
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1170–1179,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Feature Noising for Log-linear Structured Prediction
Sida I. Wang∗, Mengqiu Wang∗, Stefan Wager†,

Percy Liang, Christopher D. Manning
Department of Computer Science, †Department of Statistics

Stanford University, Stanford, CA 94305, USA
{sidaw, mengqiu, pliang, manning}@cs.stanford.edu

swager@stanford.edu

Abstract

NLP models have many and sparse features,
and regularization is key for balancing model
overfitting versus underfitting. A recently re-
popularized form of regularization is to gen-
erate fake training data by repeatedly adding
noise to real data. We reinterpret this noising
as an explicit regularizer, and approximate it
with a second-order formula that can be used
during training without actually generating
fake data. We show how to apply this method
to structured prediction using multinomial lo-
gistic regression and linear-chain CRFs. We
tackle the key challenge of developing a dy-
namic program to compute the gradient of the
regularizer efficiently. The regularizer is a
sum over inputs, so we can estimate it more
accurately via a semi-supervised or transduc-
tive extension. Applied to text classification
and NER, our method provides a >1% abso-
lute performance gain over use of standard L2

regularization.

1 Introduction

NLP models often have millions of mainly sparsely
attested features. As a result, balancing overfitting
versus underfitting through good weight regulariza-
tion remains a key issue for achieving optimal per-
formance. Traditionally, L2 or L1 regularization is
employed, but these simple types of regularization
penalize all features in a uniform way without tak-
ing into account the properties of the actual model.

An alternative approach to regularization is to
generate fake training data by adding random noise
to the input features of the original training data. In-
tuitively, this can be thought of as simulating miss-
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ing features, whether due to typos or use of a pre-
viously unseen synonym. The effectiveness of this
technique is well-known in machine learning (Abu-
Mostafa, 1990; Burges and Schölkopf, 1997; Simard
et al., 2000; Rifai et al., 2011a; van der Maaten
et al., 2013), but working directly with many cor-
rupted copies of a dataset can be computationally
prohibitive. Fortunately, feature noising ideas often
lead to tractable deterministic objectives that can be
optimized directly. Sometimes, training with cor-
rupted features reduces to a special form of reg-
ularization (Matsuoka, 1992; Bishop, 1995; Rifai
et al., 2011b; Wager et al., 2013). For example,
Bishop (1995) showed that training with features
that have been corrupted with additive Gaussian
noise is equivalent to a form of L2 regularization in
the low noise limit. In other cases it is possible to
develop a new objective function by marginalizing
over the artificial noise (Wang and Manning, 2013;
van der Maaten et al., 2013).

The central contribution of this paper is to show
how to efficiently simulate training with artificially
noised features in the context of log-linear struc-
tured prediction, without actually having to gener-
ate noised data. We focus on dropout noise (Hinton
et al., 2012), a recently popularized form of artifi-
cial feature noise where a random subset of features
is omitted independently for each training example.
Dropout and its variants have been shown to out-
perform L2 regularization on various tasks (Hinton
et al., 2012; Wang and Manning, 2013; Wan et al.,
2013). Dropout is is similar in spirit to feature bag-
ging in the deliberate removal of features, but per-
forms the removal in a preset way rather than ran-
domly (Bryll et al., 2003; Sutton et al., 2005; Smith
et al., 2005).
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Our approach is based on a second-order approx-
imation to feature noising developed among others
by Bishop (1995) and Wager et al. (2013), which al-
lows us to convert dropout noise into a form of adap-
tive regularization. This method is suitable for struc-
tured prediction in log-linear models where second
derivatives are computable. In particular, it can be
used for multiclass classification with maximum en-
tropy models (a.k.a., softmax or multinomial logis-
tic regression) and for the sequence models that are
ubiquitous in NLP, via linear chain Conditional Ran-
dom Fields (CRFs).

For linear chain CRFs, we additionally show how
we can use a noising scheme that takes advantage
of the clique structure so that the resulting noising
regularizer can be computed in terms of the pair-
wise marginals. A simple forward-backward-type
dynamic program can then be used to compute the
gradient tractably. For ease of implementation and
scalability to semi-supervised learning, we also out-
line an even faster approximation to the regularizer.
The general approach also works in other clique
structures in addition to the linear chain when the
clique marginals can be computed efficiently.

Finally, we extend feature noising for structured
prediction to a transductive or semi-supervised set-
ting. The regularizer induced by feature noising
is label-independent for log-linear models, and so
we can use unlabeled data to learn a better regu-
larizer. NLP sequence labeling tasks are especially
well suited to a semi-supervised approach, as input
features are numerous but sparse, and labeled data
is expensive to obtain but unlabeled data is abundant
(Li and McCallum, 2005; Jiao et al., 2006).

Wager et al. (2013) showed that semi-supervised
dropout training for logistic regression captures a
similar intuition to techniques such as entropy regu-
larization (Grandvalet and Bengio, 2005) and trans-
ductive SVMs (Joachims, 1999), which encourage
confident predictions on the unlabeled data. Semi-
supervised dropout has the advantage of only us-
ing the predicted label probabilities on the unlabeled
data to modulate an L2 regularizer, rather than re-
quiring more heavy-handed modeling of the unla-
beled data as in entropy regularization or expecta-
tion regularization (Mann and McCallum, 2007).

In experimental results, we show that simulated
feature noising gives more than a 1% absolute boost

yt yt+1yt−1

f (yt, xt )

f (yt−1, yt ) f (yt, yt+1)

yt yt+1yt−1

f (yt, xt )

f (yt−1, yt ) f (yt, yt+1)

Figure 1: An illustration of dropout feature noising
in linear-chain CRFs with only transition features
and node features. The green squares are node fea-
tures f(yt, xt), and the orange squares are edge fea-
tures f(yt−1, yt). Conceptually, given a training ex-
ample, we sample some features to ignore (generate
fake data) and make a parameter update. Our goal is
to train with a roughly equivalent objective, without
actually sampling.

in performance over L2 regularization, on both text
classification and an NER sequence labeling task.

2 Feature Noising Log-linear Models

Consider the standard structured prediction problem
of mapping some input x ∈ X (e.g., a sentence)
to an output y ∈ Y (e.g., a tag sequence). Let
f(y, x) ∈ Rd be the feature vector, θ ∈ Rd be the
weight vector, and s = (s1, . . . , s|Y|) be a vector of
scores for each output, with sy = f(y, x) · θ. Now
define a log-linear model:

p(y | x; θ) = exp{sy −A(s)}, (1)

where A(s) = log
∑

y exp{sy} is the log-partition
function. Given an example (x,y), parameter esti-
mation corresponds to choosing θ to maximize p(y |
x; θ).

The key idea behind feature noising is to artifi-
cially corrupt the feature vector f(y, x) randomly
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into some f̃(y, x) and then maximize the average
log-likelihood of y given these corrupted features—
the motivation is to choose predictors θ that are ro-
bust to noise (missing words for example). Let s̃,
p̃(y | x; θ) be the randomly perturbed versions cor-
responding to f̃(y, x). We will also assume the
feature noising preserves the mean: E[f̃(y, x)] =
f(y, x), so that E[s̃] = s. This can always be done
by scaling the noised features as described in the list
of noising schemes.

It is useful to view feature noising as a form of
regularization. Since feature noising preserves the
mean, the feature noising objective can be written as
the sum of the original log-likelihood plus the dif-
ference in log-normalization constants:

E[log p̃(y | x; θ)] = E[s̃y −A(s̃)] (2)

= log p(y | x; θ)−R(θ, x), (3)

R(θ, x)
def
= E[A(s̃)]−A(s). (4)

Since A(·) is convex, R(θ, x) is always positive by
Jensen’s inequality and can therefore be interpreted
as a regularizer. Note that R(θ, x) is in general non-
convex.

Computing the regularizer (4) requires summing
over all possible noised feature vectors, which can
imply exponential effort in the number of features.
This is intractable even for flat classification. Fol-
lowing Bishop (1995) and Wager et al. (2013), we
approximate R(θ, x) using a second-order Taylor
expansion, which will allow us to work with only
means and covariances of the noised features. We
take a quadratic approximation of the log-partition
function A(·) of the noised score vector s̃ around
the the unnoised score vector s:

A(s̃) u A(s) +∇A(s)>(s̃− s) (5)

+
1

2
(s̃− s)>∇2A(s)(s̃− s).

Plugging (5) into (4), we obtain a new regularizer
Rq(θ, x), which we will use as an approximation to
R(θ, x):

Rq(θ, x) =
1

2
E[(s̃− s)>∇2A(s)(s̃− s)] (6)

=
1

2
tr(∇2A(s) Cov(s̃)). (7)

This expression still has two sources of potential in-
tractability, a sum over an exponential number of
noised score vectors s̃ and a sum over the |Y| com-
ponents of s̃.

Multiclass classification If we assume that the
components of s̃ are independent, then Cov(s̃) ∈
R|Y|×|Y| is diagonal, and we have

Rq(θ, x) =
1

2

∑
y∈Y

µy(1− µy) Var[s̃y], (8)

where the mean µy
def
= pθ(y | x) is the model prob-

ability, the variance µy(1−µy) measures model un-
certainty, and

Var[s̃y] = θ>Cov[f̃(y, x)]θ (9)

measures the uncertainty caused by feature noising.1

The regularizerRq(θ, x) involves the product of two
variance terms, the first is non-convex in θ and the
second is quadratic in θ. Note that to reduce the reg-
ularization, we will favor models that (i) predict con-
fidently and (ii) have stable scores in the presence of
feature noise.

For multiclass classification, we can explicitly
sum over each y ∈ Y to compute the regularizer,
but this will be intractable for structured prediction.

To specialize to multiclass classification for the
moment, let us assume that we have a separate
weight vector for each output y applied to the same
feature vector g(x); that is, the score sy = θy · g(x).
Further, assume that the components of the noised
feature vector g̃(x) are independent. Then we can
simplify (9) to the following:

Var[s̃y] =
∑
j

Var[gj(x)]θ
2
yj . (10)

Noising schemes We now give some examples of
possible noise schemes for generating f̃(y, x) given
the original features f(y, x). This distribution af-
fects the regularization through the variance term
Var[s̃y].

• Additive Gaussian:

f̃(y, x) = f(y, x) + ε, where ε ∼
N (0, σ2Id×d).

1Here, we are using the fact that first and second derivatives
of the log-partition function are the mean and variance.
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In this case, the contribution to the regularizer
from noising is Var[s̃y] =

∑
j σ

2θ2
yj .

• Dropout:

f̃(y, x) = f(y, x) � z, where � takes the el-
ementwise product of two vectors. Here, z is
a vector with independent components which
has zi = 0 with probability δ, zi = 1

1−δ with
probability 1 − δ. In this case, Var[s̃y] =∑

j
gj(x)

2δ
1−δ θ2

yj .

• Multiplicative Gaussian:

f̃(y, x) = f(y, x) � (1 + ε), where
ε ∼ N (0, σ2Id×d). Here, Var[s̃y] =∑

j gj(x)
2σ2θ2

yj . Note that under our second-
order approximation Rq(θ, x), the multiplica-
tive Gaussian and dropout schemes are equiva-
lent, but they differ under the original regular-
izer R(θ, x).

2.1 Semi-supervised learning

A key observation (Wager et al., 2013) is that
the noising regularizer R (8), while involving a
sum over examples, is independent of the output
y. This suggests estimating R using unlabeled
data. Specifically, if we have n labeled examples
D = {x1, x2, . . . , xn} and m unlabeled examples
Dunlabeled = {u1, u2, . . . , un}, then we can define a
regularizer that is a linear combination the regular-
izer estimated on both datasets, with α tuning the
tradeoff between the two:

R∗(θ,D,Dunlabeled) (11)

def
=

n

n+ αm

( n∑
i=1

R(θ, xi) + α
m∑
i=1

R(θ, ui)
)
.

3 Feature Noising in Linear-Chain CRFs

So far, we have developed a regularizer that works
for all log-linear models, but—in its current form—
is only practical for multiclass classification. We
now exploit the decomposable structure in CRFs to
define a new noising scheme which does not require
us to explicitly sum over all possible outputs y ∈ Y .
The key idea will be to noise each local feature vec-
tor (which implicitly affects many y) rather than
noise each y independently.

Assume that the output y = (y1, . . . , yT ) is a se-
quence of T tags. In linear chain CRFs, the feature
vector f decomposes into a sum of local feature vec-
tors gt:

f(y, x) =
T∑
t=1

gt(yt−1, yt, x), (12)

where gt(a, b, x) is defined on a pair of consecutive
tags a, b for positions t− 1 and t.

Rather than working with a score sy for each
y ∈ Y , we define a collection of local scores
s = {sa,b,t}, for each tag pair (a, b) and posi-
tion t = 1, . . . , T . We consider noising schemes
which independently set g̃t(a, b, x) for each a, b, t.
Let s̃ = {s̃a,b,t} be the corresponding collection of
noised scores.

We can write the log-partition function of these
local scores as follows:

A(s) = log
∑
y∈Y

exp

{
T∑
t=1

syt−1,yt,t

}
. (13)

The first derivative yields the edge marginals under
the model, µa,b,t = pθ(yt−1 = a, yt = b | x), and
the diagonal elements of the Hessian ∇2A(s) yield
the marginal variances.

Now, following (7) and (8), we obtain the follow-
ing regularizer:

Rq(θ, x) =
1

2

∑
a,b,t

µa,b,t(1− µa,b,t) Var[s̃a,b,t],

(14)

where µa,b,t(1− µa,b,t) measures model uncertainty
about edge marginals, and Var[s̃a,b,t] is simply the
uncertainty due to noising. Again, minimizing the
regularizer means making confident predictions and
having stable scores under feature noise.

Computing partial derivatives So far, we have
defined the regularizer Rq(θ, x) based on feature
noising. In order to minimize Rq(θ, x), we need to
take its derivative.

First, note that logµa,b,t is the difference of a re-
stricted log-partition function and the log-partition
function. So again by properties of its first deriva-
tive, we have:

∇ logµa,b,t = Epθ(y|x,yt−1=a,yt=b)[f(y, x)] (15)

− Epθ(y|x)[f(y, x)].
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Using the fact that ∇µa,b,t = µa,b,t∇ logµa,b,t and
the fact that Var[s̃a,b,t] is a quadratic function in θ,
we can simply apply the product rule to derive the
final gradient∇Rq(θ, x).

3.1 A Dynamic Program for the Conditional
Expectation

A naive computation of the gradient ∇Rq(θ, x) re-
quires a full forward-backward pass to compute
Epθ(y|yt−1=a,yt=b,x)[f(y, x)] for each tag pair (a, b)
and position t, resulting in a O(K4T 2) time algo-
rithm.

In this section, we reduce the running time to
O(K2T ) using a more intricate dynamic program.
By the Markov property of the CRF, y1:t−2 only de-
pends on (yt−1, yt) through yt−1 and yt+1:T only
depends on (yt−1, yt) through yt.

First, it will be convenient to define the partial
sum of the local feature vector from positions i to
j as follows:

Gi:j =

j∑
t=i

gt(yt−1, yt, x). (16)

Consider the task of computing the feature expecta-
tion Epθ(y|yt−1=a,yt=b)[f(y, x)] for a fixed (a, b, t).
We can expand this quantity into∑
y:yt−1=a,yt=b

pθ(y−(t−1:t) | yt−1 = a, yt = b)G1:T .

Conditioning on yt−1, yt decomposes the sum into
three pieces:∑
y:yt−1=a,yt=b

[gt(yt−1 = a, yt = b, x) + F at +Bb
t ],

where

F at =
∑

y1:t−2

pθ(y1:t−2 | yt−1 = a)G1:t−1, (17)

Bb
t =

∑
yt+1:T

pθ(yt+1:T | yt = b)Gt+1:T , (18)

are the expected feature vectors summed over the
prefix and suffix of the tag sequence, respectively.
Note that F at and Bb

t are analogous to the forward
and backward messages of standard CRF inference,
with the exception that they are vectors rather than
scalars.

We can compute these messages recursively in the
standard way. The forward recurrence is

F at =
∑
b

pθ(yt−2 = b | yt−1 = a)[
gt(yt−2 = b, yt−1 = a, x) + F bt−1

]
,

and a similar recurrence holds for the backward mes-
sages Bb

t .
Running the resulting dynamic program takes
O(K2Tq) time and requires O(KTq) storage,
where K is the number of tags, T is the sequence
length and q is the number of active features. Note
that this is the same order of dependence as normal
CRF training, but there is an additional dependence
on the number of active features q, which makes
training slower.

4 Fast Gradient Computations

In this section, we provide two ways to further im-
prove the efficiency of the gradient calculation based
on ignoring long-range interactions and based on ex-
ploiting feature sparsity.

4.1 Exploiting Feature Sparsity and
Co-occurrence

In each forward-backward pass over a training ex-
ample, we need to compute the conditional ex-
pectations for all features active in that example.
Naively applying the dynamic program in Section 3
is O(K2T ) for each active feature. The total com-
plexity has to factor in the number of active fea-
tures, q. Although q only scales linearly with sen-
tence length, in practice this number could get large
pretty quickly. For example, in the NER tagging ex-
periments (cf. Section 5), the average number of
active features per token is about 20, which means
q ' 20T ; this term quickly dominates the compu-
tational costs. Fortunately, in sequence tagging and
other NLP tasks, the majority of features are sparse
and they often co-occur. That is, some of the ac-
tive features would fire and only fire at the same lo-
cations in a given sequence. This happens when a
particular token triggers multiple rare features.

We observe that all indicator features that only
fired once at position t have the same conditional ex-
pectations (and model expectations). As a result, we
can collapse such a group of features into a single
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feature as a preprocessing step to avoid computing
identical expectations for each of the features. Do-
ing so on the same NER tagging experiments cuts
down q/T from 20 to less than 5, and gives us a 4
times speed up at no loss of accuracy. The exact
same trick is applicable to the general CRF gradient
computation as well and gives similar speedup.

4.2 Short-range interactions
It is also possible to speed up the method by re-
sorting to approximate gradients. In our case, the
dynamic program from Section 3 together with the
trick described above ran in a manageable amount
of time. The techniques developed here, however,
could prove to be useful on larger tasks.

Let us rewrite the quantity we want to compute
slightly differently (again, for all a, b, t):

T∑
i=1

Epθ(y|x,yt−1=a,yt=b)[gi(yi−1, yi, x)]. (19)

The intuition is that conditioned on yt−1, yt, the
terms gi(yi−1, yi, x) where i is far from t will be
close to Epθ(y|x)[gi(yi−1, yi, x)].

This motivates replacing the former with the latter
whenever |i− k| ≥ r where r is some window size.
This approximation results in an expression which
only has to consider the sum of the local feature vec-
tors from i−r to i+r, which is captured byGi−r:i+r:

Epθ(y|yt−1=a,yt=b,x)[f(y, x)]− Epθ(y|x)[f(y, x)]

≈ Epθ(y|yt−1=a,yt=b,x)[Gt−r:t+r] (20)

− Epθ(y|x)[Gt−r:t+r].

We can further approximate this last expression by
letting r = 0, obtaining:

gt(a, b, x)− Epθ(y|x)[gt(yt−1, yt, x)]. (21)

The second expectation can be computed from the
edge marginals.

The accuracy of this approximation hinges on the
lack of long range dependencies. Equation (21)
shows the case of r = 0; this takes almost no addi-
tional effort to compute. However, for some of our
experiments, we observed a 20% difference with the
real derivative. For r > 0, the computational savings
are more limited, but the bounded-window method
is easier to implement.

Dataset q d K Ntrain Ntest

CoNLL 20 437906 5 204567 46666
SANCL 5 679959 12 761738 82405
20news 81 62061 20 15935 3993
RCV14 76 29992 4 9625/2 9625/2
R21578 47 18933 65 5946 2347

TDT2 130 36771 30 9394/2 9394/2

Table 1: Description of datasets. q: average number
of non-zero features per example, d: total number
of features, K: number of classes to predict, Ntrain:
number of training examples, Ntest: number of test
examples.

5 Experiments

We show experimental results on the CoNLL-2003
Named Entity Recognition (NER) task, the SANCL
Part-of-speech (POS) tagging task, and several doc-
ument classification tasks.2 The datasets used are
described in Table 1. We used standard splits when-
ever available; otherwise we split the data at ran-
dom into a test set and a train set of equal sizes
(RCV14, TDT2). CoNLL has a development set
of size 51578, which we used to tune regulariza-
tion parameters. The SANCL test set is divided into
3 genres, namely answers, newsgroups, and
reviews, each of which has a corresponding de-
velopment set.3

5.1 Multiclass Classification

We begin by testing our regularizer in the simple
case of classification where Y = {1, 2, . . . ,K} for
K classes. We examine the performance of the nois-
ing regularizer in both the fully supervised setting as
well as the transductive learning setting.

In the transductive learning setting, the learner
is allowed to inspect the test features at train time
(without the labels). We used the method described
in Section 2.1 for transductive dropout.

2The document classification data are available
at http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets and http://www.cad.
zju.edu.cn/home/dengcai/Data/TextData.html

3The SANCL dataset has two additional genres—emails and
weblogs—that we did not use, as we did not have access to
development sets for these genres.
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Dataset K None L2 Drop +Test
CoNLL 5 78.03 80.12 80.90 81.66
20news 20 81.44 82.19 83.37 84.71
RCV14 4 95.76 95.90 96.03 96.11
R21578 65 92.24 92.24 92.24 92.58

TDT2 30 97.74 97.91 98.00 98.12

Table 2: Classification performance and transduc-
tive learning results on some standard datasets.
None: use no regularization, Drop: quadratic ap-
proximation to the dropout noise (8), +Test: also use
the test set to estimate the noising regularizer (11).

5.1.1 Semi-supervised Learning with Feature
Noising

In the transductive setting, we used test data
(without labels) to learn a better regularizer. As an
alternative, we could also use unlabeled data in place
of the test data to accomplish a similar goal; this
leads to a semi-supervised setting.

To test the semi-supervised idea, we use the same
datasets as above. We split each dataset evenly into
3 thirds that we use as a training set, a test set and an
unlabeled dataset. Results are given in Table 3.

In most cases, our semi-supervised accuracies are
lower than the transductive accuracies given in Table
2; this is normal in our setup, because we used less
labeled data to train the semi-supervised classifier
than the transductive one.4

5.1.2 The Second-Order Approximation
The results reported above all rely on the ap-

proximate dropout regularizer (8) that is based on a
second-order Taylor expansion. To test the validity
of this approximation we compare it to the Gaussian
method developed by Wang and Manning (2013) on
a two-class classification task.

We use the 20-newsgroups alt.atheism vs
soc.religion.christian classification task;
results are shown in Figure 2. There are 1427 exam-

4The CoNNL results look somewhat surprising, as the semi-
supervised results are better than the transductive ones. The
reason for this is that the original CoNLL test set came from a
different distributions than the training set, and this made the
task more difficult. Meanwhile, in our semi-supervised experi-
ment, the test and train sets are drawn from the same distribu-
tion and so our semi-supervised task is actually easier than the
original one.

Dataset K L2 Drop +Unlabeled
CoNLL 5 91.46 91.81 92.02
20news 20 76.55 79.07 80.47
RCV14 4 94.76 94.79 95.16
R21578 65 90.67 91.24 90.30

TDT2 30 97.34 97.54 97.89

Table 3: Semisupervised learning results on some
standard datasets. A third (33%) of the full dataset
was used for training, a third for testing, and the rest
as unlabeled.
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Figure 2: Effect of λ in λ‖θ‖22 on the testset perfor-
mance. Plotted is the test set accuracy with logis-
tic regression as a function of λ for the L2 regular-
izer, Gaussian dropout (Wang and Manning, 2013)
+ additional L2, and quadratic dropout (8) + L2 de-
scribed in this paper. The default noising regularizer
is quite good, and additional L2 does not help. No-
tice that no choice of λ in L2 can help us combat
overfitting as effectively as (8) without underfitting.

ples with 22178 features, split evenly and randomly
into a training set and a test set.

Over a broad range of λ values, we find that
dropout plus L2 regularization performs far better
than using just L2 regularization for any value of
λ. We see that Gaussian dropout appears to per-
form slightly better than the quadratic approxima-
tion discussed in this paper. However, our quadratic
approximation extends easily to the multiclass case
and to structured prediction in general, while Gaus-
sian dropout does not. Thus, it appears that our ap-
proximation presents a reasonable trade-off between
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computational efficiency and prediction accuracy.

5.2 CRF Experiments
We evaluate the quadratic dropout regularizer in
linear-chain CRFs on two sequence tagging tasks:
the CoNLL 2003 NER shared task (Tjong Kim Sang
and De Meulder, 2003) and the SANCL 2012 POS
tagging task (Petrov and McDonald, 2012) .

The standard CoNLL-2003 English shared task
benchmark dataset (Tjong Kim Sang and De Meul-
der, 2003) is a collection of documents from
Reuters newswire articles, annotated with four en-
tity types: Person, Location, Organization, and
Miscellaneous. We predicted the label sequence
Y = {LOC, MISC, ORG, PER, O}T without con-
sidering the BIO tags.

For training the CRF model, we used a compre-
hensive set of features from Finkel et al. (2005) that
gives state-of-the-art results on this task. A total
number of 437906 features were generated on the
CoNLL-2003 training dataset. The most important
features are:
• The word, word shape, and letter n-grams (up to

6gram) at current position
• The prediction, word, and word shape of the pre-

vious and next position
• Previous word shape in conjunction with current

word shape
• Disjunctive word set of the previous and next 4

positions
• Capitalization pattern in a 3 word window
• Previous two words in conjunction with the word

shape of the previous word
• The current word matched against a list of name

titles (e.g., Mr., Mrs.)
The Fβ=1 results are summarized in Table 4. We

obtain a 1.6% and 1.1% absolute gain on the test
and dev set, respectively. Detailed results are bro-
ken down by precision and recall for each tag and are
shown in Table 6. These improvements are signifi-
cant at the 0.1% level according to the paired boot-
strap resampling method of 2000 iterations (Efron
and Tibshirani, 1993).

For the SANCL (Petrov and McDonald, 2012)
POS tagging task, we used the same CRF framework
with a much simpler set of features
• word unigrams: w−1, w0, w1

• word bigram: (w−1, w0) and (w0, w1)

Fβ=1 None L2 Drop
Dev 89.40 90.73 91.86
Test 84.67 85.82 87.42

Table 4: CoNLL summary of results. None: no reg-
ularization, Drop: quadratic dropout regularization
(14) described in this paper.

Fβ=1 None L2 Drop
newsgroups

Dev 91.34 91.34 91.47
Test 91.44 91.44 91.81

reviews
Dev 91.97 91.95 92.10
Test 90.70 90.67 91.07

answers
Dev 90.78 90.79 90.70
Test 91.00 90.99 91.09

Table 5: SANCL POS tagging Fβ=1 scores for the 3
official evaluation sets.

We obtained a small but consistent improvement
using the quadratic dropout regularizer in (14) over
the L2-regularized CRFs baseline.

Although the difference on SANCL is small,
the performance differences on the test sets of
reviews and newsgroups are statistically sig-
nificant at the 0.1% level. This is also interesting
because here is a situation where the features are ex-
tremely sparse, L2 regularization gave no improve-
ment, and where regularization overall matters less.

6 Conclusion

We have presented a new regularizer for learning
log-linear models such as multiclass logistic regres-
sion and conditional random fields. This regularizer
is based on a second-order approximation of fea-
ture noising schemes, and attempts to favor mod-
els that predict confidently and are robust to noise
in the data. In order to apply our method to CRFs,
we tackle the key challenge of dealing with feature
correlations that arise in the structured prediction
setting in several ways. In addition, we show that
the regularizer can be applied naturally in the semi-
supervised setting. Finally, we applied our method
to a range of different datasets and demonstrate con-
sistent gains over standard L2 regularization. Inves-
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Precision Recall Fβ=1

LOC 91.47% 91.12% 91.29
MISC 88.77% 81.07% 84.75
ORG 85.22% 84.08% 84.65
PER 92.12% 93.97% 93.04

Overall 89.84% 88.97% 89.40

(a) CoNLL dev. set with no regularization

Precision Recall Fβ=1

92.05% 92.84% 92.44
90.51% 83.52% 86.87
88.35% 85.23% 86.76
93.12% 94.19% 93.65
91.36% 90.11% 90.73

(b) CoNLL dev. set with L2 reg-
ularization

Precision Recall Fβ=1

93.59% 92.69% 93.14
93.99% 81.47% 87.28
92.48% 84.61% 88.37
94.81% 95.11% 94.96
93.85% 89.96% 91.86

(c) CoNLL dev. set with dropout
regularization

Tag Precision Recall Fβ=1

LOC 87.33% 84.47% 85.87
MISC 78.93% 77.12% 78.02
ORG 78.70% 79.49% 79.09
PER 88.82% 93.11% 90.92

Overall 84.28% 85.06% 84.67

(d) CoNLL test set with no regularization

Precision Recall Fβ=1

87.96% 86.13% 87.03
77.53% 79.30% 78.41
81.30% 80.49% 80.89
90.30% 93.33% 91.79
85.57% 86.08% 85.82

(e) CoNLL test set with L2 reg-
ularization

Precision Recall Fβ=1

86.26% 87.74% 86.99
81.52% 77.34% 79.37
88.29% 81.89% 84.97
92.15% 92.68% 92.41
88.40% 86.45% 87.42

(f) CoNLL test set with dropout
regularization

Table 6: CoNLL NER results broken down by tags and by precision, recall, and Fβ=1. Top: development
set, bottom: test set performance.

tigating how to better optimize this non-convex reg-
ularizer online and convincingly scale it to the semi-
supervised setting seem to be promising future di-
rections.
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