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Abstract

Relation classification is an important re-
search arena in the field of natural lan-
guage processing (NLP). In this paper, we
present SDP-LSTM, a novel neural net-
work to classify the relation of two enti-
ties in a sentence. Our neural architecture
leverages the shortest dependency path
(SDP) between two entities; multichan-
nel recurrent neural networks, with long
short term memory (LSTM) units, pick
up heterogeneous information along the
SDP. Our proposed model has several dis-
tinct features: (1) The shortest dependency
paths retain most relevant information (to
relation classification), while eliminating
irrelevant words in the sentence. (2) The
multichannel LSTM networks allow ef-
fective information integration from het-
erogeneous sources over the dependency
paths. (3) A customized dropout strategy
regularizes the neural network to allevi-
ate overfitting. We test our model on the
SemEval 2010 relation classification task,
and achieve an F1-score of 83.7%, higher
than competing methods in the literature.

1 Introduction

Relation classification is an important NLP task.
It plays a key role in various scenarios, e.g., in-
formation extraction (Wu and Weld, 2010), ques-
tion answering (Yao and Van Durme, 2014), med-
ical informatics (Wang and Fan, 2014), ontol-
ogy learning (Xu et al., 2014), etc. The aim
of relation classification is to categorize into pre-
defined classes the relations between pairs of
marked entities in given texts. For instance, in
the sentence “A trillion gallons of [water]e1 have
been poured into an empty [region]e2 of outer
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space,” the entities water and region are of rela-
tion Entity-Destination(e1, e2).

Traditional relation classification approaches
rely largely on feature representation (Kambhatla,
2004), or kernel design (Zelenko et al., 2003;
Bunescu and Mooney, 2005). The former method
usually incorporates a large set of features; it is
difficult to improve the model performance if the
feature set is not very well chosen. The latter ap-
proach, on the other hand, depends largely on the
designed kernel, which summarizes all data infor-
mation. Deep neural networks, emerging recently,
provide a way of highly automatic feature learning
(Bengio et al., 2013), and have exhibited consid-
erable potential (Zeng et al., 2014; dos Santos et
al., 2015). However, human engineering—that is,
incorporating human knowledge to the network’s
architecture—is still important and beneficial.

This paper proposes a new neural network,
SDP-LSTM, for relation classification. Our model
utilizes the shortest dependency path (SDP) be-
tween two entities in a sentence; we also design a
long short term memory (LSTM)-based recurrent
neural network for information processing. The
neural architecture is mainly inspired by the fol-
lowing observations.

• Shortest dependency paths are informative
(Fundel et al., 2007; Chen et al., 2014). To
determine the two entities’ relation, we find it
mostly sufficient to use only the words along
the SDP: they concentrate on most relevant
information while diminishing less relevant
noise. Figure 1 depicts the dependency parse
tree of the aforementioned sentence. Words
along the SDP form a trimmed phrase (gal-
lons of water poured into region) of the orig-
inal sentence, which conveys much informa-
tion about the target relation. Other words,
such as a, trillion, outer space, are less infor-
mative and may bring noise if not dealt with
properly.
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• Direction matters. Dependency trees are a
kind of directed graph. The dependency re-
lation between into and region is PREP; such
relation hardly makes any sense if the di-
rected edge is reversed. Moreover, the enti-
ties’ relation distinguishes its directionality,
that is, r(a, b) differs from r(b, a), for a same
given relation r and two entities a, b. There-
fore, we think it necessary to let the neu-
ral model process information in a direction-
sensitive manner. Out of this consideration,
we separate an SDP into two sub-paths, each
from an entity to the common ancestor node.
The extracted features along the two sub-
paths are concatenated to make final classi-
fication.

• Linguistic information helps. For exam-
ple, with prior knowledge of hyponymy, we
know “water is a kind of substance.” This
is a hint that the entities, water and region,
are more of Entity-Destination rela-
tion than, say, Communication-Topic.
To gather heterogeneous information along
SDP, we design a multichannel recurrent neu-
ral network. It makes use of information
from various sources, including words them-
selves, POS tags, WordNet hypernyms, and
the grammatical relations between governing
words and their children.

For effective information propagation and inte-
gration, our model leverages LSTM units during
recurrent propagation. We also customize a new
dropout strategy for our SDP-LSTM network to
alleviate the problem of overfitting. To the best
of our knowledge, we are the first to use LSTM-
based recurrent neural networks for the relation
classification task.

We evaluate our proposed method on the
SemEval 2010 relation classification task, and
achieve an F1-score of 83.7%, higher than com-
peting methods in the literature.

In the rest of this paper, we review related work
in Section 2. In Section 3, we describe our SDP-
LSTM model in detail. Section 4 presents quan-
titative experimental results. Finally, we have our
conclusion in Section 5.

2 Related Work

Relation classification is a widely studied task
in the NLP community. Various existing meth-

poured

gallons have been into

trillion of [region]

A [water] an empty of

space

outer

e1

e2

Figure 1: The dependency parse tree correspond-
ing to the sentence “A trillion gallons of water
have been poured into an empty region of outer
space.” Red lines indicate the shortest dependency
path between entities water and region. An edge
a → b refers to a being governed by b. Depen-
dency types are labeled by the parser, but not pre-
sented in the figure for clarity.

ods mainly fall into three classes: feature-based,
kernel-based, and neural network-based.

In feature-based approaches, different sets of
features are extracted and fed to a chosen classifier
(e.g., logistic regression). Generally, three types of
features are often used. Lexical features concen-
trate on the entities of interest, e.g., entities per se,
entity POS, entity neighboring information. Syn-
tactic features include chunking, parse trees, etc.
Semantic features are exemplified by the concept
hierarchy, entity class, entity mention. Kamb-
hatla (2004) uses a maximum entropy model to
combine these features for relation classification.
However, different sets of handcrafted features are
largely complementary to each other (e.g., hyper-
nyms versus named-entity tags), and thus it is hard
to improve performance in this way (GuoDong et
al., 2005).

Kernel-based approaches specify some measure
of similarity between two data samples, with-
out explicit feature representation. Zelenko et
al. (2003) compute the similarity of two trees by
utilizing their common subtrees. Bunescu and
Mooney (2005) propose a shortest path depen-
dency kernel for relation classification. Its main
idea is that the relation strongly relies on the de-
pendency path between two given entities. Wang
(2008) provides a systematic analysis of several
kernels and show that relation extraction can bene-
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fit from combining convolution kernel and syntac-
tic features. Plank and Moschitti (2013) introduce
semantic information into kernel methods in ad-
dition to considering structural information only.
One potential difficulty of kernel methods is that
all data information is completely summarized by
the kernel function (similarity measure), and thus
designing an effective kernel becomes crucial.

Deep neural networks, emerging recently, can
learn underlying features automatically, and have
attracted growing interest in the literature. Socher
et al. (2011) propose a recursive neural network
(RNN) along sentences’ parse trees for sentiment
analysis; such model can also be used to clas-
sify relations (Socher et al., 2012). Hashimoto et
al. (2013) explicitly weight phrases’ importance
in RNNs to improve performance. Ebrahimi and
Dou (2015) rebuild an RNN on the dependency
path between two marked entities. Zeng et al.
(2014) explore convolutional neural networks, by
which they utilize sequential information of sen-
tences. dos Santos et al. (2015) also use the convo-
lutional network; besides, they propose a ranking
loss function with data cleaning, and achieve the
state-of-the-art result in SemEval-2010 Task 8.

In addition to the above studies, which mainly
focus on relation classification approaches and
models, other related research trends include in-
formation extraction from Web documents in a
semi-supervised manner (Bunescu and Mooney,
2007; Banko et al., 2007), dealing with small
datasets without enough labels by distant super-
vision techniques (Mintz et al., 2009), etc.

3 The Proposed SDP-LSTM Model

In this section, we describe our SDP-LSTM model
in detail. Subsection 3.1 delineates the overall ar-
chitecture of our model. Subsection 3.2 presents
the rationale of using SDPs. Four different infor-
mation channels along the SDP are explained in
Subsection 3.3. Subsection 3.4 introduces the re-
current neural network with long short term mem-
ory, which is built upon the dependency path. Sub-
section 3.5 customizes a dropout strategy for our
network to alleviate overfitting. We finally present
our training objective in Subsection 3.6.

3.1 Overview

Figure 2 depicts the overall architecture of our
SDP-LSTM network.

First, a sentence is parsed to a dependency tree

by the Stanford parser;1 the shortest dependency
path (SDP) is extracted as the input of our net-
work. Along the SDP, four different types of
information—referred to as channels—are used,
including the words, POS tags, grammatical rela-
tions, and WordNet hypernyms. (See Figure 2a.)
In each channel, discrete inputs, e.g., words, are
mapped to real-valued vectors, called embeddings,
which capture the underlying meanings of the in-
puts.

Two recurrent neural networks (Figure 2b) pick
up information along the left and right sub-paths
of the SDP, respecitvely. (The path is separated by
the common ancestor node of two entities.) Long
short term memory (LSTM) units are used in the
recurrent networks for effective information prop-
agation. A max pooling layer thereafter gathers
information from LSTM nodes in each path.

The pooling layers from different channels are
concatenated, and then connected to a hidden
layer. Finally, we have a softmax output layer for
classification. (See again Figure 2a.)

3.2 The Shortest Dependency Path

The dependency parse tree is naturally suitable for
relation classification because it focuses on the ac-
tion and agents in a sentence (Socher et al., 2014).
Moreover, the shortest path between entities, as
discussed in Section 1, condenses most illuminat-
ing information for entities’ relation.

We also observe that the sub-paths, separated by
the common ancestor node of two entities, provide
strong hints for the relation’s directionality. Take
Figure 1 as an example. Two entities water and
region have their common ancestor node, poured,
which separates the SDP into two parts:

[water]e1 → of→ gallons→ poured

and
poured← into← [region]e2

The first sub-path captures information of e1,
whereas the second sub-path is mainly about
e2. By examining the two sub-paths sepa-
rately, we know e1 and e2 are of relation
Entity-Destination(e1, e2), rather than
Entity-Destination(e2, e1).

Following the above intuition, we design
two recurrent neural networks, which propagate

1http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 2: (a) The overall architecture of SDP-LSTM. (b) One channel of the recurrent neural networks
built upon the shortest dependency path. The channels are words, part-of-speech (POS) tags, grammatical
relations (abbreviated as GR in the figure), and WordNet hypernyms.

bottom-up from the entities to their common an-
cestor. In this way, our model is direction-
sensitive.

3.3 Channels

We make use of four types of information along
the SDP for relation classification. We call them
channels as these information sources do not inter-
act during recurrent propagation. Detailed channel
descriptions are as follows.

• Word representations. Each word in a given
sentence is mapped to a real-valued vector by
looking up in a word embedding table. Un-
supervisedly trained on a large corpus, word
embeddings are thought to be able to well
capture words’ syntactic and semantic infor-
mation (Mikolov et al., 2013b).

• Part-of-speech tags. Since word embed-
dings are obtained on a generic corpus of a
large scale, the information they contain may
not agree with a specific sentence. We deal
with this problem by allying each input word
with its POS tag, e.g., noun, verb, etc.
In our experiment, we only take into use a
coarse-grained POS category, containing 15
different tags.

• Grammatical relations. The dependency
relations between a governing word and its
children makes a difference in meaning. A
same word pair may have different depen-
dency relation types. For example, “beats
nsubj−−−→ it” is distinct from “beats

dobj−−−→ it.”
Thus, it is necessary to capture such gram-

matical relations in SDPs. In our experi-
ment, grammatical relations are grouped into
19 classes, mainly based on a coarse-grained
classification (De Marneffe et al., 2006).

• WordNet hypernyms. As illustrated in Sec-
tion 1, hyponymy information is also useful
for relation classification. (Details are not re-
peated here.) To leverage WordNet hyper-
nyms, we use a tool developed by Ciaramita
and Altun (2006).2 The tool assigns a hy-
pernym to each word, from 41 predefined
concepts in WordNet, e.g., noun.food,
verb.motion, etc. Given its hypernym,
each word gains a more abstract concept,
which helps to build a linkage between dif-
ferent but conceptual similar words.

As we can see, POS tags, grammatical rela-
tions, and WordNet hypernyms are also discrete
(like words per se). However, no prevailing em-
bedding learning method exists for POS tags, say.
Hence, we randomly initialize their embeddings,
and tune them in a supervised fashion during train-
ing. We notice that these information sources con-
tain much fewer symbols, 15, 19, and 41, than the
vocabulary size (greater than 25,000). Hence, we
believe our strategy of random initialization is fea-
sible, because they can be adequately tuned during
supervised training.

3.4 Recurrent Neural Network with Long
Short Term Memory Units

The recurrent neural network is suitable for mod-
eling sequential data by nature, as it keeps a hid-

2http://sourceforge.net/projects/supersensetag
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element-wise multiplication. ∼: activation func-
tion.

den state vector h, which changes with input data
at each step accordingly. We use the recurrent net-
work to gather information along each sub-path in
the SDP (Figure 2b).

The hidden state ht, for the t-th word in the
sub-path, is a function of its previous state ht−1

and the current word xt. Traditional recurrent net-
works have a basic interaction, that is, the input is
linearly transformed by a weight matrix and non-
linearly squashed by an activation function. For-
mally, we have

ht = f(Winxt +Wrecht−1 + bh)

where Win and Wrec are weight matrices for the
input and recurrent connections, respectively. bh
is a bias term for the hidden state vector, and fh a
non-linear activation function (e.g., tanh).

One problem of the above model is known
as gradient vanishing or exploding. The train-
ing of neural networks requires gradient back-
propagation. If the propagation sequence (path) is
too long, the gradient may probably either grow, or
decay, exponentially, depending on the magnitude
of Wrec. This leads to the difficulty of training.

Long short term memory (LSTM) units are pro-
posed in Hochreiter (1998) to overcome this prob-
lem. The main idea is to introduce an adaptive gat-
ing mechanism, which decides the degree to which
LSTM units keep the previous state and memo-
rize the extracted features of the current data in-
put. Many LSTM variants have been proposed in
the literature. We adopt in our method a variant

introduced by Zaremba and Sutskever (2014), also
used in Zhu et al. (2015).

Concretely, the LSTM-based recurrent neural
network comprises four components: an input gate
it, a forget gate ft, an output gate ot, and a mem-
ory cell ct (depicted in Figure 3 and formalized
through Equations 1–6 as bellow).

The three adaptive gates it, ft, and ot depend
on the previous state ht−1 and the current input
xt (Equations 1–3). An extracted feature vector
gt is also computed, by Equation 4, serving as the
candidate memory cell.

it = σ(Wi ·xt + Ui ·ht−1 + bi) (1)

ft = σ(Wf ·xt + Uf ·ht−1 + bf ) (2)

ot = σ(Wo ·xt + Uo ·ht−1 + bo) (3)

gt = tanh(Wg ·xt + Ug ·ht−1 + bg) (4)

The current memory cell ct is a combination of
the previous cell content ct−1 and the candidate
content gt, weighted by the input gate it and forget
gate ft, respectively. (See Equation 5 below.)

ct = it ⊗ gt + ft ⊗ ct−1 (5)

The output of LSTM units is the the recur-
rent network’s hidden state, which is computed by
Equation 6 as follows.

ht = ot ⊗ tanh(ct) (6)

In the above equations, σ denotes a sigmoid
function; ⊗ denotes element-wise multiplication.

3.5 Dropout Strategies
A good regularization approach is needed to al-
leviate overfitting. Dropout, proposed recently
by Hinton et al. (2012), has been very successful
on feed-forward networks. By randomly omitting
feature detectors from the network during train-
ing, it can obtain less interdependent network units
and achieve better performance. However, the
conventional dropout does not work well with re-
current neural networks with LSTM units, since
dropout may hurt the valuable memorization abil-
ity of memory units.

As there is no consensus on how to drop
out LSTM units in the literature, we try several
dropout strategies for our SDP-LSTM network:

• Dropout embeddings;

• Dropout inner cells in memory units, includ-
ing it, gt, ot, ct, and ht; and
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• Dropout the penultimate layer.

As we shall see in Section 4.2, dropping out
LSTM units turns out to be inimical to our model,
whereas the other two strategies boost in perfor-
mance.

The following equations formalize the dropout
operations on the embedding layers, where D de-
notes the dropout operator. Each dimension in the
embedding vector, xt, is set to zero with a prede-
fined dropout rate.

it = σ(Wi ·D(xt) + Ui ·ht−1 + bi) (7)

ft = σ(Wf ·D(xt) + Uf ·ht−1 + bf ) (8)

ot = σ(Wo ·D(xt) + Uo ·ht−1 + bo) (9)

gt = tanh
(
Wg ·D(xt) + Ug ·ht−1 + bg

)
(10)

3.6 Training Objective

The SDP-LSTM described above propagates in-
formation along a sub-path from an entity to the
common ancestor node (of the two entities). A
max pooling layer packs, for each sub-path, the
recurrent network’s states, h’s, to a fixed vector
by taking the maximum value in each dimension.

Such architecture applies to all channels,
namely, words, POS tags, grammatical relations,
and WordNet hypernyms. The pooling vectors in
these channels are concatenated, and fed to a fully
connected hidden layer. Finally, we add a softmax
output layer for classification. The training objec-
tive is the penalized cross-entropy error, given by

J = −
nc∑
i=1

ti log yi+λ

(
ω∑
i=1

‖Wi‖2F +
υ∑
i=1

‖Ui‖2F
)

where t ∈ Rnc is the one-hot represented ground
truth and y ∈ Rnc is the estimated probability for
each class by softmax. (nc is the number of target
classes.) ‖ · ‖F denotes the Frobenius norm of a
matrix; ω and υ are the numbers of weight matri-
ces (for W ’s and U ’s, respectively). λ is a hyper-
parameter that specifies the magnitude of penalty
on weights. Note that we do not add `2 penalty to
biase parameters.

We pretrained word embeddings by word2vec
(Mikolov et al., 2013a) on the English Wikipedia
corpus; other parameters are initialized randomly.
We apply stochastic gradient descent (with mini-
batch 10) for optimization; gradients are computed
by standard back-propagation. Training details are
further introduced in Section 4.2.

4 Experiments

In this section, we present our experiments in de-
tail. Our implementation is built upon Mou et al.
(2015). Section 4.1 introduces the dataset; Section
4.2 describes hyperparameter settings. In Section
4.3, we compare SDP-LSTM’s performance with
other methods in the literature. We also analyze
the effect of different channels in Section 4.4.

4.1 Dataset
The SemEval-2010 Task 8 dataset is a widely used
benchmark for relation classification (Hendrickx
et al., 2009). The dataset contains 8,000 sentences
for training, and 2,717 for testing. We split 1/10
samples out of the training set for validation.

The target contains 19 labels: 9 directed rela-
tions, and an undirected Other class. The di-
rected relations are list as below.
• Cause-Effect
• Component-Whole
• Content-Container
• Entity-Destination
• Entity-Origin
• Message-Topic
• Member-Collection
• Instrument-Agency
• Product-Producer
In the following are illustrated two sample sen-

tences with directed relations.

[People]e1 have been moving back into
[downtown]e2 .

Financial [stress]e1 is one of the main
causes of [divorce]e2 .

The target labels are Entity-Destination
(e1, e2), and Cause-Effect(e1, e2), respec-
tively.

The dataset also contains an undirected Other
class. Hence, there are 19 target labels in total.
The undirected Other class takes in entities that
do not fit into the above categories, illustrated by
the following example.

A misty [ridge]e1 uprises from the
[surge]e2 .

We use the official macro-averaged F1-score to
evaluate model performance. This official mea-
surement excludes the Other relation. Nonethe-
less, we have no special treatment of Other class
in our experiments, which is typical in other stud-
ies.
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(b) Dropout inner cells of memory units
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(c) Dropout the penultimate layer

Figure 4: F1-scores versus dropout rates. We first evaluate the effect of dropout embeddings (a). Then
the dropout of the inner cells (b) and the penultimate layer (c) is tested with word embeddings being
dropped out by 0.5.

4.2 Hyperparameters and Training Details

This subsection presents hyperparameter tuning
for our model. We set word-embeddings to
be 200-dimensional; POS, WordNet hyponymy,
and grammatical relation embeddings are 50-
dimensional. Each channel of the LSTM network
contains the same number of units as its source
embeddings (either 200 or 50). The penultimate
hidden layer is 100-dimensional. As it is not fea-
sible to perform full grid search for all hyperpa-
rameters, the above values are chosen empirically.

We add `2 penalty for weights with coefficient
10−5, which was chosen by validation from the set
{10−2, 10−3, · · · , 10−7}.

We thereafter validate the proposed dropout
strategies in Section 3.5. Since network units in
different channels do not interact with each other
during information propagation, we herein take
one channel of LSTM networks to assess the ef-
ficacy. Taking the word channel as an example,
we first drop out word embeddings. Then with a
fixed dropout rate of word embeddings, we test the
effect of dropping out LSTM inner cells and the
penultimate units, respectively.

We find that, dropout of LSTM units hurts the
model, even if the dropout rate is small, 0.1,
say (Figure 4b). Dropout of embeddings im-
proves model performance by 2.16% (Figure 4a);
dropout of the penultimate layer further improves
by 0.16% (Figure 4c). This analysis also provides,
for other studies, some clues for dropout in LSTM
networks.

4.3 Results

Table 4 compares our SDT-LSTM with other state-
of-the-art methods. The first entry in the ta-

ble presents the highest performance achieved by
traditional feature engineering. Hendrickx et al.
(2009) leverage a variety of handcrafted features,
and use SVM for classification; they achieve an
F1-score of 82.2%.

Neural networks are first used in this task in
Socher et al. (2012). They build a recursive neural
network (RNN) along a constituency tree for re-
lation classification. They extend the basic RNN
with matrix-vector interaction and achieve an F1-
score of 82.4%.

Zeng et al. (2014) treat a sentence as sequen-
tial data and exploit the convolutional neural net-
work (CNN); they also integrate word position
information into their model. dos Santos et al.
(2015) design a model called CR-CNN; they pro-
pose a ranking-based cost function and elaborately
diminish the impact of the Other class, which is
not counted in the official F1-measure. In this way,
they achieve the state-of-the-art result with the F1-
score of 84.1%. Without such special treatment,
their F1-score is 82.7%.

Yu et al. (2014) propose a Feature-rich Com-
positional Embedding Model (FCM) for relation
classification, which combines unlexicalized lin-
guistic contexts and word embeddings. They
achieve an F1-score of 83.0%.

Our proposed SDT-LSTM model yields an F1-
score of 83.7%. It outperforms existing compet-
ing approaches, in a fair condition of softmax with
cross-entropy error.

It is worth to note that we have also conducted
two controlled experiments: (1) Traditional RNN
without LSTM units, achieving an F1-score of
82.8%; (2) LSTM network over the entire depen-
dency path (instead of two sub-paths), achieving
an F1-score of 82.2%. These results demonstrate
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Classifier Feature set F1

SVM
POS, WordNet, prefixes and other morphological features,

82.2depdency parse, Levin classes, PropBank, FanmeNet,
NomLex-Plus, Google n-gram, paraphrases, TextRunner

RNN
Word embeddings 74.8
Word embeddings, POS, NER, WordNet 77.6

MVRNN
Word embeddings 79.1
Word embeddings, POS, NER, WordNet 82.4

CNN
Word embeddings 69.7
Word embeddings, word position embeddings, WordNet 82.7

Chain CNN Word embeddings, POS, NER, WordNet 82.7

FCM
Word embeddings 80.6
Word embeddings, depedency parsing, NER 83.0

CR-CNN
Word embeddings 82.8†

Word embeddings, position embeddings 82.7
Word embeddings, position embeddings 84.1†

SDP-LSTM
Word embeddings 82.4
Word embeddings, POS embeddings, WordNet embeddings, 83.7
grammar relation embeddings

Table 1: Comparison of relation classification systems. The “†” remark refers to special treatment for
the Other class.

the effectiveness of LSTM and directionality in re-
lation classification.

4.4 Effect of Different Channels

This subsection analyzes how different channels
affect our model. We first used word embeddings
only as a baseline; then we added POS tags, gram-
matical relations, and WordNet hypernyms, re-
spectively; we also combined all these channels
into our models. Note that we did not try the latter
three channels alone, because each single of them
(e.g., POS) does not carry much information.

We see from Table 2 that word embeddings
alone in SDP-LSTM yield a remarkable perfor-
mance of 82.35%, compared with CNNs 69.7%,
RNNs 74.9–79.1%, and FCM 80.6%.

Adding either grammatical relations or Word-
Net hypernyms outperforms other existing meth-
ods (data cleaning not considered here). POS tag-
ging is comparatively less informative, but still
boosts the F1-score by 0.63%.

We notice that, the boosts are not simply added
when channels are combined. This suggests that
these information sources are complementary to
each other in some linguistic aspects. Nonethe-
less, incorporating all four channels further pushes
the F1-score to 83.70%.

Channels F1

Word embeddings 82.35
+ POS embeddings (only) 82.98
+ GR embeddings (only) 83.21
+ WordNet embeddings (only) 83.03
+ POS + GR + WordNet embeddings 83.70

Table 2: Effect of different channels.

5 Conclusion

In this paper, we propose a novel neural network
model, named SDP-LSTM, for relation classifi-
cation. It learns features for relation classifica-
tion iteratively along the shortest dependency path.
Several types of information (word themselves,
POS tags, grammatical relations and WordNet hy-
pernyms) along the path are used. Meanwhile,
we leverage LSTM units for long-range infor-
mation propagation and integration. We demon-
strate the effectiveness of SDP-LSTM by evalu-
ating the model on SemEval-2010 relation clas-
sification task, outperforming existing state-of-art
methods (in a fair condition without data clean-
ing). Our result sheds some light in the relation
classification task as follows.
• The shortest dependency path can be a valu-

able resource for relation classification, cov-
ering mostly sufficient information of target
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relations.
• Classifying relation is a challenging task due

to the inherent ambiguity of natural lan-
guages and the diversity of sentence expres-
sion. Thus, integrating heterogeneous lin-
guistic knowledge is beneficial to the task.
• Treating the shortest dependency path as two

sub-paths, mapping two different neural net-
works, helps to capture the directionality of
relations.
• LSTM units are effective in feature detec-

tion and propagation along the shortest de-
pendency path.
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