each word Xt to get [

−→
ht ;
←−
ht] which is the token
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level representation for the tth word in a sentence X.
We use this to generate un-normalized energy/score
functions for the CRF layer.

2.2 Attention

Let wt = [
−→
ht ;
←−
ht] indicate the concatenated word bi-

LSTM output (of dimension d1) at step t correspond-
ing to the tth word (Xt) in the input sequence X.
LetMt be the matrix containing the concatenated bi-
directional character LSTM outputs for each charac-
ter of Xt. It has dimensions (lt, d2) where d2 is the
dimension of the concatenated bi-directional charac-
ter LSTM hidden states and lt is the number of char-
acters in Xt. Let mi

t denote the ith row of Mt. Let
P be a parameter matrix of dimension (d1, d2) and p
be a bias vector of length d2. We follow (Bahdanau
et al., 2014) in the formulation of attention context
vector at:

w′t =tanh(wt · P + p)

αi =
exp(w′t ·mi

t)∑lt
j=1 exp(w

′
t ·mj

t )

at =

lt∑

i=1

(αi ∗mi
t)

The attentional context vector at is then appended
to wt to obtain concatenated vector ut = [at; wt].
We apply a linear transform U (matrix of dimension
(d1 + d2, k) where k is the number of unique NER
tags). This gives us:

et = ut · U (1)

where et is a vector of un-normalized energy/score
functions indicating the compatibility between word
Xt and each of the k possible NER labels it can be
given. Note that each word has a separate attention
context vector obtained using the character LSTM
hidden states generated by its constituent characters.

2.3 Conditional Random Field

Unlike Hidden Markov Models, CRFs do not en-
force any independence assumptions among ob-
served data and directly model the likelihood of a la-
beling hypothesis discriminatively. They also model
adjacency compatibility between NER tags which
can capture strong constraints like an ’I-label’ tag

not following an O tag without a ’B-label’ tag in be-
tween them (see section 2.6). In our model, the CRF
is parametrized as follows:

For a word sequence X = (x1, x2, ...xN ), let E be
a matrix of dimension (k,N) where k is the number
of unique NER tags and N is the sequence length.
The tth column is the vector et obtained in equation
1. Let T be the square transition matrix of size (k+2,
k+2) which captures transition score between the k
NER tags, the start and the end symbols. Let Y =
(y1, y2, ...yN ) be the label sequence associated with
the input word sequence, each yi being an index into
the ordered set of unique NER tags. Let y0 be the
start symbol and yN+1 be the end symbol. The score
of this sequence is evaluated as:

S(X,Y ) =
N∑

i=1

Eyi,i +
N∑

j=0

Tyj ,yj+1

LetYX indicate the exponential space of all possi-
ble labelings of this sequence X. The partition func-
tion associated with this CRF is then evaluated as:

Z =
∑

Y ∈YX
eS(X,Y )

The probability of a specific labeling Y ∈ YX :

P (Y |X) =
eS(X,Y )

Z

The training objective is to maximize conditional
log probability of the correct labeling sequence Y ∗:

log(P (Y ∗|X)) = S(X,Y ∗)− log (Z) (2)

The decoding criteria for an input sequence X is:

Y ∗ = argmax
Y ∈YX

S(X,Y ) (3)

Normally, evaluating the partition function over
the exponential space of all possible labelings would
be intractable. However, as described in (Lafferty
et al., 2001), this can be done efficiently for linear
chain CRFs using the forward backward algorithm.

2.4 Word Representations
The inputs to our model are in the form of type level
word representations (figure 2). Motivated by the
distributional hypothesis (Harris, 1954; Firth, 1957)

1465



we use word embeddings as inputs. In the monolin-
gual scenario, we use structured skipgram word em-
beddings (Ling et al., 2015a). For the transfer sce-
nario, embeddings can optionally be trained using
techniques like multi CCA described in (Ammar et
al., 2016). By learning a linear transformation from
a shared vector space between languages, the model
may acquire some transfer capability to the target
language.

We use character bi-LSTMs to handle the Out
Of Vocabulary (OOV) problem as in (Ling et al.,
2015b). However, just as a distributional hypothe-
sis exists for words, prior work (Tsvetkov and Dyer,
2015; Tsvetkov et al., 2015) suggests phonological
character representations capture inherent similari-
ties between characters that are not apparent from
orthogonal one-hot orthographic character represen-
tations and can serve as a language universal surro-
gate for character representations. This is also use-
ful for multi-lingual named entity recognition as ex-
plained in section 2. Therefore we make use of Epi-
tran and PanPhon as in figure 3 to obtain both 1-
hot IPA character encodings and phonological fea-
ture vectors capturing similarity between IPA char-
acters. These form the inputs to the character bi-
LSTMs. The mapping from orthographic charac-
ter segments to IPA is sometimes many to one (am-
biguous) and unarticulated characters (like periods
in NE abbreviations) and capitalization information
is lost by default. Given the importance of such or-
thographic features for NER and the ambiguity in-
troduced, a drop in performance may be expected
by using phonological character representations.

2.5 Training

Our model parametrization is similar to (Lample et
al., 2016). The weights to be trained include the the
CRF transition matrix T, the projection parameters
are used to generate matrix E (P and U), the LSTM
parameters and word and character embedding ma-
trices. The objective is to maximize the log prob-
ability of the correct labeling sequence as given in
equation 2. This objective is fully differentiable and
standard back-propagation is used to learn weights.
We use Stochastic Gradient Descent with a learning
rate of 0.05 and gradients clipped at 5.0 providing
best performance. Using Adadelta or Adam leads to
faster convergence but slightly worse performance.

Word level LSTMs use a hidden layer size of 100,
orthographic character LSTMs (if used) used a hid-
den layer of size 25 while phonological character
LSTMs used a hidden layer of size 15 due to the
smaller phonetic alphabet. Tuning these did not have
a major effect on performance. Dropout of 0.5 is
applied after concatenation of the word embeddings
and character LSTM outputs. Best dropout value
was chosen through ablation studies. For Spanish,
we use word embeddings pre-trained on the Span-
ish Gigaword version 3. For transfer experiments,
we use multilingual word embeddings trained using
multi CCA described in (Ammar et al., 2016).

2.6 Entity Types and Tagging Schemes
In all of the datasets in table 1, 4 entity types are
annotated:

1. Persons (PER)
Real/fictional, living/dead people. Aliases and
family names are also annotated. E.g. Barack
Obama, the [Kennedys], Puff Daddy etc.

2. Locations (LOC)
Geographical locations without a dedicated
population and government. E.g. Nile river,
Sahara desert, Mt. Everest, Asia etc.

3. Geo-Political Entities (GPE)
Geographical regions with corresponding pop-
ulation and government. Mentions can be nom-
inal (e.g. India, E.U., Britain etc.) or adjectival
(e.g. [British] army, [French] government etc.).

4. Organizations (ORG)
Names of entities with organization and man-
agerial structure. E.g. Democratic Party,
Google, JetBlue, etc.

A BIO tagging scheme is used for all annotations.
All non-entity tokens are annotated as ’O’. The first
token of an entity span is annotated as ’B-label’ and
all remaining tokens in the entity span are annotated
as ’I-label’.

3 Experiments

We conduct four different experiments:

1. CoNLL 2002 Spanish NER (Sang., 2002) task.
This demonstrates the monolingual compe-
tence of phonological character representations
vs. orthographic representations.
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2. Turkish NER using the Linguistic Data Con-
sortium’s LDC2014E115 BOLT Turkish Lan-
guage Pack 2. This demonstrates the utility of
phonological character representations and at-
tention in a morphologically rich, low resource
language. We compare against a state-of-the-
art monolingual model (Lample et al., 2016)
that uses orthographic character LSTMs.

3. Transfer Experiments from Uzbek to Turkish
using LDC2014E112 BOLT 3 data pack for
Uzbek and LDC2014E115 BOLT data pack
for Turkish. These two languages have sim-
ilar syntax and word order (Dryer, 2013) but
vary significantly in morphology, vowel har-
mony and phonology, can use different scripts
(Uzbek-Latin/Cyrilic, Turkish-Latin) and are
not mutually intelligible.

4. Transfer Experiments from Uzbek and Turk-
ish into Uyghur using LDC2014E112 and
LDC2014E115 BOLT data pack for Uzbek
and Turkish respectively and Uyghur data
provided as part of DARPA LORELEI4. These
languages all have different scripts, lexicons,
morphology and phonology. Results are
reported by NIST 5 on an unseen test set.

3.1 Results
Tables 2 and 3 report results from monolingual ex-
periments in Spanish. In table 3, we report the per-
formance of our best model against other state-of-
the-art models for the Spanish CoNLL 2002 NER
task (Sang., 2002). Our model performs marginally
better than other benchmarks with the optimal con-
figuration of hyper-parameters and using pre-trained
word embeddings. Table 2 report ablation study re-
sults, which reveal that using pre-trained word em-
beddings without using character LSTMs yields a
very strong baseline that already out-performs var-
ious previous benchmarks. Using character LSTMs
that compose orthographic character representations
yields a +0.91 improvement in F1 score and a further

2http://opencatalog.darpa.mil/BOLT.html
3BOLT contains newswire, discussion forum, social media

and chat data
4http://www.darpa.mil/program/low-resource-languages-

for-emergent-incidents
5https://www.nist.gov
6Sparse features for character capitalization and character

type (digit, punctuation etc.)

Language # Sentences # Entities
Spanish 8323 18798
Turkish 5065 4883
Uzbek 10078 7960
Uyghur 2161 2668∗

Table 1: Dataset Statistics. * indicates non-gold annotations

produced by a non-speaker linguist.

Phono
Chars

Ortho
Chars

Word
Vecs

Cap+
Cat6

Ortho
Attn

Phono
Attn

F1

No No Yes No No No 83.61
No Yes Yes No No No 84.52
No Yes Yes No Yes No 84.64
No Yes Yes Yes No No 84.91
No Yes Yes Yes Yes No 85.25
Yes No Yes No No No 84.08
Yes No Yes No No Yes 84.88
Yes No Yes Yes No No 84.89
Yes No Yes Yes No Yes 85.81
Yes Yes Yes No No Yes 84.53
Yes Yes Yes Yes No No 84.92
Yes Yes Yes Yes Yes Yes 84.75
Yes Yes Yes Yes No Yes 84.84
Yes Yes Yes Yes Yes No 85.32

Table 2: Ablation Tests on Spanish CoNLL 2002. Bold indi-

cates the best model.

Model F1
Carreras et al. (2002)* 81.39
dos Santos et al. (2015) 82.21
Gillick et al. (2015) 81.83
Gillick et al. (2015)* 82.95
Lample et al. (2016) 85.75
Yang et al. (2016) 85.77
Our Best 85.81

Table 3: Comparison with benchmarks. * indicates a model

that uses external labeled data

Phono
Chars

Ortho
Chars

Word
vecs

Cap+
Cat

Ortho
Attn

Phono
Attn

F1

No No Yes No No No 49.2
No Yes Yes No No No 65.41
No Yes Yes No Yes No 64.76
No Yes Yes Yes No No 60.57
No Yes Yes Yes Yes No 60.87
Yes No Yes No No No 63.04
Yes No Yes No No Yes 66.07
Yes No Yes Yes No No 59.08
Yes No Yes Yes No Yes 62.46
Yes Yes Yes No No Yes 63.43
Yes Yes Yes Yes No No 63.46
Yes Yes Yes Yes Yes Yes 66.47

Table 4: Ablation Tests on Turkish Bold indicates the best

transfer eligible (66.07) and transfer ineligible models (66.47)
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Model F1
Lample et al. (2016) 61.11
Lample et al. (2016) with
pretrained embeddings 65.41

Our Best model 66.47
Our Best transfer-eligible model 66.07

Table 5: Comparison with state-of-the-art monolingual Turkish

model

Model F1
Lample et al. (2016) 37.1
Our best transfer model* 51.2

Table 6: NIST evaluations for Uyghur. * indicates transfer from

Uzbek and Turkish

+0.12 F1 with attention. Using phonological charac-
ter representations instead yields an improvement of
+0.47 F1 and a further +0.8 F1 with attention. Thus,
phonological representations benefit more from at-
tention applied over them to beat out orthographic
representations in that scenario. Using sparse fea-
tures indicating the character category (alphabet vs.
number vs. punctuation/non-phonetic) and capital-
ization in conjunction with with phonological char-
acter representations and word embeddings with at-
tention over phonological characters yields the best
configuration that slightly outperforms the best pub-
lished models so far. Given that many previous
benchmarks used features that rely heavily on or-
thography, this is an encouraging result since one
would expect to lose some performance by using
more abstract phonological representations as ex-
plained in section 2.4.

Tables 4 and 5 highlight results from monolingual
experiments on Turkish. This dataset is much more
challenging since the annotated training courpus is
significantly smaller than the CoNLL 2002 shared
task dataset and because Turkish is an agglutinative
language exhibiting sparsity inducing morphology
which leads to huge vocabulary size. As a compet-
itive baseline, we train the LSTM CRF described in
(Lample et al., 2016) due to its documented abil-
ity to obtain state-of-the-art monolingual results for
many languages with minimal feature engineering.
Our best model from the Turkish ablation study out-
performs this baseline. We also see a stark contrast
between the ablation study results for Turkish com-
pared to Spanish. Firstly, word embeddings alone

perform rather poorly due to the challenges of reli-
ably estimating them for a large vocabulary given a
small dataset. Character composed representations
of words provide a significant performance boost
(+17.27 F1 for the best model). Secondly, usage of
sparse character features (like capitalization) seems
to hurt performance in all but the last model in table
4. Thirdly, phonological and orthographic charac-
ter representations are complementary in the case of
Turkish, unlike Spanish. This is not too surprising
since Turkish exhibits phonological phenomena like
vowel harmony. Lack of vowel harmony in a word
could give-away a foreign word or a named entity
for example. Results show that attention is helpful
as well. We would also like to point out that the
only models in the ablation studies eligible for trans-
fer are those that do not use orthographic character
representations. Among these, the model that uses
phonological representation with attention and word
vectors performs the best and also outperforms the
baseline system.

Our next experiments on model transfer are ar-
guably the most interesting. Tables 7 and 8 docu-
ment single source (Uzbek to Turkish) transfer re-
sults. We find that using sparse character category
and capitalization features in conjunction with atten-
tion and phonological features yields the best 0-shot
transfer performance (no training labels in the tar-
get language). Specifically, attention provides +6
F1 in 0-shot and 5% labeled-target language data
scenarios. It is interesting to note that using mul-
tilingual word embeddings for the source and tar-
get languages alone accounts for very poor trans-
fer. We also find that with as little as 20% of the
data, we approach the performance of a monolingual
target model that was trained on all the data. We
also notice that the transfer models retain a consis-
tent advantage over a monolingually trained target
language model across all data availability scenar-
ios. Lastly, we note that while attention provides
a significant improvement in 0-shot and 5% data
availability scenarios, a model without attention (or
sparse features like capitalization) eventually does
better with more data. This indicates that the model
is competent enough to leverage transfer via phonol-
ogy alone. This could also possibly be because at-
tention patterns from Uzbek could bring in a bias
that is eventually sub-optimal for Turkish due to dif-
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Phono
Chars

Word
vecs

Cap+
Cat

Phono
Attn

Uzbek
Source F1

Target
0-shot F1

5%
data

20%
data

40%
data

60%
data

80%
data

All
data

No Yes No No 41.87 2.09 23.44 35 42.75 46.32 48.81 50.34
Yes Yes No Yes 61.24 11.9 34.06 47.84 56.1 53.5 64.72 65.2
Yes Yes No No 60.92 15.55 39.42 60.14 63.23 62.54 65.24 65.63
Yes Yes Yes No 64.89 22.14 41.19 54.02 57.06 59.26 60.84 61.72
Yes Yes Yes Yes 61.85 26.92 47.21 58.58 60.32 60.7 62.84 63.58

Table 7: Model Transfer from Uzbek (Source) to Turkish (Target) at different target data availability thresholds

Model 0-shot
5%
data

20%
data

40%
data

60%
data

80%
data

All
data

LSTM-CRF (Lample et al., 2016) 0 33.44 50.61 53.25 57.41 60 61.11
S-LSTM (Lample et al., 2016) 0 15.41 39.33 42.99 51.92 51.55 56.58

Table 8: Monolingual Turkish baseline at different data availability thresholds

ferent morphology and phonology. In future work,
we shall perform more insightful error analysis to
explain these trends.

Table 6 documents NIST evaluation results on an
unseen Uyghur test set (with gold annotations) for
the best transfer model configuration jointly trained
on Turkish and Uzbek gold annotations and Uyghur
training annotations produced by a non-speaker lin-
guist (non-gold). Since Uyghur lacks helpful type-
level orthographic features such as capitalization,
our transfer model in table 6 does not use any
sparse features or attention but benefits from transfer
via the phonological character representations we’ve
proposed. Despite the noisy supervision provided in
the target language, transferring from Turkish and
Uzbek provides a +14.1 F1 improvement over a state
of the art monolingual model trained on the same
Uyghur annotations. It is worth pointing out that
this transfer was achieved across 3 languages each
with different scripts, morphology, phonology and
lexicons.

4 Prior Work

NER is a well-studied sequence-labeling problem
for which many different approaches have been pro-
posed. Early works had a monolingual focus and
relied heavily on feature engineering. Approaches
include maximum entropy models (Chieu and Ng,
2003), hierarchically smoothed tries (Cucerzan and
Yarowsky, 1999), decision trees (Carreras et al.,
2002) and models incorporating syntactic, semantic
and world knowledge (Wakao et al., 1996). Each
of these models brings in a bias of its own. Florian
et al. (2003) successfully tried ensembling multiple

classifiers and improved performance.
Since NER is a sequence labeling problem, there

are local dependencies both among NE labels as-
sociated with words and among the words them-
selves, that could aid the labeling process. To explic-
itly deal with these sequential characteristics, Hid-
den Markov Models (HMMs) and Conditional Ran-
dom Fields (CRFs) became very popular. (Klein
et al., 2003; Florian et al., 2003; McCallum and
Li, 2003; Ratinov and Roth, 2009; Chandra et al.,
1981; Lin and Wu, 2009; Lample et al., 2016; Yang
et al., 2016; Ma and Hovy, 2016). CRFs even-
tually became more popular because they are dis-
criminative models that directly model the required
posterior probability of a labeling sequence using
parametrized functions of features. They do not
model the probability of the observed sentence itself,
avoid Markovian independence assumptions made
by HMMs and avoid the label bias problem.

Most of the work cited so far makes use of hand
engineered features. The following approaches min-
imize the use of features while still maintaining a
monolingual focus. Collobert et al. (2011), Turian et
al. (2010), and Ando and Zhang (2005) use unsuper-
vised features in conjunction with engineered fea-
tures capturing capitalization, character categories
and gazetteer matches. Collobert et al. (2011) use
a Convolutional Neural Network (CNN) over the se-
quence of word embeddings. Huang et al. (2015)
instead use bi-directional LSTMs over the sequence
of words, along with spelling and orthographic fea-
tures.

The most recent work eliminates feature engi-
neering altogether and combines CRFs with LSTMs
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which can model long sequences while remember-
ing appropriate past context. Lample et al. (2016)
proposed an architecture that uses both character and
word level LSTMs to produce score functions for
CRF inference conditioned on global context. Ma
and Hovy (2016) replace the character LSTMs of
Lample et al. (2016) with a CNN instead. Yang et
al. (2016) follow a very similar architecture to Lam-
ple et al. (2016), replacing the LSTMs with Gated
Recurrent Units (Cho et al., 2014). However, Yang
et al. (2016) also tackle multi task and multi-lingual
joint training scenarios.

Most of the models cited so far are monolin-
gual either because they use hand crafted features
and language specific resources or because of deep-
seated assumptions. For example a change in or-
thography, lexicon, script, word order or addition
of complex morphology makes transfer impossi-
ble. This is the central challenge that we tackle.
There has been much less work catering to this sce-
nario. Kim et al. (2012) use weak annotations from
Wikipedia metadata and parallel data for multi lin-
gual NER. Yang et al. (2016) addresses the use case
of multilingual joint training, which assumes there
is sufficient data available in all languages. Noth-
man et al. (2013) also operate under the assumption
of availability of Wikipedia data.

To the best of our knowledge, a scenario involving
transfer of a model trained in one (or more) source
language(s) to another language with little or no la-
beled data, different script, different morphology,
different lexicon, lack of transliteration, non-mutual
intelligibility etc. has not been addressed recently.

5 Conclusion

In this paper, we presented two improvements over
a state-of-the-art monolingual model to address
Named Entity Recognition in transfer settings. The
first seeks to reconcile various dimensions of vari-
ability between languages such as varying script,
orthographic conventions, phonological phenomena
etc. by representing words as sequences of IPA (In-
ternational Phonetic Alphabet) segments consistent
across all languages, rather than sequences of char-
acters specific to a particular language. Secondly,
we exploit the one-to-one mapping between input
sequence words and output labels and advocate for

the use of attention over the character/IPA sequence
of a word when predicting its label. We show em-
pirically that these two improvements 1) achieve
at least state-of-the-art performance on a monolin-
gual NER task in Spanish, 2) handle complex mor-
phology in languages such as Turkish, Uzbek and
Uyghur better than state of the art, 3) provide 0-shot
performance in a transfer scenario to a related new
language, well above that possible using multilin-
gual word embeddings alone, and 4) are capable of
generalizing to a new language with much less train-
ing data than a monolingually trained model. More-
over, all of this is achieved without any extra feature
engineering specific to the task or language, apart
from mapping characters in that language to IPA. We
believe these results to be encouraging and look for-
ward to replicating these results on more language
pairs in different language families and further au-
tomating the process of obtaining phonological char-
acter representations.
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