
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 160–170,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Semantic Parsing to Probabilistic Programs for
Situated Question Answering

Jayant Krishnamurthy and Oyvind Tafjord and Aniruddha Kembhavi
Allen Institute for Artificial Intelligence

jayantk,oyvindt,anik@allenai.org

Abstract

Situated question answering is the problem
of answering questions about an environment
such as an image or diagram. This problem
requires jointly interpreting a question and an
environment using background knowledge to
select the correct answer. We present Parsing
to Probabilistic Programs (P 3), a novel situ-
ated question answering model that can use
background knowledge and global features of
the question/environment interpretation while
retaining efficient approximate inference. Our
key insight is to treat semantic parses as prob-
abilistic programs that execute nondetermin-
istically and whose possible executions repre-
sent environmental uncertainty. We evaluate
our approach on a new, publicly-released data
set of 5000 science diagram questions, outper-
forming several competitive classical and neu-
ral baselines.

1 Introduction

Situated question answering is a challenging prob-
lem that requires reasoning about uncertain inter-
pretations of both a question and an environment
together with background knowledge to determine
the answer. To illustrate these challenges, consider
the 8th grade science diagram questions in Figure 1,
which are motivated by the Aristo project (Clark and
Etzioni, 2016). These questions require both com-
puter vision to interpret the diagram and composi-
tional question understanding. These components,
being imperfect, introduce uncertainty that must be
jointly reasoned about to avoid implausible interpre-
tations. These uncertain interpretations must further

1. According to the given food chain, what is the num-
ber of organisms that eat deer? (A) 3 (B) 2 (C) 4 (D) 1

2. Which organism is both predator and prey? (A) Bark
Beetles (B) Insect-eating birds (C) Deer (D) Hawks

3. Based on the given food web, what would happen if
there were no insect-eating birds? (A) The grasshop-
per population would increase. (B) The grasshop-
per population would decrease. (C) There would be no
change in grasshopper number.

Figure 1: Example food web questions. A food web depicts
a collection of organisms in an ecosystem with an arrow from
organism x to y indicating that y eats x. Questions may require
counting (1), knowing animal roles (2) and reasoning about
population changes (3).

be combined with background knowledge, such as
the definition of a “predator,” to determine the cor-
rect answer.

The challenges of situated question answering
have not been completely addressed by prior work.
Early “possible worlds” models (Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013; Mali-
nowski and Fritz, 2014) were capable of composi-
tional question understanding and using background
knowledge, but did not jointly reason about environ-

160

ment/question uncertainty. These models also used
unscalable inference algorithms for reasoning about
the environment, despite the lack of joint reasoning.
More recent neural models (Antol et al., 2015; Mali-
nowski et al., 2015; Yang et al., 2015) are incapable
of using background knowledge and it remains un-
clear to what extent these models can represent com-
positionality in language.

We present Parsing to Probabilistic Programs
(P 3), a novel approach to situated question answer-
ing that addresses these challenges. It is motivated
by two observations: (1) situated question answer-
ing can be formulated as semantic parsing with an
execution model that is a learned function of the
environment, and (2) probabilistic programming is
a natural and powerful method for specifying the
space of permissible execution models and learning
over it. In P 3, we define a domain theory for the task
as a probabilistic program, then train a joint loglin-
ear model to semantically parse questions to logi-
cal forms in this theory and execute them in an en-
vironment. Importantly, the model includes global
features over parsing and execution that enable it
to avoid unlikely joint configurations. P 3 lever-
ages semantic parsing to represent compositionality
in language and probabilistic programming to spec-
ify background knowledge and perform linear-time
approximate inference over the environment.

We present an experimental evaluation of P 3 on a
new data set of 5000 food web diagram questions
(Figure 1). We compare our approach to several
baselines, including possible worlds and neural net-
work approaches, finding that P 3 outperforms both.
An ablation study demonstrates that global features
help the model achieve high accuracy. We also
demonstrate that P 3 improves accuracy on a previ-
ously published data set. Finally, we have released
our data and code to facilitate further research.

2 Prior Work

Situated question answering is often formulated in
terms of parsing both the question and environment
into a common meaning representation where they
can be combined to select the answer. This gen-
eral approach has been implemented using different
meaning representations:

Possible world models use a logical meaning

representation defined by a knowledge base schema.
These models train a semantic parser to map ques-
tions to queries and an environment model to map
environments to knowledge bases in this schema.
Executing the queries against the knowledge bases
produces answers. These models assume that the
parser and environment model are independent and
furthermore that the knowledge base consists of
independent predicate instances (Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013; Malinowski
and Fritz, 2014). Despite these strong independence
assumptions, these models have intractable infer-
ence. An exception is Seo et al., (2015) who in-
corporate hard constraints on the joint question/envi-
ronment interpretation; however, this approach does
not generalize to soft constraints or arbitrary logical
forms. In some work only the environment model
is learned (Kollar et al., 2010; Tellex et al., 2011;
Howard et al., 2014b; Howard et al., 2014a; Berant
et al., 2014; Krishnamurthy and Mitchell, 2015).

Neural networks use a vector meaning repre-
sentation that encodes both the question and envi-
ronment as vectors. These networks have mostly
been applied to visual question answering (Antol et
al., 2015), where many architectures have been pro-
posed (Malinowski et al., 2015; Yang et al., 2015;
Fukui et al., 2016). It is unclear to what extent these
networks can represent compositionality in language
using their vector encodings. Dynamic Neural Mod-
ule Networks (Andreas et al., 2016a; Andreas et al.,
2016b) are the exception to the above generaliza-
tion. This approach constructs a neural network to
represent the meaning of the question via semantic
parsing, then executes this network against the im-
age to produce an answer. Our approach is similar
except that we construct and execute a probabilistic
program. Advantages of our approach are that it nat-
urally represents the discrete structure of food webs
and can use background knowledge.

Preliminaries for our work are semantic pars-
ing and probabilistic programming. Semantic pars-
ing translates natural language questions into exe-
cutable logical forms and has been used in applica-
tions such as question answering against a knowl-
edge base (Zelle and Mooney, 1993; Zettlemoyer
and Collins, 2005; Liang et al., 2011; Kwiatkowski
et al., 2013; Berant et al., 2013; Reddy et al., 2014;
Yih et al., 2015; Xu et al., 2016), direction following

161

(Chen and Mooney, 2011; Artzi and Zettlemoyer,
2013), and information extraction (Krishnamurthy
and Mitchell, 2012; Choi et al., 2015). Semantic
parsing alone is insufficient for situated question an-
swering because it does not interpret the environ-
ment; many of the above approaches use semantic
parsing as a component in a larger model.

Probabilistic programming languages extend pro-
gramming languages with primitives for nondeter-
ministic choice (McCarthy, 1963; Goodman and
Stuhlmüller, 2014). We express logical forms
in a probabilistic variant of Scheme similar to
Church (Goodman et al., 2008); however, this paper
uses Python-like pseudocode for clarity. The lan-
guage has a single choice primitive called choose

that nondeterministically returns one of its argu-
ments. For example choose(1,2,3) can execute
three ways, returning either 1, 2, or 3. Multiple
calls to choose can be combined. For example,
choose(1,2)+choose(1,2) adds two nondeter-
ministically chosen values, and therefore has four
executions that return 2, 3, 3 and 4. Each execution
also has a probability; in our case, these probabili-
ties are assigned by a trained model given the envi-
ronment and not explicitly specified in the program.

3 Parsing to Probabilistic Programs (P 3)

The P 3 model is motivated by two observations.
The first is that situated question answering can be
formulated as semantic parsing with an execution
model that is a learned function of the environment.
Consider the first question in Figure 1. The meaning
of this question could be represented by a logical
form such as COUNT(λx.EATS(x, DEER)), which
we could train a semantic parser to predict given a
suitable domain theory of functions such as COUNT

and EATS. However, the information required to
execute this logical form and answer the question
must be extracted from the diagram. Specifically,
EATS(x, y) depends on whether an arrow is present
between x and y, which we must train a vision
model to determine. Thus, EATS should be a learned
function of the environment.

This first observation suggests a need for a for-
malism for representing uncertainty and performing
learning over the domain theory’s functions. Our
second observation is that probabilistic program-

ming is a natural fit for this task. In this paradigm,
the domain theory is a probabilistic program that de-
fines the information to be extracted from the envi-
ronment by using choose. To a first approximation,
the diagram question theory includes:

def eats(x, y)
choose(true, false)

Logical forms are then probabilistic programs,
each of whose possible executions represents a dif-
ferent interpretation of the environment. For exam-
ple, executing EATS(LION, DEER) hits the choose

in the above definition, resulting in two executions
where the lion either eats or does not eat the deer.
In the COUNT example above, each execution rep-
resents a different set of animals that eat the deer.
To learn the correct environment interpretation, we
train an execution model to assign a probability to
each execution given features of the environment.
Using probabilistic programming enables us to com-
bine learned functions, such as EATS, with back-
ground knowledge functions, such as COUNT, and
also facilitates inference.

According to these observations, applying P 3 has
two steps. The first step is to define an appropriate
domain theory. This theory is the main design de-
cision in instantiating P 3 and provides a powerful
way to encode domain knowledge. The second step
is to train a loglinear model consisting of a semantic
parser and an execution model. This model learns
to semantically parse questions into logical forms in
the theory and execute them in the environment to
answer questions correctly. We defer discussion of
the diagram question domain theory to Section 4 and
focus on the loglinear model in this section.

3.1 Model Overview

The input to the P 3 model is a question and an en-
vironment and its output is a denotation, which is
a formal answer to the question. P 3 is a loglinear
model with two factors: a semantic parser and an ex-
ecution model. The semantic parser scores syntac-
tic parses and logical forms for the question. These
logical forms are probabilistic programs with mul-
tiple possible executions (specified by the domain
theory), each of which may return a different denota-
tion. The execution model assigns a score to each of
these executions given the environment. Formally,

162

if
S/N/S :
λx.λy.λf.

CAUSE(x, f(y))

mice
N :

MICE

die
S\N :

λx.DECREASE(x)

S : DECREASE(MICE)

S/N : λy.λf.CAUSE(DECREASE(MICE), f(y))

snakes
N :

SNAKES

will ?

skip

S : λf.CAUSE(DECREASE(MICE), f(SNAKES))

Figure 2: Example CCG parse of a question as predicted by the
semantic parser fp. The logical form ` for the question is shown
on the bottom line.

the model predicts a denotation γ for a question q in
an environment v using three latent variables:

P (γ|v, q; θ) =
∑

e,`,t

P (e, `, t|v, q; θ)1(ret(e) = γ)

P (e, `, t|v, q; θ) =
1

Zq,v
fex(e, `, v; θex)fp(`, t, q; θp)

The model is composed of two factors. fp repre-
sents the semantic parser that scores logical forms
` and syntactic parse trees t given question q and
parameters θp. fex represents the execution model.
Given parameters θex, this factor assigns a score to a
logical form ` and its execution e in environment v.
The denotation γ, i.e., the formal answer to the ques-
tion, is simply the value returned by e. Zq,v repre-
sents the model’s partition function. The following
sections describe these factors in more detail.

3.2 Semantic Parser
The factor fp represents a Combinatory Categorial
Grammar (CCG) semantic parser (Zettlemoyer and
Collins, 2005) that scores logical forms for a ques-
tion. Given a lexicon1 mapping words to syntactic
categories and logical forms, CCG defines a set of
possible syntactic parses t and logical forms ` for
a question q. Figure 3.2 shows an example CCG
parse. fp is a loglinear model over parses (`, t):

fp(`, t, q; θp) = exp{θTp φ(`, t, q)}
The function φmaps parses to feature vectors. We

use a rich set of features similar to those for syn-
tactic CCG parsing (Clark and Curran, 2007); a full
description is provided in an online appendix.

3.3 Execution Model
The factor fex is a loglinear model over the execu-
tions of a logical form given an environment. Log-
ical forms in P 3 are probabilistic programs with a

1In our experiments, we automatically learn the lexicon in a
preprocessing step. See Section 5.2 for details.

set of possible executions, where each execution e
is a sequence, e = [e0, e1, e2, ..., en]. e0 is the pro-
gram’s starting state, ei represents the state immedi-
ately after the ith call to choose, and en is the state
at termination. The score of an execution is:

fex(e, `, v; θex) =

n∏

i=1

exp{θTexφ(ei−1, ei, `, v)}

In the above equation, θex represents the model’s
parameters and φ represents a feature function that
produces a feature vector for the difference between
sequential program states ei−1 and ei given environ-
ment v and logical form `. φ can include arbitrary
features of the execution, logical form and environ-
ment, which is important, for example, to detect cy-
cles in a food web (Section 4.3).

3.4 Inference

P 3 is designed to rely on approximate inference:
our goal is to use rich features to accurately make
local decisions, as in linear-time parsers (Nivre et
al., 2006). We perform approximate inference us-
ing a two-stage beam search. Given a question q,
the first stage performs a beam search over CCG
parses to produce a list of logical forms scored by
fp. This step is performed by using a CKY-style
chart parsing algorithm then marginalizing out the
syntactic parses. The second stage performs a beam
search over executions of each logical form. The
space of possible executions of a logical form is
a tree (Figure 4.2) where each internal node rep-
resents a partial execution up to a choose call.
The search maintains a beam of partial executions
at the same depth, and each iteration advances
the beam to the next depth, discarding the lowest-
scoring executions according to fex to maintain a
fixed size beam. This procedure runs in time linear
to the number of choose calls. We implement the
search by rewriting the probabilistic program into
continuation-passing style, which allows choose to
be implemented as a function that adds multiple con-
tinuations to the search queue; we refer the reader to
Goodman and Stuhlmüller (2014) for details. Our
experiments use a beam size of 100 in the seman-
tic parser, executing each of the 10 highest-scoring
logical forms with a beam of 100 executions.

163

3.5 Training

P 3 is trained by maximizing loglikelihood with
stochastic gradient ascent. The training data
{(qi, vi, ci)}ni=1 is a collection of questions qi and
environments vi paired with supervision oracles ci.
ci(e) = 1 for a correct execution e and ci(e) = 0
otherwise. The oracle ci can implement various
kinds of supervision, including: (1) labeled denota-
tions, by verifying the value returned by e and (2) la-
beled environments, by verifying each choice made
by e. The oracle for diagram question answering
combines both forms of supervision (Section 4.5).

The objective function O is the loglikelihood of
predicting a correct execution:

O(θ) =

n∑

i=1

log
∑

e,l,t

ci(e)P (e, `, t|qi, vi; θ)

We optimize this objective function using
stochastic gradient ascent, using the approximate in-
ference algorithm from Section 3.4 to estimate the
necessary marginals. When computing the marginal
distribution over correct executions, we filter each
step of the beam search using the supervision oracle
ci to improve the approximation.

4 Diagram Question Answering with P 3

As a case study, we apply P 3 to the task of answer-
ing food web diagram questions from an 8th grade
science domain. A few steps are required to apply
P 3. First, we create a domain theory of food webs
that represents extracted information from the dia-
gram and background knowledge for the domain.
Second, we define the features of the execution
model that are used to learn how programs in the
domain theory execute given a diagram. Third, we
define a component to select a multiple-choice an-
swer given a denotation. Finally, we define the su-
pervision oracle used for training.

4.1 Food Web Diagram Questions

We consider the task of answering food web diagram
questions. The input consists of a diagram depicting
a food web, a natural language question and a list
of natural language answer options (Figure 1). The
goal is to select the correct answer option. This task
has many regularities that require global features:

for example, food webs are usually acyclic and cer-
tain animals usually have certain roles (e.g., mice are
herbivores). We have collected and released a data
set for this task (Section 5.1).

We preprocess the diagrams in the data set us-
ing a computer vision system that identifies can-
didate diagram elements (Kembhavi et al., 2016).
This system extracts a collection of text labels (via
OCR), arrows, arrowheads and objects, each with
corresponding scores. It also extracts a collection of
scored linkages between these elements. These ex-
tractions are noisy and contain many discrepancies
such as overlapping text labels and spurious link-
ages. We use these extractions to define a set of can-
didate organisms (using the text labels), and also to
define features of the execution model.

4.2 Domain Theory
The domain theory is a probabilistic program encod-
ing the information to extract from the environment
as well as background knowledge about food webs.
It represents the structure of a food web using two
functions. These functions are predicates that invoke
choose to return either true or false. The execution
model learns to predict which of these values is cor-
rect for each set of arguments given the diagram. It
furthermore has a collection of deterministic func-
tions that encode domain knowledge, including def-
initions of animal roles such as HERBIVORE and a
model of population change causation.

Figure 4.2 shows pseudocode for a portion of
the domain theory. Food webs are represented
using two functions over the extracted text la-
bels: ORGANISM(x) indicates whether the label
x is an organism (as opposed to, e.g., the dia-
gram title); and EATS(x, y). The definitions of
these functions invoke choose while remembering
previously chosen values to avoid double counting
probabilities when executing logical forms such as
ORGANISM(DEER) ∧ ORGANISM(DEER). The re-
membered values are stored in a global variable that
is also used to implement the supervision oracle.
Deterministic functions such as CAUSE are defined
in terms of these learned functions.

The uses of choose in the domain theory create
a tree of possible executions for every logical form.
Figure 4.2 illustrates this tree for the logical form
λf.CAUSE(DECREASE(MICE), f(SNAKES)), which

164

initialize predicate instance variables
from text labels in environment
world = {"mice": undef,

("mice", "snakes"): undef, ...}
def organism(name)

if (world[name] == undef)
world[name] = choose(true, false)

return world[name]

def eats(x, y)
same as organism but with pairs.

entities referenced in the logical form
must be organisms. choose() represents
failure; it returns no values.
def getOrganism(x)

if (organism(x)) return x else choose()

change events are direction/
text label tuples
def decrease(x)

return ("decrease", x)

def cause(e1, e2)
e12 = eats(e1[1], e2[1])
e21 = eats(e2[1], e1[1])
deterministic model with cases. e.g.
if eats(y, x) then (cause (decrease x)
(decrease y)) -> true
return doCause(e1[0], e2[0], e12, e21)

Figure 3: Domain theory pseudocode for diagram question an-
swering.

corresponds to the question “what happens to the
snakes when the mice decrease?” This logical form
is shorthand for the following program:

filter(lambda f.cause(
decrease(getOrganism("mice")),
f(getOrganism("snakes"))),

set(decrease, increase, unchanged))

Specifically, entities such as MICE are created by
calling getOrganism and logical forms with func-
tional types implicitly represent filters over the ap-
propriate argument type. Executing this program
first applies the filter predicate to decrease. Next,
it evaluates getOrganism("mice"), which calls
organism and encounters the first call to choose.
This call is shown as the first branch of the tree in
Figure 4.2. The successful branch proceeds to eval-
uate getOrganism("snakes"), shown as the sec-
ond branch. Finally, the successful branch evaluates
cause, which calls eats twice, resulting in the final
two branches. The value returned by each branch is
determined by the causation model which performs

organism(mice)

fail organism(snakes)

fail eats(mice,snakes)

eats(snakes,mice)

{unch.} {dec.}

eats(snakes,mice)

{inc.} {}

false true

false true

false

false true

true

false true

Figure 4: Tree of possible executions for the logical form
λf.CAUSE(DECREASE(MICE), f(SNAKES)). Each path from
root to leaf represents a single execution that returns the indi-
cated denotation or fails, and each internal node represents a
nondeterministic choice made with choose.

some deterministic logic on the truth values of the
two eats relations.

4.3 Execution Features
The execution model uses three sets of features: in-
stance features, predicate features, and denotation
features. Instance features treat each predicate in-
stance independently, while the remainder are global
features of multiple predicate instances and the log-
ical form. We provide a complete listing of features
in an online appendix.

Instance features fire whenever an execution
chooses a truth value for a predicate instance. These
features are similar to the per-predicate-instance fea-
tures used in prior work to produce a distribution
over possible worlds. For ORGANISM(x), our fea-
tures are the vision model’s extraction score for x
and indicator features for the number of tokens in
x. For EATS(x, y), our features are various combi-
nations of the vision model’s scores for arrows that
may connect the text labels x and y.

Predicate features fire based on the global as-
signment of truth values to all instances of a single
predicate. The features for ORGANISM count oc-
currences of overlapping text labels among true in-
stances. The features for EATS include cycle count
features for various cycle lengths and arrow reuse
features. The cycle count features help the model
learn that food webs are typically, but not always,
acyclic and the arrow reuse features aim to prevent
the model from predicting two different EATS in-
stances on the basis of a single arrow.

165

Denotation features fire on the return value of an
execution. There are two kinds of denotation fea-
tures: size features that count the number of entities
in denotations of various types and denotation ele-
ment features for specific logical forms. The sec-
ond kind of feature can be used to learn that the de-
notation of λx.HERBIVORE(x) is likely to contain
MOUSE, but unlikely to contain WOLF.

4.4 Answer Selection

P 3 predicts a distribution over denotations for each
question, which for our problem must be mapped
to a distribution over multiple choice answers. An-
swer selection performs this task using string match
heuristics and an LSTM (Hochreiter and Schmidhu-
ber, 1997). The string match heuristics score each
answer option given a denotation then select the
highest scoring answer, abstaining in the case of a
tie. The score computation depends on the denota-
tion’s type. If the denotation is a set of entities, the
score is an approximate count of the number of enti-
ties in the denotation mentioned in the answer using
a fuzzy string match. If the denotation is a set of
change events, the score is a fuzzy match of both the
change direction and the animal name. If the denota-
tion is a number, string matching is straightforward.
Applying these heuristics and marginalizing out de-
notations yields a distribution over answer options.

A limitation of the above approach is that it does
not directly incorporate linguistic prior knowledge
about likely answers. For example, “snake” is usu-
ally a good answer to “what eats mice?” regardless
of the diagram. Such knowledge is known to be es-
sential for visual question answering (Antol et al.,
2015; Andreas et al., 2016b) and important in our
task as well. We incorporate this knowledge in a
standard way, by training a neural network on ques-
tion/answer pairs (without the diagram) and combin-
ing its predictions with the string match heuristics
above. The network is a sequence LSTM that is ap-
plied to the question concatenated with each answer
option a to produce a 50-dimensional vector va for
each answer. The distribution over answers is the
softmax of the inner product of these vectors with
a learned parameter vector w. For simplicity, we
combine these two components using a 50/50 mix
of their answer distributions.

4.5 Supervision Oracle

The supervision oracle for diagram question answer-
ing combines supervision of both answers and envi-
ronment interpretations. We assume that each dia-
gram has been labeled with a food web. An exe-
cution is correct if and only if (1) all of the chosen
values in the global variable encoding the food web
are consistent with the labeled food web, and (2)
string match answer selection applied to its denota-
tion chooses the correct answer. The first constraint
guarantees that every logical form has at most one
correct execution for any given diagram.

5 Evaluation

Our evaluation compares P 3 to both possible worlds
and neural network approaches on our data set of
food web diagram questions. An ablation study
demonstrates that both sets of global features im-
prove accuracy. Finally, we demonstrate P 3’s gen-
erality by applying it to a previously-published data
set, obtaining state-of-the-art results.

Code, data and supplementary material for this
paper are available at: http://www.allenai.

org/paper-appendix/emnlp2016-p3

5.1 FOODWEBS Data Set

FOODWEBS consists of ∼500 food web diagrams
and ∼5000 questions designed to imitate actual
questions encountered on 8th grade science exams.
The train/validation/test sets contain ∼300/100/100
diagrams and their corresponding questions. The
data set has three kinds of annotations in addition to
the correct answer for each question. First, each di-
agram is annotated with the food web that it depicts
using ORGANISM and EATS. Second, each diagram
has predictions from a vision system for various dia-
gram elements such as arrows and text labels (Kem-
bhavi et al., 2016). These are noisy predictions, not
ground truth. Finally, each question is annotated by
the authors with a logical form (or null if its mean-
ing is not representable in the domain theory). These
logical forms are not used to train P 3 but are useful
to measure per-component error.

We collected FOODWEBS by using a crowdsourc-
ing process to expand a collection of real exam ques-
tions. First, we collected 89 questions from 4th and
8th grade exams and 500 food web diagrams us-

166

ing an image search engine. Second, we generated
questions for these diagrams using Mechanical Turk.
Workers were shown a diagram and a real question
for inspiration and asked to write a new question
and its answer options. We validated each gener-
ated question by asking 3 workers to answer it, dis-
carding questions where at least 2 did not choose the
correct answer. We also manually corrected any am-
biguous (e.g., two answer options are correct) and
poorly-formatted (e.g., two answer options have the
same letter) questions. The final data set has high
quality: a human domain expert correctly answered
95 out of 100 randomly-sampled questions.

5.2 Baseline Comparison

Our first experiment compares P 3 with several base-
lines for situated question answering. The first base-
line, WORLDS, is a possible worlds model based on
Malinowski and Fritz (2014). This baseline learns
a semantic parser P (`, t|q) and a distribution over
food webs P (w|v), then evaluates ` on w to pro-
duce a distribution over denotations. This model is
implemented by independently training P 3’s CCG
parser (on question/answer pairs and labeled food
webs) and a possible-worlds execution model (on la-
beled food webs). The CCG lexicon for both P 3 and
WORLDS was generated by applying PAL (Krishna-
murthy, 2016) to the same data. Both models select
answers as described in Section 4.4.

We also compared P 3 to several neural network
baselines. The first baseline, LSTM, is the text-
only answer selection model described in Section
4.4. The second baseline, VQA, is a neural net-
work for visual question answering. This model
represents each image as a vector by using the fi-
nal layer of a pre-trained VGG19 model (Simonyan
and Zisserman, 2014) and applying a single fully-
connected layer. It scores answer options by using
the answer selection LSTM to encode question/an-
swer pairs, then computing a dot product between
the text and image vectors. This model is somewhat
limited because VGG features are unlikely to encode
important diagram structure, such as the content of
text labels. Our third baseline, DQA, is a neural net-
work that rectifies this limitation (Kembhavi et al.,
2016). It encodes the diagram predictions from the
vision system as vectors and attends to them using
the LSTM-encoded question vector to select an an-

Accuracy
Model Accuracy (Unseen Organisms)

P 3 69.1 57.7
WORLDS 63.6 50.8
LSTM 60.3 34.7
VQA 56.5 36.8
DQA 59.3 33.0

Random 25.2 25.2

Table 1: Accuracy of P 3 and several baselines on the FOOD-
WEBS test set and a modified test set with unseen organisms.

Model Accuracy ∆

P 3 69.1
-LSTM 59.8 -9.3
-LSTM -denotation 55.8 -13.3
-LSTM -denotation -predicate 52.4 -16.7

Table 2: Test set accuracy of P 3 removing LSTM answer se-
lection (Section 4.4), denotation features and predicate features
(Section 4.3).

swer. This model is trained with question/answer
pairs and diagram parses, which is roughly compa-
rable to the supervision used to train P 3.

Table 5.2 compares the accuracy of P 3 to these
baselines. Accuracy is the fraction of questions an-
swered correctly. LSTM performs well on this data
set, suggesting that many questions can be answered
without using the image. This result is consistent
with results on visual question answering (Antol
et al., 2015). The other neural network models
have similar performance to LSTM, whereas both
WORLDS and P 3 outperform it. We also find that
P 3 outperforms WORLDS likely due to its global
features, which we investigate in the next section.

Given these results, we hypothesized that the neu-
ral models were largely memorizing common pat-
terns in the text and were not able to interpret the
diagram. We tested this hypothesis by running each
model on a test set with unseen organisms created by
reversing the organism names in every question and
diagram (Table 5.2, right column). As expected, the
accuracy of LSTM is considerably reduced on this
data set. VQA and DQA again perform similarly
to LSTM, which is consistent with our hypothesis.
In contrast, we find that the accuracies of WORLDS

and P 3 are only slightly reduced, which is consistent
with superior diagram interpretation abilities but in-
effective LSTM answer selection.

167

5.3 Ablation Study

We performed an ablation study to further under-
stand the impact of LSTM answer selection and
global features. Table 5.2 shows the accuracy of
P 3 trained without these components. We find that
LSTM answer selection improves accuracy by 9
points, as expected due to the importance of linguis-
tic prior knowledge. Global features improve accu-
racy by 7 points, which is roughly comparable to the
delta between P 3 and WORLDS in Table 5.2.

5.4 Component Error Analysis

Our third experiment analyses sources of error by
training and evaluating P 3 while providing the gold
logical form, food web, or both as input. Table
5.5 shows the accuracy of these three models. The
final entry shows the maximum accuracy possible
given our domain theory and answer selection. The
larger accuracy improvement with gold food webs
suggests that the execution model is responsible for
more error than semantic parsing, though both com-
ponents contribute.

5.5 SCENE Experiments

Our final experiment applies P 3 to the SCENE data
set of Krishnamurthy and Kollar (2013). In this data
set, the input is a natural language expression, such
as “blue mug to the left of the monitor,” and the
output is the set of objects in an image that the ex-
pression denotes. The images are annotated with a
bounding box for each candidate object. The data
set includes a domain theory that was automatically
generated by creating a category and/or relation per
word based on its part of speech. It also includes a
CCG lexicon and image features. We use these re-
sources, adding predicate and denotation features.

Table 5.5 compares P 3 to prior work on SCENE.
The evaluation metric is exact match accuracy be-
tween the predicted and labeled sets of objects. We
consider three supervision conditions: QA trains
with question/answer pairs, QA+E further includes
labeled environments, and QA+E+LF further in-
cludes labeled logical forms. We trained P 3 in the
first two conditions, while prior work trained in the
first and third conditions. KK2013 is a possible
worlds model with a max-margin training objective.
P 3 slightly outperforms in the QA condition and P 3

Model Accuracy ∆

P 3 69.1
+ gold logical form 75.1 +6.0
+ gold food web 82.3 +13.2
+ both 91.6 +22.5

Table 3: Accuracy of P 3 when trained and evaluated with la-
beled logical forms, food webs, or both.

Supervision
Model QA QA+E QA+E+LF

P 3 68 75 –
KK2013 67 – 70

Table 4: Accuracy on the SCENE data set. KK2013 results are
from Krishnamurthy and Kollar (2013).

trained with labeled environments outperforms prior
work trained with additional logical form labels.

6 Conclusion

Parsing to Probabilistic Programs (P 3) is a novel
model for situated question answering that jointly
reasons about question and environment interpreta-
tions using background knowledge to produce an-
swers. P 3 uses a domain theory – a probabilistic
program – to define the information to be extracted
from the environment and background knowledge.
A semantic parser maps questions to logical forms in
this theory, which are probabilistic programs whose
possible executions represent possible interpreta-
tions of the environment. An execution model scores
these executions given features of the environment.
Both the semantic parser and execution model are
jointly trained in a loglinear model, which thereby
learns to both parse questions and interpret environ-
ments. Importantly, the model includes global fea-
tures of the logical form and executions, which help
the model avoid implausible interpretations. We
demonstrate P 3 on a challenging new data set of
5000 science diagram questions, where it outper-
forms several competitive baselines.

Acknowledgments

We gratefully acknowledge Minjoon Seo, Mike Sal-
vato and Eric Kolve for their implementation help,
Isaac Cowhey and Carissa Schoenick for their help
with the data, and Oren Etzioni, Peter Clark, Matt
Gardner, Hannaneh Hajishirzi, Mike Lewis, and
Jonghyun Choi for their comments.

168

References

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016a. Deep compositional question an-
swering with neural module networks. In CVPR.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016b. Learning to compose neural net-
works for question answering. In NAACL.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual question answer-
ing. In International Conference on Computer Vision
(ICCV).

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping in-
structions to actions. Transactions of the Association
for Computational Linguistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad Huang,
Peter Clark, and Christopher D. Manning. 2014.
Modeling biological processes for reading comprehen-
sion. In Proceedings of EMNLP.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettlemoyer.
2015. Scalable semantic parsing with partial ontolo-
gies. In Proceedings of the 2015 Association for Com-
putational Linguistics.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493–552.

Peter Clark and Oren Etzioni. 2016. My computer is an
honor student - but how intelligent is it? standardized
tests as a measure of ai. AI Magazine, 37:5–12.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna
Rohrbach, Trevor Darrell, and Marcus Rohrbach.
2016. Multimodal compact bilinear pooling for
visual question answering and visual grounding.
arXiv:1606.01847.

Noah D Goodman and Andreas Stuhlmüller. 2014. The
Design and Implementation of Probabilistic Program-
ming Languages. http://dippl.org. Accessed: 2016-2-
25.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M.
Roy, Keith Bonawitz, and Joshua B. Tenenbaum.

2008. Church: A language for generative models. In
Uncertainty in Artificial Intelligence.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Thomas M. Howard, Istvan Chung, Oron Propp,
Matthew R. Walter, and Nicholas Roy. 2014a. Effi-
cient natural language interfaces for assistive robots.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) Workshop on Rehabilita-
tion and Assistive Robotics, September.

Thomas M Howard, Stefanie Tellex, and Nicholas Roy.
2014b. A natural language planner interface for mo-
bile manipulators. In 2014 IEEE International Con-
ference on Robotics and Automation (ICRA).

Aniruddha Kembhavi, Mike Salvato, Eric Kolve,
Min Joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. In Euro-
pean Conference on Computer Vision (ECCV).

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas
Roy. 2010. Toward understanding natural language
directions. In Proceedings of the 5th ACM/IEEE In-
ternational Conference on Human-Robot Interaction.

Jayant Krishnamurthy and Thomas Kollar. 2013. Jointly
learning to parse and perceive: Connecting natural lan-
guage to the physical world. Transactions of the Asso-
ciation of Computational Linguistics – Volume 1.

Jayant Krishnamurthy and Tom M. Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning.

Jayant Krishnamurthy and Tom M. Mitchell. 2015.
Learning a compositional semantics for freebase with
an open predicate vocabulary. Transactions of the As-
sociation for Computational Linguistics, 3:257–270.

Jayant Krishnamurthy. 2016. Probabilistic models for
learning a semantic parser lexicon. In NAACL.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional semantics.
In Proceedings of the Association for Computational
Linguistics.

Mateusz Malinowski and Mario Fritz. 2014. A multi-
world approach to question answering about real-
world scenes based on uncertain input. In Advances
in Neural Information Processing Systems.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz.
2015. Ask your neurons: A neural-based approach to

169

answering questions about images. In International
Conference on Computer Vision.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint
model of language and perception for grounded at-
tribute learning. In Proceedings of the 29th Interna-
tional Conference on Machine Learning.

John McCarthy. 1963. A basis for a mathematical the-
ory of computation. In Computer Programming and
Formal Systems.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: A data-driven parser-generator for dependency
parsing. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguis-
tics.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. Transactions of the Association for Computa-
tional Linguistics.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Et-
zioni, and Clint Malcolm. 2015. Solving geometry
problems: Combining text and diagram interpretation.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew Walter, Ashis Banerjee, Seth Teller, and
Nicholas Roy. 2011. Understanding natural language
commands for robotic navigation and mobile manipu-
lation. In AAAI Conference on Artificial Intelligence.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question Answering
on Freebase via Relation Extraction and Textual Ev-
idence. In Proceedings of the Association for Compu-
tational Linguistics (ACL 2016).

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and
Alexander J. Smola. 2015. Stacked attention net-
works for image question answering. arXiv preprint
arXiv:1511.02274.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

John M. Zelle and Raymond J. Mooney. 1993. Learning
semantic grammars with constructive inductive logic
programming. In Proceedings of the 11th National
Conference on Artificial Intelligence.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
UAI ’05, Proceedings of the 21st Conference in Un-
certainty in Artificial Intelligence.

170

