
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 715–725,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Corpus-level Fine-grained Entity Typing Using Contextual Information

Yadollah Yaghoobzadeh and Hinrich Schütze
Center for Information and Language Processing

University of Munich, Germany
yadollah@cis.lmu.de

Abstract

This paper addresses the problem of
corpus-level entity typing, i.e., inferring
from a large corpus that an entity is a
member of a class such as “food” or
“artist”. The application of entity typ-
ing we are interested in is knowledge base
completion, specifically, to learn which
classes an entity is a member of. We pro-
pose FIGMENT to tackle this problem.
FIGMENT is embedding-based and com-
bines (i) a global model that scores based
on aggregated contextual information of
an entity and (ii) a context model that first
scores the individual occurrences of an en-
tity and then aggregates the scores. In
our evaluation, FIGMENT strongly out-
performs an approach to entity typing that
relies on relations obtained by an open in-
formation extraction system.

1 Introduction

Natural language understanding (NLU) is not pos-
sible without knowledge about the world – partly
so because world knowledge is needed for many
NLP tasks that must be addressed as part of NLU;
e.g., many coreference ambiguities can only be re-
solved based on world knowledge. It is also true
because most NLU applications combine a vari-
ety of information sources that include both text
sources and knowledge bases; e.g., question an-
swering systems need access to knowledge bases
like gazetteers. Thus, high-quality knowledge
bases are critical for successful NLU.

Unfortunately, most knowledge bases are in-
complete. The effort required to create knowledge
bases is considerable and since the world changes,
it will always continue. Knowledge bases are
therefore always in need of updates and correc-
tions. To address this problem, we present an in-
formation extraction method that can be used for

knowledge base completion. In contrast to most
other work on knowledge base completion, we fo-
cus on fine-grained classification of entities as op-
posed to relations between entities.

The goal of knowledge base completion is to
acquire knowledge in general as opposed to de-
tailed analysis of an individual context or sen-
tence. Therefore, our approach is corpus-level:
We infer the types of an entity by considering the
set of all of its mentions in the corpus. In contrast,
named entity recognition (NER) is context-level or
sentence-level: NER infers the type of an entity
in a particular context. As will be discussed in
more detail in the following sections, the problems
of corpus-level entity typing vs. context/sentence-
level entity typing are quite different. This is
partly because the objectives of optimizing ac-
curacy on the context-level vs. optimizing accu-
racy on the corpus-level are different and partly
because evaluation measures for corpus-level and
context-level entity typing are different.

We define our problem as follows. Let K be a
knowledge base that models a set E of entities, a
set T of fine-grained classes or types and a mem-
bership function m : E × T 7→ {0, 1} such that
m(e, t) = 1 iff entity e has type t. Let C be a large
corpus of text. Then, the problem we address in
this paper is corpus-level entity typing: For a given
pair of entity e and type t determine – based on the
evidence available in C – whether e is a member of
type t (i.e., m(e, t) = 1) or not (i.e., m(e, t) = 0)
and update the membership relation m of K with
this information.

We investigate two approaches to entity typing:
a global model and a context model.

The global model aggregates all contextual in-
formation about an entity e from the corpus and
then based on that, makes a classification deci-
sion on a particular type t – i.e., m(e, t) = 0 vs.
m(e, t) = 1.

The context model first scores each individual

715

context of e as expressing type t or not. A final de-
cision on the value of m(e, t) is then made based
on the distribution of context scores. One diffi-
culty in knowledge base completion based on text
corpora is that it is too expensive to label large
amounts of text for supervised approaches. For
our context model, we address this problem using
distant supervision: we treat all contexts of an en-
tity that can have type t as contexts of type t even
though this assumption will in general be only true
for a subset of these contexts. Thus, as is typi-
cal for distant supervision, the labels are incorrect
in some contexts, but we will show that the label-
ing is good enough to learn a high-quality context
model.

The global model is potentially more robust
since it looks at all the available information at
once. In contrast, the context model has the advan-
tage that it can correctly predict types for which
there are only a small number of reliable contexts.
For example, in a large corpus we are likely to
find a few reliable contexts indicating that “Barack
Obama” is a bestselling author even though this
evidence may be obscured in the global distri-
bution because the vast majority of mentions of
“Obama” do not occur in author contexts.

We implement the global model and the con-
text model as well as a simple combination of
the two and call the resulting system FIGMENT:
FIne-Grained eMbedding-based Entity Typing. A
key feature of FIGMENT is that it makes exten-
sive use of distributed vector representations or
embeddings. We compute embeddings for words
as is standard in a large body of NLP literature,
but we also compute embeddings for entities and
for types. The motivation for using embeddings
in these cases is (i) better generalization and (ii)
more robustness against noise for text types like
web pages. We compare the performance of FIG-
MENT with an approach based on Open Informa-
tion Extraction (OpenIE).

The main contributions of this paper can be
summarized as follows.

• We address the problem of corpus-level en-
tity typing in a knowledge base completion
setting. In contrast to other work that has fo-
cused on learning relations between entities,
we learn types of entities.

• We show that context and global models for
entity typing provide complementary infor-

mation and combining them gives the best re-
sults.

• We use embeddings for words, entities and
types to improve generalization and deal with
noisy input.

• We show that our approach outperforms a
system based on OpenIE relations when the
input corpus consists of noisy web pages.

In the following, we first discuss related work.
Then we motivate our approach and define the
problem setting we adopt. We then introduce our
models in detail and report and analyze experi-
mental results. Finally, we discuss remaining chal-
lenges and possible future work and present our
conclusions.

2 Related work

Named entity recognition (NER) is the task of
detecting and classifying named entities in text.
While most NER systems (e.g., Finkel et al.
(2005)) only consider a small number of entity
classes, recent work has addressed fine-grained
NER (Yosef et al., 2012; Ling and Weld, 2012).
These methods use a variety of lexical and syn-
tactic features to segment and classify entity men-
tions. Some more recent work assumes the seg-
mentation is known and only classifies entity men-
tions. Dong et al. (2015) use distributed repre-
sentations of words in a hybrid classifier to clas-
sify mentions to 20 types. Yogatama et al. (2015)
classify mentions to more fine-grained types by
using different features for mentions and embed-
ding labels in the same space. These methods
as well as standard NER systems try to maxi-
mize correct classification of mentions in individ-
ual contexts whereas we aggregate individual con-
texts and evaluate on accuracy of entity-type as-
signments inferred from the entire corpus. In other
words, their evaluation is sentence-level whereas
ours is corpus-level.

Entity set expansion (ESE) is the problem
of finding entities in a class (e.g., medications)
given a seed set (e.g., {“Ibuprofen”, “Maalox”,
“Prozac”}). The standard solution is pattern-based
bootstrapping (Thelen and Riloff, 2002; Gupta and
Manning, 2014). ESE is different from the prob-
lem we address because ESE starts with a small
seed set whereas we assume that a large number
of examples from a knowledge base (KB) is avail-
able. Initial experiments with the system of Gupta

716

and Manning (2014) showed that it was not per-
forming well for our task – this is not surprising
given that it is designed for a task with properties
quite different from entity typing.

More closely related to our work are the OpenIE
systems NNPLB (Lin et al., 2012) and PEARL
(Nakashole et al., 2013) for fine-grained typing
of unlinkable and emerging entities. Both sys-
tems first extract relation tuples from a corpus and
then type entities based on the tuples they occur
in (where NNPLB only uses the subject position
for typing). To perform typing, NNPLB propa-
gates activation from known members of a class
to other entities whereas PEARL assigns types to
the argument slots of relations. The main differ-
ence to FIGMENT is that we do not rely on re-
lation extraction. In principle, we can make use
of any context, not just subject and object posi-
tions. FIGMENT also has advantages for noisy
text for which relation extraction can be challeng-
ing. This will be demonstrated in our evaluation
on web text. Finally, our emphasis is on making
yes-no decisions about possible types (as opposed
to just ranking possibilities) for all entities (as op-
posed to just emerging or unlinkable entities). Our
premise is that even existing entities in KBs are of-
ten not completely modeled and have entries that
require enhancement. We choose NNPLB as our
baseline.

The fine-grained typing of entities performed
by FIGMENT can be used for knowledge base
completion (KBC). Most KBC systems focus on
relations between entities, not on types as we
do. Some generalize the patterns of relation-
ships within the KB (Nickel et al., 2012; Bordes
et al., 2013) while others use a combination of
within-KB generalization and information extrac-
tion from text (Weston et al., 2013; Socher et al.,
2013; Jiang et al., 2012; Riedel et al., 2013; Wang
et al., 2014). Neelakantan and Chang (2015) ad-
dress entity typing in a way that is similar to FIG-
MENT. Their method is based on KB information,
more specifically entity descriptions in Wikipedia
and Freebase. Thus, in contrast to our approach,
their system is not able to type entities that are not
covered by existing KBs. We infer classes for en-
tities from a large corpus and do not assume that
these entities occur in the KB.

Learning embeddings for words is standard in
a large body of NLP literature (see Baroni et al.
(2014) for an overview). In addition to words, we

also learn embeddings for entities and types. Most
prior work on entity embeddings (e.g., Weston et
al. (2013), Bordes et al. (2013)) and entity and
type embeddings (Zhao et al., 2015) has mainly
used KB information as opposed to text corpora.
Wang et al. (2014) learn embeddings of words and
entities in the same space by replacing Wikipedia
anchors with their corresponding entities. For our
global model, we learn entity embedding in a sim-
ilar way, but on a corpus with automatically anno-
tated entities. For our context model, we learn and
use type embeddings jointly with corpus words
to improve generalization, a novel contribution of
this paper to the best of our knowledge. We learn
all our embeddings using word2vec (Mikolov et
al., 2013).

Our problem can be formulated as multi-
instance multi-label (MIML) learning (Zhou and
Zhang, 2006), similar to the formulation for re-
lation extraction by Surdeanu et al. (2012). In
our problem, each example (entity) can have sev-
eral instances (contexts) and each instance can
have several labels (types). Similar to Zhou and
Zhang (2006)’s work on scene classification, we
also transform MIML into easier tasks. The global
model transforms MIML into a multi-label prob-
lem by merging all instances of an example. The
context model solves the problem by combining
the instance-label scores to example-label scores.

3 Motivation and problem definition

3.1 Freebase

Large scale KBs like Freebase (Bollacker et al.,
2008), YAGO (Suchanek et al., 2007) and Google
knowledge graph are important NLP resources.
Their structure is roughly equivalent to a graph in
which entities are nodes and edges are relations
between entities. Each node is also associated
with one or more semantic classes, called types.
These types are the focus of this paper.

We use Freebase, the largest available KB, in
this paper. In Freebase, an entity can belong to
several classes, e.g., “Barack Obama” is a mem-
ber of 37 types including “US president” and “au-
thor”. One notable type is also defined for each
entity, e.g., “US-president” for “Obama” since it is
regarded as his most prominent characteristic and
the one that would be used to disambiguate refer-
ences to him, e.g., to distinguish him from some-
body else with the same name.

There are about 1500 types in Freebase, or-

717

ganized by domain; e.g., the domain “food” has
types like “food”, “ingredient” and “restaurant”.
Some types like “location” are very general, some
are very fine-grained, e.g., “Vietnamese urban dis-
trict”. There are types that have a large number of
instances like “citytown” and types that have very
few like “camera sensor”. Entities are defined as
instances of types. They can have several types
based on the semantic classes that the entity they
are referring to is a member of – as in the above
example of Barack Obama.

The types are not organized in a strict taxon-
omy even though there exists an included type re-
lationship between types in Freebase. The reason
is that for a user-generated KB it is difficult to
maintain taxonomic consistency. For example, al-
most all instances of “author” are also instances of
“person”, but sometimes organizations author and
publish documents. We follow the philosophy of
Freebase and assume that the types do not have a
hierarchical organization.

3.2 Incompleteness of knowledge base

Even though Freebase is the largest publicly avail-
able KB of its kind, it still has significant coverage
problems; e.g., 78.5% of persons in Freebase do
not have nationality (Min et al., 2013).

This is unavoidable, partly because Freebase is
user-generated, partly because the world changes
and Freebase has to be updated to reflect those
changes. All existing KBs that attempt to model a
large part of the world suffer from this incomplete-
ness problem. Incompleteness is likely to become
an even bigger problem in the future as the number
of types covered by KBs like Freebase increases.
As more and more fine-grained types are added,
achieving good coverage for these new types us-
ing only human editors will become impossible.

The approach we adopt in this paper to address
incompleteness of KBs is extraction of informa-
tion from large text corpora. Text can be argued
to be the main repository of the type of knowledge
represented in KBs, so it is reasonable to attempt
completing them based on text. There is in fact
a significant body of work on corpus-based meth-
ods for extracting knowledge from text; however,
most of it has addressed relation extraction, not
the acquisition of type information – roughly cor-
responding to unary relations (see Section 2). In
this paper, we focus on typing entities.

3.3 Entity linking
The first step in extracting information about en-
tities from text is to reliably identify mentions
of these entities. This problem of entity linking
has some mutual dependencies with entity typing.
Indeed, some recent work shows large improve-
ments when entity typing and linking are jointly
modeled (Ling et al., 2015; Durrett and Klein,
2014). However, there are constraints that are im-
portant for high-performance entity linking, but
that are of little relevance to entity typing. For ex-
ample, there is a large literature on entity linking
that deals with coreference resolution and inter-
entity constraints – e.g., “Naples” is more likely
to refer to a US (resp. an Italian) city in a context
mentioning “Fort Myers” (resp. “Sicily”).

Therefore, we will only address entity typing
in this paper and consider entity linking as an in-
dependent module that provides contexts of en-
tities for FIGMENT. More specifically, we build
FIGMENT on top of the output of an existing en-
tity linking system and use FACC1,1 an automatic
Freebase annotation of ClueWeb (Gabrilovich et
al., 2013). According to the FACC1 distributors,
precision of annotated entities is around 80-85%
and recall is around 70-85%.

3.4 FIGER types
Our goal is fine-grained typing of entities, but
types like “Vietnamese urban district” are too fine-
grained. To create a reliable setup for evaluation
and to make sure that all types have a reasonable
number of instances, we adopt the FIGER type set
(Ling and Weld, 2012) that was created with the
same goals in mind. FIGER consists of 112 tags
and was created in an attempt to preserve the di-
versity of Freebase types while consolidating in-
frequent and unusual types through filtering and
merging. For example, the Freebase types “dish”,
“ingredient”, “food” and “cheese” are mapped to
one type “food”. See (Ling and Weld, 2012) for
a complete list of FIGER types. We use “type” to
refer to FIGER types in the rest of the paper.

4 Global, context and joint models

We address a problem setting in which the fol-
lowings are given: a KB with a set of entities
E, a set of types T and a membership function
m : E × T 7→ {0, 1} such that m(e, t) = 1 iff
entity e has type t; and a large annotated corpus C

1lemurproject.org/clueweb12/FACC1

718

in which mentions of E are linked. As mentioned
before, we use FACC1 as our corpus.

In this problem setting, we address the task of
corpus-level fine-grained entity typing: we want to
infer from the corpus for each pair of entity e and
type t whether m(e, t) = 1 holds, i.e., whether
entity e is a member of type t.

We use three scoring models in FIGMENT:
global model, context model and joint model. The
models return a score S(e, t) for an entity-type
pair (e, t). S(e, t) is an assessment of the extent to
which it is true that the semantic class t contains
e and we learn it by training on a subset of E. The
trained models can be applied to large corpora and
the resulting scores can be used for learning new
types of entities covered in the KB as well as for
typing new or unknown entities – i.e., entities not
covered by the KB. To work for new or unknown
entities, we would need an entity linking system
such as the ones participating in TAC KBP (Mc-
Namee and Dang, 2009) that identifies and clus-
ters mentions of them.

4.1 Global model

The global model (GM) scores possible types of
entity e based on a distributed vector representa-
tion or embedding ~v(e) ∈ Rd of e. ~v(e) can be
learned from the entity-annotated corpus C.

Embeddings of words have been widely used in
different NLP applications. The embedding of a
word is usually derived from the distribution of its
context words. The hypothesis is that words with
similar meanings tend to occur in similar contexts
(Harris, 1954) and therefore cooccur with similar
context words. By extension, the assumption of
our model is that entities with similar types tend
to cooccur with similar context words.

To learn a score function SGM(e, t), we use a
multilayer perceptron (MLP) with one shared hid-
den layer and an output layer that contains, for
each type t in T, a logistic regression classifier that
predicts the probability of t:

SGM(e, t) = Gt

(
tanh

(
Winput~v(e)

))
where Winput ∈ Rh×d is the weight matrix from
~v(e) ∈ Rd to the hidden layer with size h. Gt

is the logistic regression classifier for type t that
is applied on the hidden layer. The shared hid-
den layer is designed to exploit the dependen-
cies among labels. Stochastic gradient descent

(SGD) with AdaGrad (Duchi et al., 2011) and
minibatches are used to learn the parameters.

4.2 Context model
For the context model (CM), we first learn a scor-
ing function Sc2t(c, t) for individual contexts c in
the corpus. Sc2t(c, t) is an assessment of how
likely it is that an entity occurring in context c has
type t. For example, consider the contexts c1 = “he
served SLOT cooked in wine” and c2 = “she loves
SLOT more than anything”. SLOT marks the oc-
currence of an entity and it also shows that we do
not care about the entity mention itself but only its
context. For the type t = “food”, Sc2t(c1, t) is high
whereas Sc2t(c2, t) is low. This example demon-
strates that some contexts of an entity like “beef”
allow specific inferences about its type whereas
others do not. We aim to learn a scoring function
Sc2t that can distinguish these cases.

Based on the context scoring function Sc2t, we
then compute the corpus-level CM scoring func-
tion SCM that takes the scores Sc2t(ci, t) for all
contexts of entity e in the corpus as input and re-
turns a score SCM(e, t) that assesses the appropri-
ateness of t for e. In other words, SCM is:

SCM(e, t) = g(Ue,t) (1)

where Ue,t = {Sc2t(c1, t), . . . , Sc2t(cn, t)} is the
set of scores for t based on the n contexts c1 . . . cn

of e in the corpus. The function g is a sum-
mary function of the distribution of scores, e.g.,
the mean, median or maximum. We use the mean
in this paper.

We now describe how we learn Sc2t. For train-
ing, we need contexts that are labeled with types.
We do not have such a dataset in our problem set-
ting, but we can use the contexts of linked entities
as distantly supervised data. Specifically, assume
that entity e has n types. For each mention of e in
the corpus, we generate a training example with n
labels, one for each of the n types of e.

For training Sc2t, a context c of a mention is
represented as the concatenation of two vectors.
One vector is the average of the embeddings of
the 2l words to the left and right of the mention.
The other vector is the concatenation of the em-
beddings of the 2k words to the left and right of
the mention. E.g., for k = 2 and l = 1 the
context c is represented as the vector: Φ(c) =[
x−2, x−1, x+1, x+2, avg(x−1, x+1)

]
where xi ∈

Rd is the embedding of the context word at posi-
tion i relative to the entity in position 0.

719

We train Sc2t on context representations that
consist of embeddings because our goal is a robust
model that works well on a wide variety of genres,
including noisy web pages. If there are other enti-
ties in the contexts, we first replace them with their
notable type to improve generalization. We learn
word and type embeddings from the corpus C by
replacing train entities with their notable type.

The next step is to score these examples. We use
an MLP similar to the global model to learn Sc2t,
which predicts the probability of type t occurring
in context c:

Sc2t(c, t) = Gt

(
tanh

(
WinputΦ(c)

))
where Φ(c) ∈ Rn is the feature vector of the con-
text c as described above, n = (2k + 1) ∗ d and
Winput ∈ Rh×n is the weight matrix from input to
hidden layer with h units. Again, we use SGD
with AdaGrad and minibatch training.

4.3 Joint model
Global model and context model have comple-
mentary strengths and weaknesses.

The strength of CM is that it is a direct model
of the only source of reliable evidence we have:
the context in which the entity occurs. This is also
the way a human would ordinarily do entity typ-
ing: she would determine if a specific context in
which the entity occurs implies that the entity is,
say, an author or a musician and type it accord-
ingly. The order of words is of critical importance
for the accurate assessment of a context and CM
takes it into account. A well-trained CM will also
work for cases for which GM is not applicable. In
particular, if the KB contains only a small number
of entities of a particular type, but the corpus con-
tains a large number of contexts of these entities,
then CM is more likely to generalize well.

The main weakness of CM is that a large pro-
portion of contexts does not contain sufficient in-
formation to infer all types of the entity; e.g.,
based on our distant supervised training data, we
label every context of “Obama” with “author”,
“politician” and Obama’s other types in the KB.
Thus, CM is trained on a noisy training set that
contains only a relatively small number of infor-
mative contexts.

The main strength of GM is that it bases its de-
cisions on the entire evidence available in the cor-
pus. This makes it more robust. It is also more
efficient to train since its training set is by a factor

of |M | smaller than the training set of CM where
|M | is the average number of contexts per entity.

The disadvantage of GM is that it does not work
well for rare entities since the aggregated repre-
sentation of an entity may not be reliable if it is
based on few contexts. It is also less likely to
work well for non-dominant types of an entity
which might be swamped by dominant types; e.g.,
the author contexts of “Obama” may be swamped
by the politician contexts and the overall context
signature of the entity “Obama” may not contain
enough signal to infer that he is an author. Finally,
methods for learning embeddings like word2vec
are bag-of-word approaches. Therefore, word or-
der information – critical for many typing deci-
sions – is lost.

Since GM and CM models are complementary,
a combination model should work better. We
test this hypothesis for the simplest possible joint
model (JM), which adds the scores of the two in-
dividual models:

SJM(e, t) = SGM(e, t) + SCM(e, t)

5 Experimental setup and results

5.1 Setup
Baseline: Our baseline system is the OpenIE sys-
tem no-noun-phrase-left-behind (NNPLB) by Lin
et al. (2012) (see Section 2). Our reimplementa-
tion performs on a par with published results.2 We
use NNPBL as an alternative way of computing
scores S(e, t). Scores of the four systems we com-
pare – NNPBL, GM, CM, JM – are processed the
same way to perform entity typing (see below).

Corpus: We select a subset of about 7.5 mil-
lion web pages, taken from the first segment of
ClueWeb12,3 from different crawl types: 1 million
Twitter links, 120,000 WikiTravel pages and 6.5
million web pages. This corpus is preprocessed
by eliminating HTML tags, replacing all numbers
with “7” and all web links and email addresses
with “HTTP”, filtering out sentences with length
less than 40 characters, and finally doing a simple
tokenization. We merge the text with the FACC1
annotations. The resulting corpus has 4 billion
tokens and 950,000 distinct entities. We use the
2014-03-09 Freebase data dump as our KB.

2The precision of our implementation on the dataset of
three million relation triples distributed by (Lin et al., 2012) is
60.7% compared to 59.8% and 61% for tail and head entities
reported by Lin et al. (2012).

3http://lemurproject.org/clueweb12

720

Entity datasets: We consider all entities in the
corpus whose notable types can be mapped to one
of the 112 FIGER types, based on the mapping
provided by FIGER. 750,000 such entities form
our set of entities. 10 out of 112 FIGER types have
no entities in this set.4

We run the OpenIE system Reverb (Fader et
al., 2011) to extract relation triples of the form
<subject, relation, object>. Since NNPLB only
considers entities in the subject position, we filter
out triples whose subject is not an entity. The size
of the remaining set of triples is 4,000,000. For
a direct comparison with NNPLB, we divide the
750,000 entities into those that occur in subject po-
sition in one of the extracted triples (about 250,000
subject entities or SE) and those that do not (about
500,000 non-subject entities or NSE). We split SE
50:20:30 into train, dev and test sets. The average
and median number of FIGER types of the training
entities are 1.8 and 2, respectively. We use NSE
to evaluate performance of FIGMENT on entities
that do not occur in subject position.5

Context sampling: For Sc2t, we create train’,
dev’ and test’ sets of contexts that correspond to
train, dev and test sets of entities. Because the
number of contexts is unbalanced for both entities
and types and because we want to accelerate train-
ing and testing, we downsample contexts. For the
set train’, we use the notable type feature of Free-
base: For each type t, we take contexts from the
mentions of those entities whose notable type is t.
Recall, however, that each context is labeled with
all types of its entity – see Section 4.2.

Then if the number of contexts for t is larger
than a minimum, we sample the contexts based on
the number of training entities of t. We set the
minimum to 10,000 and constrain the number of
samples for each t to 20,000. Also, to reduce the
effect of distant supervision, entities with fewer
distinct types are preferred in sampling to provide
discriminative contexts for their notable types. For
test’ and dev’ sets, we sample 300 and 200 random
contexts, respectively, for each entity.

System setup: As the baseline, we apply
NNPLB to the 4 million extracted triples. To learn
entity embeddings for GM, we run word2vec
(skipgram, 200 dimensions, window size 5) on

4The reason is that the FIGER mapping uses Freebase
user-created classes. The 10 missing types are not the notable
type of any entity in Freebase.

5The entity datasets are available at http:
//cistern.cis.lmu.de/figment

a version of the corpus in which entities have
been replaced by their Freebase IDs, based on the
FACC1 annotation. We then train MLP with num-
ber of hidden units h = 200 on the embeddings of
training entities until the error on dev entities stops
decreasing.

Our reasoning for the unsupervised training
setup is that we do not use any information about
the types of entities (e.g., no entities annotated by
humans with types) when we run an unsupervised
algorithm like word2vec. In a real-world appli-
cation of FIGMENT to a new corpus, we would
first run word2vec on the merger of our corpus
and the new corpus, retrain GM on training entities
and finally apply it to entities in the new corpus.
This scenario is simulated by our setup.

Recall that the input to CM consists of 2k unit
embeddings and the average of 2l unit embeddings
where we use the term unit to refer to both words
and types. We set k to 4 and l to 5. To learn em-
beddings for units, we first exclude lines contain-
ing test entities, and then replace each entity with
its notable type. Then, we run word2vec (skip-
gram, 100 dimensions, window size 5) on this new
corpus and learn embeddings for words and types.

Using the embeddings as input representations,
we train Sc2t on train’ until error on dev’ stops de-
creasing. We set the number of hidden units to
300. We then apply the trained scoring function
Sc2t to test’ and get the scores Sc2t(c, t) for test’
contexts. As explained in Section 4.2, we compute
the corpus-level scores SCM(e, t) for each entity by
averaging its context-level scores (see Equation 1).

Ranking evaluation: This evaluation shows
how well the models rank types for entities. The
ranking is based on the scores S(e, t) produced by
the different models and baselines. Similar to the
evaluation performed by Lin et al. (2012), we use
precision at 1 (P@1) and breakeven point (BEP,
Boldrin and Levine (2008)). BEP is F1 at the point
in the ranked list at which precision and recall have
the same value.

Classification evaluation: This evaluation
demonstrates the quality of the thresholded assign-
ment decisions produced by the models. These
measures more directly express how well FIG-
MENT would succeed in enhancing the KB with
new information since for each pair (e, t), we have
to make a binary decision about whether to put it
in the KB or not. We compare our decisions with
the gold KB information.

721

all types head types tail types
NNPLB .092 .246 .066
CM .406 .662 .268
GM .533 .725 .387
JM .545 .734 .407

Table 2: Type macro average F1 for all, head and
tail types

Our evaluation measures are (i) accuracy: an
entity is correct if all its types and no incorrect
types are assigned to it; (ii) micro average: F1

of all type-entity assignment decisions; (iii) entity
macro average F1: F1 of types assigned to an en-
tity, averaged over entities; (iv) type macro aver-
age F1: F1 of entities assigned to a type, averaged
over types.

The assignment decision is made based on
thresholds, one per type, for each S(e, t). We se-
lect the threshold that maximizes F1 of entities as-
signed to the type on dev.

5.2 Results

Table 1 presents results for the ranking evaluation
as well as for the first three measures of the clas-
sification evaluation. MFT is the most frequent
type baseline that ranks types according to their
frequency in train. We also show the results for
head entities (frequency higher than 100) and tail
entities (frequency less than 5). The performance
of the systems is in this order: JM > GM > CM
> NNPLB > MFT.

Table 2 shows the results of the fourth classi-
fication measure, type macro average F1, for all,
head (more than 3000 train entities, 11 types), and
tail (less than 200 train entities, 36 types) types.
The ordering of models for Table 2 is in line with
Table 1: JM > GM > CM > NNPLB > MFT.

We can easily run FIGMENT for non-subject
entities (NSE) exactly the same way we have run
it for subject entities. We test our JM on the 67,000
NSE entities with a frequency of more than 10.
The top ranked type returned for 73.5% of enti-
ties was correct. Thus, due to our ability to deal
with NSE, we can type an additional 50,000 enti-
ties correctly.

6 Analysis

Effect of window size in CM: Table 3 explores
the effect of using different context sizes. Recall
that CM was trained with 2k = 8 for the concatena-

2k 0 2 4 6 8 10 12 14
h 50 100 200 250 300 400 450 450

micro .576 .613 .672 .673 .668 .674 .680 .674
P@1 .663 .685 .687 .718 .694 .744 .722 .742

Table 3: Effect of the context size 2k in CM (2k:
context size, h: number of hidden units in MLP)

tion and 2l = 10 for the average window size. We
change 2k from 0 to 14 while keeping 2l = 10. The
number of hidden units used in each model is also
reported. The table shows that CM can leverage
larger context sizes well.

Poor results of NNPLB: NNPLB is mostly
hampered by Reverb, which did not work well on
the noisy web corpus. As a result, the quality of
the extracted relations – which NNPLB entity typ-
ing is based on – is too low for reliable typing
decisions. The good results of NNPLB on their
non-noisy published relation triples confirm that.
On the three million relation triples, when map-
ping Freebase types to FIGER, P@1 of NNPLB
is .684; when limiting entities to those with more
than 10 relations, the results improve to .776.

GM performs better than CM and JM per-
forms best: The fact that GM outperforms CM
shows that decisions based on one global vector
of an entity work better than aggregating multiple
weak decisions on their contexts. That is clear-
est for tail entities – where one bad context can
highly influence the final decision – and for tail
types, which CM was not able to distinguish from
other similar types. However, the good results of
the simple JM confirm that the score distributions
in CM do help. As an example, consider one of
the test entities that is an “author”. GM and CM
wrongly predict “written work” and “artist”, re-
spectively, but JM correctly outputs “author”.

Errors of CM: Many CM errors are caused by
its simple input representation: it has to learn all
linguistic abstractions that it wants to rely on from
the training set. One manifestation of this problem
is that CM confuses the types “food” and “restau-
rant”. There are only few linguistic contexts in
which entities of these types can be exchanged for
each other. On the other hand, the context words
they cooccur with in a bag-of-words (BOW) sense
are very similar. Thus, this indicates that CM pays
too much attention to BOW information and that
its representation of contexts is limited in terms of
generalization.

722

all entities head entities tail entities
P@1 BEP acc mic mac P@1 BEP acc mic mac P@1 BEP acc mic mac

MFT .101 .406 - - - .111 .410 - - - .097 .394 - - -
NNPLB .365 .480 .000 .099 .096 .378 .503 .000 .114 .109 .368 .474 .000 .086 .084
CM .694 .734 .299 .668 .635 .713 .751 .385 .738 .702 .608 .661 .118 .487 .452
GM .805 .856 .426 .733 .688 .869 .899 .489 .796 .769 .665 .757 .299 .578 .510
JM .816 .860 .435 .743 .699 .874 .900 .500 .803 .776 .688 .764 .306 .601 .532

Table 1: Ranking and classification results for SE entities. P@1 and BEP are ranking measures. Accuracy
(acc), micro (mic) and macro (mac) are classification measures.

Assumptions that result in errors: The per-
formance of all models suffers from a number of
assumptions we made in our training / evaluation
setup that are only approximately true.

The first assumption is that FACC1 is correct.
But it has a precision of only 80-85% and this
caused many errors. An example is the lunar crater
“Buffon” in Freebase, a “location”. Its predicted
type is “athlete” because some FACC1 annotations
of the crater link it to the Italian goalkeeper.

The second assumption of our evaluation setup
is the completeness of Freebase. There are about
2,600 entities with the single type “person” in SE
test. For 62% of the errors on this subset, the top
predicted type is a subtype of person: “author”,
“artist” etc. We manually typed a random subset
of 50 and found that the predicted type is actually
correct for 44 of these entities.

The last assumption is the mapping from Free-
base to FIGER. Some common Freebase types like
“award-winner” are not mapped. This negatively
affects evaluation measures for many entities. On
the other hand, the resulting types do not have a
balanced number of instances. Based on our train-
ing entities, 11 types (e.g., “law”) have less than
50 instances while 26 types (e.g., “software”) have
more than 1000 instances. Even sampling the con-
texts could not resolve this problem and this led to
low performance on tail types.

7 Future work

The performance of FIGMENT is poor for tail
types and entities. We plan to address this in the
future (i) by running FIGMENT on larger corpora,
(ii) by refining the FIGER type set to cover more
Freebase entities, (iii) by exploiting a hierarchy
over types and (iv) by exploring more complex in-
put representations of the context for the CM.

FIGMENT’s context model can in principle be
based on any system that provides entity-type as-

sessment scores for individual contexts. Thus,
as an alternative to our scoring model Sc2t(c, t),
we could use sentence-level entity classification
systems such as FIGER (Ling and Weld, 2012)
and (Yogatama et al., 2015)’s system. These sys-
tems are based on linguistic features different from
the input representation we use, so a comparison
with our embedding-based approach is interesting.
Our assumption is that FIGMENT is more robust
against noise, but investigation is needed.

The components of the version of FIGMENT
we presented, in particular, context model and
global model, do not use features derived from the
mention of an entity. Our assumption was that
such features are less useful for fine-grained en-
tity typing. However, there are clearly some types
for which mention-based features are useful (e.g.,
medications or organizations referred to by abbre-
viations), so we will investigate the usefulness of
such features in the future.

8 Conclusion

We presented FIGMENT, a corpus-level system
that uses contextual information for entity typing.
We designed two scoring models for pairs of en-
tities and types: a global model that scores based
on aggregated context information and a context
model that aggregates the scores of individual con-
texts. We used embeddings of words, entities and
types to represent contextual information. Our
experimental results show that global model and
context model provide complementary informa-
tion for entity typing. We demonstrated that, com-
paring with an OpenIE-based system, FIGMENT
performs well on noisy web pages.

Acknowledgements. Thanks to the anonymous
reviewers for their valuable comments. This work
was supported by Deutsche Forschungsgemein-
schaft (grant DFG SCHU 2246/8-2, SPP 1335).

723

References

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, pages
238–247.

Michele Boldrin and David K. Levine. 2008. Against
intellectual monopoly. Cambridge University Press
Cambridge.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Irreflexive and hierarchical relations as trans-
lations. CoRR, abs/1304.7158.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 1243–1249.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159.

Greg Durrett and Dan Klein. 2014. A joint model
for entity analysis: Coreference, typing, and linking.
TACL, 2:477–490.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2011, 27-31 July 2011, John McIntyre
Conference Centre, Edinburgh, UK, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages
1535–1545.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-local
information into information extraction systems by
gibbs sampling. In ACL 2005, 43rd Annual Meeting
of the Association for Computational Linguistics,
Proceedings of the Conference, 25-30 June 2005,
University of Michigan, USA.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. Facc1: Freebase annotation
of clueweb corpora.

Sonal Gupta and Christopher D. Manning. 2014. Im-
proved pattern learning for bootstrapped entity ex-
traction. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
CoNLL 2014, Baltimore, Maryland, USA, June 26-
27, 2014, pages 98–108.

Zellig S. Harris. 1954. Distributional structure. Word,
10:146–162.

Xueyan Jiang, Volker Tresp, Yi Huang, and Maxi-
milian Nickel. 2012. Link prediction in multi-
relational graphs using additive models. In Pro-
ceedings of the International Workshop on Seman-
tic Technologies meet Recommender Systems & Big
Data, Boston, USA, November 11, 2012, pages 1–
12.

Thomas Lin, Mausam, and Oren Etzioni. 2012. No
noun phrase left behind: Detecting and typing un-
linkable entities. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, EMNLP-CoNLL 2012, July 12-14,
2012, Jeju Island, Korea, pages 893–903.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design challenges for entity linking. TACL, 3:315–
328.

Paul McNamee and Hoa Trang Dang. 2009. Overview
of the tac 2009 knowledge base population track. In
Text Analysis Conference (TAC), volume 17, pages
111–113.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for
relation extraction with an incomplete knowledge
base. In Human Language Technologies: Confer-
ence of the North American Chapter of the Asso-
ciation of Computational Linguistics, Proceedings,
June 9-14, 2013, Westin Peachtree Plaza Hotel, At-
lanta, Georgia, USA, pages 777–782.

Ndapandula Nakashole, Tomasz Tylenda, and Gerhard
Weikum. 2013. Fine-grained semantic typing of
emerging entities. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bul-
garia, Volume 1: Long Papers, pages 1488–1497.

Arvind Neelakantan and Ming-Wei Chang. 2015.
Inferring missing entity type instances for knowl-
edge base completion: New dataset and methods.
In NAACL HLT 2015, The 2015 Conference of
the North American Chapter of the Association for

724

Computational Linguistics: Human Language Tech-
nologies, Denver, Colorado, USA, May 31 - June 5,
2015, pages 515–525.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing YAGO: scalable ma-
chine learning for linked data. In World Wide Web
Conference, pages 271–280.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas.
In Human Language Technologies: Conference of
the North American Chapter of the Association of
Computational Linguistics, Proceedings, June 9-14,
2013, Westin Peachtree Plaza Hotel, Atlanta, Geor-
gia, USA, pages 74–84.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pages 926–934.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, WWW 2007, Banff, Al-
berta, Canada, May 8-12, 2007, pages 697–706.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,
pages 455–465.

Michael Thelen and Ellen Riloff. 2002. A bootstrap-
ping method for learning semantic lexicons using
extraction pattern contexts. In Proceedings of the
ACL-02 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2002, Strouds-
burg, PA, USA, pages 214–221.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly
embedding. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 1591–1601.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A
meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1366–1371.

Dani Yogatama, Daniel Gillick, and Nevena Lazic.
2015. Embedding methods for fine grained entity
type classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL
2015, July 26-31, 2015, Beijing, China, Volume 2:
Short Papers, pages 291–296.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hof-
fart, Marc Spaniol, and Gerhard Weikum. 2012.
HYENA: hierarchical type classification for entity
names. In COLING 2012, 24th International Con-
ference on Computational Linguistics, Proceedings
of the Conference: Posters, 8-15 December 2012,
Mumbai, India, pages 1361–1370.

Yu Zhao, Zhiyuan Liu, and Maosong Sun. 2015. Rep-
resentation learning for measuring entity relatedness
with rich information. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 1412–1418.

Zhi-Hua Zhou and Min-Ling Zhang. 2006. Multi-
instance multi-label learning with application to
scene classification. In Advances in Neural In-
formation Processing Systems 19, Proceedings of
the Twentieth Annual Conference on Neural In-
formation Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006, pages
1609–1616.

725

