
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 61–72,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

A Log-Linear Model for Unsupervised Text Normalization

Yi Yang
School of Interactive Computing
Georgia Institute of Technology

yiyang@gatech.edu

Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

jacobe@gatech.edu

Abstract

We present a unified unsupervised statistical
model for text normalization. The relation-
ship between standard and non-standard to-
kens is characterized by a log-linear model,
permitting arbitrary features. The weights
of these features are trained in a maximum-
likelihood framework, employing a novel se-
quential Monte Carlo training algorithm to
overcome the large label space, which would
be impractical for traditional dynamic pro-
gramming solutions. This model is im-
plemented in a normalization system called
UNLOL, which achieves the best known re-
sults on two normalization datasets, outper-
forming more complex systems. We use the
output of UNLOL to automatically normalize
a large corpus of social media text, revealing a
set of coherent orthographic styles that under-
lie online language variation.

1 Introduction

Social media language can differ substantially from
other written text. Many of the attempts to character-
ize and overcome this variation have focused on nor-
malization: transforming social media language into
text that better matches standard datasets (Sproat et
al., 2001; Liu et al., 2011). Because there is lit-
tle available training data, and because social me-
dia language changes rapidly (Eisenstein, 2013b),
fully supervised training is generally not considered
appropriate for this task. However, due to the ex-
tremely high-dimensional output space — arbitrary
sequences of words across the vocabulary — it is

a very challenging problem for unsupervised learn-
ing. Perhaps it is for these reasons that the most suc-
cessful systems are pipeline architectures that cob-
ble together a diverse array of techniques and re-
sources, including statistical language models, de-
pendency parsers, string edit distances, off-the-shelf
spellcheckers, and curated slang dictionaries (Liu et
al., 2011; Han and Baldwin, 2011; Han et al., 2013).

We propose a different approach, performing nor-
malization in a maximum-likelihood framework.
There are two main sources of information to be
exploited: local context, and surface similarity be-
tween the observed strings and normalization can-
didates. We treat the local context using standard
language modeling techniques; we treat string simi-
larity with a log-linear model that includes features
for both surface similarity and word-word pairs.

Because labeled examples of normalized text
are not available, this model cannot be trained
in the standard supervised fashion. Nor can we
apply dynamic programming techniques for unsu-
pervised training of locally-normalized conditional
models (Berg-Kirkpatrick et al., 2010), as their com-
plexity is quadratic in the size of label space; in
normalization, the label space is the vocabulary it-
self, with at least 104 elements. Instead, we present
a new training approach using Monte Carlo tech-
niques to compute an approximate gradient on the
feature weights. This training method may be appli-
cable in other unsupervised learning problems with
a large label space.

This model is implemented in a normalization
system called UNLOL (unsupervised normalization
in a LOg-Linear model). It is a lightweight proba-

61

bilistic approach, relying only on a language model
for the target domain; it can be adapted to new
corpora text or new domains easily and quickly.
Our evaluations show that UNLOL outperforms the
state-of-the-art on standard normalization datasets.
In addition, we demonstrate the linguistic insights
that can be obtained from normalization, using
UNLOL to identify classes of orthographic transfor-
mations that form coherent linguistic styles.

2 Background

The text normalization task was introduced
by Sproat et al. (2001), and attained popularity in
the context of SMS messages (Choudhury et al.,
2007b). It has become still more salient in the era of
widespread social media, particularly Twitter. Han
and Baldwin (2011) formally define a normalization
task for Twitter, focusing on normalizations between
single tokens, and excluding multi-word tokens like
lol (laugh out loud). The normalization task has
been criticized by Eisenstein (2013b), who argues
that it strips away important social meanings. In
recent work, normalization has been shown to yield
improvements for part-of-speech tagging (Han
et al., 2013), parsing (Zhang et al., 2013), and
machine translation (Hassan and Menezes, 2013).
As we will show in Section 7, accurate automated
normalization can also improve our understanding
of the nature of social media language.

Supervised methods Early work on normaliza-
tion focused on labeled SMS datasets, using ap-
proaches such as noisy-channel modeling (Choud-
hury et al., 2007a) and machine translation (Aw
et al., 2006), as well as hybrid combinations of
spelling correction and speech recognition (Kobus
et al., 2008; Beaufort et al., 2010). This work
sought to balance language models (favoring words
that fit in context) with transformation models (fa-
voring words that are similar to the observed text).
Our approach can also be seen as a noisy channel
model, but unlike this prior work, no labeled data is
required.

Unsupervised methods Cook and Stevenson
(2009) manually identify several word formation
types within a noisy channel framework. They
parametrize each formation type with a small num-

ber of scalar values, so that all legal transformations
of a given type are equally likely. The scalar pa-
rameters are then estimated using expectation max-
imization. This work stands apart from most of the
other unsupervised models, which are pipelines.

Contractor et al. (2010) use string edit distance
to identify closely-related candidate orthographic
forms and then decode the message using a language
model. Gouws et al. (2011) refine this approach
by mining an “exception dictionary” of strongly-
associated word pairs such as you/u. Like Con-
tractor et al. (2010), we apply string edit distance,
and like Gouws et al. (2011), we capture strongly
related word pairs. However, rather than applying
these properties as filtering steps in a pipeline, we
add them as features in a unified log-linear model.

Recent approaches have sought to improve accu-
racy by bringing more external resources and com-
plex architectures to bear. Han and Baldwin (2011)
begin with a set of string similarity metrics, and then
apply dependency parsing to identify contextually-
similar words. Liu et al. (2011) extract noisy train-
ing pairs from the search snippets that result from
carefully designed queries to Google, and then train
a conditional random field (Lafferty et al., 2001) to
estimate a character-based translation model. They
later extend this work by adding a model of vi-
sual priming, an off-the-shelf spell-checker, and lo-
cal context (Liu et al., 2012a). Hassan and Menezes
(2013) use a random walk framework to capture
contextual similarity, which they then interpolate
with an edit distance metric. Rather than seek-
ing additional external resources or designing more
complex metrics of context and similarity, we pro-
pose a unified statistical model, which learns feature
weights in a maximum-likelihood framework.

3 Approach

Our approach is motivated by the following criteria:

• Unsupervised. We want to be able to train
a model without labeled data. At present, la-
beled data for Twitter normalization is avail-
able only in small quantities. Moreover, as
social media language is undergoing rapid
change (Eisenstein, 2013b), labeled datasets
may become stale and increasingly ill-suited to
new spellings and words.

62

• Low-resource. Other unsupervised ap-
proaches take advantage of resources such as
slang dictionaries and spell checkers (Han and
Baldwin, 2011; Liu et al., 2011). Resources
that characterize the current state of internet
language risk becoming outdated; in this paper
we investigate whether high-quality normaliza-
tion is possible without any such resources.

• Featurized. The relationship between any pair
of words can be characterized in a number of
different ways, ranging from simple character-
level rules (e.g., going/goin) to larger substi-
tutions (e.g., someone/sum1), and even to pat-
terns that are lexically restricted (e.g., you/u,
to/2). For these reasons, we seek a model that
permits many overlapping features to describe
candidate word pairs. These features may in-
clude simple string edit distance metrics, as
well as lexical features that memorize specific
pairs of standard and nonstandard words.

• Context-driven. Learning potentially arbitrary
word-to-word transformations without supervi-
sion would be impossible without the strong
additional cue of local context. For example,
in the phrase

give me suttin to believe in,

even a reader who has never before seen the
word suttin may recognize it as a phonetic
transcription of something. The relatively high
string edit distance is overcome by the strong
contextual preference for the word something
over orthographically closer alternatives such
as button or suiting. We can apply an arbi-
trary target language model, leveraging large
amounts of unlabeled data and catering to the
desired linguistic characteristics of the normal-
ized content.

• Holistic. While several prior approaches —
such as normalization dictionaries — operate at
the token level, our approach reasons over the
scope of the entire message. The necessity for
such holistic, joint inference and learning can
be seen by changing the example above to:

gimme suttin 2 beleive innnn.

None of these tokens are standard (except 2,
which appears in a nonstandard sense here), so
without joint inference, it would not be possi-
ble to use context to help normalize suttin.
Only by jointly reasoning over the entire mes-
sage can we obtain the correct normalization.

These desiderata point towards a featurized se-
quence model, which must be trained without la-
beled examples. While there is prior work on train-
ing sequence models without supervision (Smith
and Eisner, 2005; Berg-Kirkpatrick et al., 2010),
there is an additional complication not faced by
models for tasks such as part-of-speech tagging
and named entity recognition: the potential label
space of standard words is large, on the order of
at least 104. Naive application of Viterbi decod-
ing — which is a component of training for both
Contrastive Estimation (Smith and Eisner, 2005)
and the locally-normalized sequence labeling model
of Berg-Kirkpatrick et al. (2010) — will be stymied
by Viterbi’s quadratic complexity in the dimension
of the label space. While various pruning heuris-
tics may be applied, we instead look to Sequen-
tial Monte Carlo (SMC), a randomized algorithm
which approximates the necessary feature expecta-
tions through weighted samples.

4 Model

Given a set of source-language sentences S =
{s1, s2, . . .} (e.g., Tweets), our goal is to trans-
duce them into target-language sentences T =
{t1, t2, . . .} (standard English). We are given a tar-
get language model P (t), which can be estimated
from some large set of unlabeled target-language
sentences. We denote the vocabularies of source lan-
guage and target language as νS and νT respectively.

We define a log-linear model that scores source
and target strings, with the form

P (s|t; θ) ∝ exp
(
θTf(s, t)

)
. (1)

The desired conditional probability P (t|s) can be
obtained by combining this model with the target
language model, P (t|s) ∝ P (s|t; θ)P (t). Since no
labeled data is available, the parameters θ must be
estimated by maximizing the log-likelihood of the
source-language data. We define the log-likelihood

63

`θ(s) for a source-language sentence s as follows:

`θ(s) = logP (s) = log
∑
t

P (s|t; θ)P (t)

We would like to maximize this objective by mak-
ing gradient-based updates.

∂`θ(s)

∂θ
=

1

P (s)

∑
t

P (t)
∂

∂θ
P (s|t; θ)

=
∑
t

P (t|s)

(
f(s, t)−

∑
s′

P (s′|t)f(s′, t)

)
= Et|s[f(s, t)− Es′|t[f(s

′, t)]]

(2)

We are left with a difference in expected feature
counts, as is typical in log-linear models. However,
unlike the supervised case, here both terms are ex-
pectations: the outer expectation is over all target se-
quences (given the observed source sequence), and
the nested expectation is over all source sequences,
given the target sequence. As the space of possible
target sequences t grows exponentially in the length
of the source sequence, it will not be practical to
compute this expectation directly.

Dynamic programming is the typical solution for
computing feature expectations, and can be applied
to sequence models when the feature function de-
composes locally. There are two reasons this will
not work in our case. First, while the forward-
backward algorithm would enable us to compute
Et|s, it would not give us the nested expectation
Et|s[Es′|t]; this is the classic challenge in training
globally-normalized log-linear models without la-
beled data (Smith and Eisner, 2005). Second, both
forward-backward and the Viterbi algorithm have
time complexity that is quadratic in the dimension of
the label space, at least 104 or 105. As we will show,
Sequential Monte Carlo (SMC) algorithms have a
number of advantages in this setting: they permit
the efficient computation of both the outer and inner
expectations, they are trivially parallelizable, and
the number of samples provides an intuitive tuning
tradeoff between accuracy and speed.

4.1 Sequential Monte Carlo approximation
Sequential Monte Carlo algorithms are a class of
sampling-based algorithms in which latent vari-

ables are sampled sequentially (Cappe et al., 2007).
They are particularly well-suited to sequence mod-
els, though they can be applied more broadly. SMC
algorithms maintain a set of weighted hypotheses;
the weights correspond to probabilities, and in our
case, the hypotheses correspond to target language
word sequences. Specifically, we approximate the
conditional probability,

P (t1:n|s1:n) ≈
K∑
k=1

ωknδtk
1:n

(t1:n),

where ωkn is the normalized weight of sample k at
word n (ω̃kn is the unnormalized weight), and δtk

1:n
is

a delta function centered at tk1:n.
At each step, and for each hypothesis k, a new

target word is sampled from a proposal distribution,
and the weight of the hypothesis is then updated. We
maintain feature counts for each hypothesis, and ap-
proximate the expectation by taking a weighted av-
erage using the hypothesis weights. The proposal
distribution will be described in detail later.

We make a Markov assumption, so that the emis-
sion probability P (s|t) decomposes across the ele-
ments of the sentence P (s|t) =

∏N
n P (sn|tn). This

means that the feature functions f(s, t) must decom-
pose on each 〈sn, tn〉 pair. We can then rewrite (1)
as

P (s|t; θ) =
N∏
n

exp
(
θTf(sn, tn)

)
Z(tn)

(3)

Z(tn) =
∑
s

exp
(
θTf(s, tn)

)
. (4)

In addition, we assume that the target language
model P (t) can be written as an N-gram language
model, P (t) =

∏
n P (tn|tn−1, . . . tn−k+1). With

these assumptions, we can view normalization as
a finite state-space model in which the target lan-
guage model defines the prior distribution of the pro-
cess and Equation 3 defines the likelihood function.
We are able to compute the the posterior probabil-
ity P (t|s) using sequential importance sampling, a
member of the SMC family.

The crucial idea in sequential importance sam-
pling is to update the hypotheses tk1:n and their
weights ωkn so that they approximate the posterior
distribution at the next time step, P (t1:n+1|s1:n+1).

64

Assuming the proposal distribution has the form
Q(tk1:n|s1:n), the importance weights are given by

ωkn ∝
P (tk1:n|s1:n)

Q(tk1:n|s1:n)
(5)

In order to update the hypotheses recursively, we
rewrite P (t1:n|s1:n) as:

P (t1:n|s1:n) =
P (sn|t1:n, s1:n−1)P (t1:n|s1:n−1)

P (sn|s1:n−1)

=
P (sn|tn)P (tn|t1:n−1, s1:n−1)P (t1:n−1|s1:n−1)

P (sn|s1:n−1)

∝P (sn|tn)P (tn|tn−1)P (t1:n−1|s1:n−1),

assuming a bigram language model. We further as-
sume the proposal distribution Q can be factored as:

Q(t1:n|s1:n) =Q(tn|t1:n−1, s1:n)Q(t1:n−1|s1:n−1)

=Q(tn|tn−1, sn)Q(t1:n−1|s1:n−1).
(6)

Then the unnormalized importance weights sim-
plify to a recurrence:

ω̃kn =
P (sn|tkn)P (tkn|tkn−1)P (tk1:n−1|s1:n−1)

Q(tn|tn−1, sn)Q(tk1:n−1|s1:n−1)
(7)

=ωkn−1

P (sn|tkn)P (tkn|tkn−1)

Q(tn|tn−1, sn)
(8)

Therefore, we can approximate the posterior dis-
tribution P (tn|s1:n) ≈

∑K
k=1 ω

k
nδtkn(tn), and com-

pute the outer expectation as follows:

Et|s[f(s, t)] =

K∑
k=1

ωkN

N∑
n=1

f(sn, t
k
n) (9)

We compute the nested expectation using a non-
sequential Monte Carlo approximation, assuming
we can draw s`,k ∼ P (s|tkn).

Es|tk [f(s, tk)] =
1

L

N∑
n=1

L∑
`=1

f(s`,kn , tkn)

This gives the overall gradient computation:

Et|s[f(s, t)− Es′|t[f(s
′, t)]] =

1∑K
k=1 ω̃

k
N

K∑
k=1

ω̃k
N

×
N∑

n=1

(
f(sn, t

k
n)− 1

L

L∑
`=1

f(s`,k
n , tkn)

)
(10)

where we sample tkn and update ωkn while mov-
ing from left-to-right, and sample s`,kn at each n.
Note that although the sequential importance sam-
pler moves left-to-right like a filter, we use only the
final weights ωN to compute the expectation. Thus,
the resulting expectation is based on the distribu-
tion P (s1:N |t1:N), so that no backwards “smooth-
ing” pass (Godsill et al., 2004) is needed to elim-
inate bias. Other applications of sequential Monte
Carlo make use of resampling (Cappe et al., 2007) to
avoid degeneration of the hypothesis weights, but we
found this to be unnecessary due to the short length
of Twitter messages.

4.2 Proposal distribution
The major computational challenge for dynamic
programming approaches to normalization is the
large label space, equal to the size of the target vo-
cabulary. It may appear that all we have gained
by applying sequential Monte Carlo is to convert
a computational problem into a statistical one: a
naive sampling approach will have little hope of
finding the small high-probability region of the high-
dimensional label space. However, sequential im-
portance sampling allows us to address this issue
through the proposal distribution, from which we
sample the candidate words tn. Careful design of the
proposal distribution can guide sampling towards
the high-probability space. In the asymptotic limit of
an infinite number of samples, any non-pathological
proposal distribution will ultimately arrive at the de-
sired estimate, but a good proposal distribution can
greatly reduce the number of samples needed.

Doucet et al. (2001) note that the optimal pro-
posal — which minimizes the variance of the im-
portance weights conditional on t1:n−1 and s1:n —
has the following form:

Q(tkn|sn, tkn−1) =
P (sn|tkn)P (tkn|tkn−1)∑
t′ P (sn|t′)P (t′|tkn−1)

(11)

65

Sampling from this proposal requires computing
the normalized distribution P (sn|tkn); similarly, the
update of the hypothesis weights (Equation 8) re-
quires the calculation ofQ in its normalized form. In
each case, the total cost is the product of the vocabu-
lary sizes, O(#|νT |#|νS |), which is not tractable as
the vocabularies become large.

In low-dimensional settings, a convenient so-
lution is to set the proposal distribution equal
to the transition distribution, Q(tkn|sn, tkn−1) =
P (tkn|tkn−1, . . . , t

k
n−k+1). This choice is called the

“bootstrap filter,” and it has the advantage that the
weights ω(k) are exactly identical to the product
of emission likelihoods

∏
n P (sn|tkn). The com-

plexity of computing the hypothesis weights is thus
O(#|νS |). However, because this proposal ignores
the emission likelihood, the bootstrap filter has very
little hope of finding a high-probability sample in
high-entropy contexts.

We strike a middle ground between efficiency and
accuracy, using a proposal distribution that is closely
related to the overall likelihood, yet is tractable to
sample and compute:

Q(tkn|sn, tkn−1)
def
=

P (sn|tkn)Z(tkn)P (tkn|tkn−1)∑
t′ P (sn|t′)Z(t′)P (t′|tkn−1)

=
exp

(
θTf(sn, tn)

)
P (tkn|tkn−1)∑

t′ exp
(
θTf(sn, t′)

)
P (t′|tkn−1)

(12)

Here, we simply replace the likelihood distribu-
tion in (11) by its unnormalized version.

To update the unnormalized hypothesis weights
ω̃kn, we have

ω̃kn =ωkn−1

∑
t′ exp

(
θTf(sn, t

′)
)
P (t′|tkn−1)

Z(tkn)
(13)

The numerator requires summing over all ele-
ments in νT and the denominator Z(tkn) requires
summing over all elements in νS , for a total cost of
O(#|νT |+ #|νS |).

4.3 Decoding

Given an input source sentence s, the decoding prob-
lem is to find a target sentence t that maximizes
P (t|s) ∝ P (s|t)P (t) =

∏N
n P (sn|tn)P (tn|tn−1).

Feature name Description
word-word pair A set of binary features for each

source/target word pair 〈s, t〉
string similarity A set of binary features in-

dicating whether s is one of
the top N string similar non-
standard words of t, for N ∈
{5, 10, 25, 50, 100, 250, 500, 1000}

Table 1: The feature set for our log-linear model

As with learning, we cannot apply the usual dy-
namic programming algorithm (Viterbi), because
of its quadratic cost in the size of the target lan-
guage vocabulary. This must be multiplied by
the cost of computing the normalized probability
P (sn|tn), resulting in a prohibitive time complexity
of O(#|νS |#|νT |2N).

We consider two approximate decoding algo-
rithms. The first is to simply apply the proposal dis-
tribution, with linear complexity in the size of the
two vocabularies. However, this decoder is not iden-
tical to P (t|s), because of the extra factor of Z(t)
in the numerator. Alternatively, we can apply the
proposal distribution for selecting target word can-
didates, then apply the Viterbi algorithm only within
these candidates. The total cost is O(#|νS |T 2N),
where T is the number of target word candidates we
consider; this will asymptotically approach P (t|s)
as T → #|νT |. Our evaluations use the more expen-
sive proposal+Viterbi decoding, but accuracy with
the more efficient proposal-based decoding is very
similar.

4.4 Features

Our system uses the feature types described in Ta-
ble 1. The word pair features are designed to cap-
ture lexical conventions, e.g. you/u. We only con-
sider word pair features that fired during training.
The string similarity features rely on the similarity
function proposed by Contractor et al. (2010), which
has proven effective for normalization in prior work.
We bin this similarity to create binary features indi-
cating whether a string s is in the top-N most similar
strings to t; this binning yields substantial speed im-
provements without negatively impacting accuracy.

66

5 Implementation and data

The model and inference described in the pre-
vious section are implemented in a software
system for normalizing text on twitter, called
UNLOL: unsupervised normalization in a LOg-
Linear model. The final system can process roughly
10,000 Tweets per hour. We now describe some im-
plementation details.

5.1 Normalization candidates

Most tokens in tweets do not require normalization.
The question of how to identify which words are
to be normalized is still an open problem. Follow-
ing Han and Baldwin (2011), we build a dictionary
of words which are permissible in the target domain,
and make no attempt to normalize source strings
that match these words. As with other comparable
approaches, we are therefore unable to normalize
strings like ill into I’ll. Our set of “in-vocabulary”
(IV) words is based on the GNU aspell dictionary
(v0.60.6), containing 97,070 words. From this dic-
tionary, we follow Liu et al. (2012a) and remove all
the words with a count of less than 20 in the Edin-
burgh Twitter corpus (Petrović et al., 2010) — re-
sulting in a total of 52,449 target words. All sin-
gle characters except a and i are excluded, and rt
is treated as in-vocabulary. For all in-vocabulary
words, we define P (sn|tn) = δ(sn, tn), taking the
value of zero when sn 6= tn. This effectively pre-
vents our model from attempting to normalize these
words.

In addition to words that are in the target vocabu-
lary, there are many other strings that should not be
normalized, such as names and multiword shorten-
ings (e.g. going to/gonna).1 We follow prior work
and assume that the set of normalization candidates
is known in advance during test set decoding (Han et
al., 2013). However, the unlabeled training data has
no such information. Thus, during training we at-
tempt to normalize all tokens that (1) are not in our
lexicon of IV words, and (2) are composed of letters,
numbers and the apostrophe. This set includes con-
tractions like "gonna" and "gotta", which would not
appear in the test set, but are nonetheless normalized

1Whether multiword shortenings should be normalized is ar-
guable, but they are outside the scope of current normalization
datasets (Han and Baldwin, 2011).

during training. For each OOV token, we conduct a
pre-normalization step by reducing any repetitions
of more than two letters in the nonstandard words to
exactly two letters (e.g., cooool→ cool).

5.2 Language modeling
The Kneser-Ney smoothed trigram target language
model is estimated with the SRILM toolkit Stolcke
(2002), using Tweets from the Edinburgh Twitter
corpus that contain no OOV words besides hash-
tags and username mentions (following (Han et al.,
2013)). We use this language model for both training
and decoding. We occasionally find training con-
texts in which the trigram 〈tn, tn−1, tn−2〉 is unob-
served in the language model data; features resulting
from such trigrams are not considered when comput-
ing the weight gradients.

5.3 Parameters
The Monte Carlo approximations require two pa-
rameters: the number of samples for sequential
Monte Carlo (K), and the number of samples for the
non-sequential sampler of the nested expectation (L,
from Equation 10). The theory of Monte Carlo ap-
proximation states that the quality of the approxima-
tion should only improve as the number of samples
increases; we obtained good results with K = 10
and L = 1, and found relatively little improvement
by increasing these values. The number of hypothe-
ses considered by the decoder is set to T = 10;
again, the performance should only improve with T ,
as we more closely approximate full Viterbi decod-
ing.

6 Experiments

Datasets We use two existing labeled Twitter
datasets to evaluate our approach. The first dataset
— which we call LWWL11, based on the names of
its authors Liu et al. (2011) — contains 3,802 indi-
vidual “nonstandard” words (i.e., words that are not
in the target vocabulary) and their normalized forms.
The rest of the message in which the words is appear
is not available. As this corpus does not provide lin-
guistic context, its decoding must use a unigram tar-
get language model. The second dataset — which
is called LexNorm1.1 by its authors Han and Bald-
win (2011) — contains 549 complete tweets with
1,184 nonstandard tokens (558 unique word types).

67

Method Dataset Precision Recall F-measure
(Liu et al. 2011)

LMML11
68.88 68.88 68.88

(Liu et al. 2012) 69.81 69.81 69.81
UNLOL 73.04 73.04 73.04

(Han and Baldwin, 2011)

LexNorm 1.1

75.30 75.30 75.30
(Liu et al. 2012) 84.13 78.38 81.15
(Hassan et al. 2013) 85.37 56.4 69.93
UNLOL 82.09 82.09 82.09

UNLOL LexNorm 1.2 82.06 82.06 82.06

Table 2: Empirical results

In this corpus, we can decode with a trigram lan-
guage model.

Close analysis of LexNorm1.1 revealed some in-
consistencies in annotation (for example, y’all
and 2 are sometimes normalized to you and to,
but are left unnormalized in other cases). In ad-
dition, several annotations disagree with existing
resources on internet language and dialectal En-
glish. For example, smh is normalized to some-
how in LexNorm1.1, but internetslang.com
and urbandictionary.com assert that it stands
for shake my head, and this is evident from examples
such as smh at this girl. Similarly, finna
is normalized to finally in LexNorm1.1, but from
the literature on African American English (Green,
2002), it corresponds to fixing to (e.g., i’m finna
go home). To address these issues, we have pro-
duced a new version of this dataset, which we call
LexNorm1.2 (after consulting with the creators of
LexNorm1.1). LexNorm1.2 differs from version 1.1
in the annotations for 172 of the 2140 OOV words.
We evaluate on LexNorm1.1 to compare with prior
work, but we also present results on LexNorm1.2
in the hope that it will become standard in future
work on normalization in English. The dataset
is available at http://www.cc.gatech.edu/
~jeisenst/lexnorm.v1.2.tgz.

To obtain unlabeled training data, we randomly
sample 50 tweets from the Edinburgh Twitter cor-
pus Petrović et al. (2010) for each OOV word. Some
OOV words appear less than 50 times in the cor-
pus, so we obtained more training tweets for them
through the Twitter search API.

Metrics Prior work on these datasets has assumed
perfect detection of words requiring normalization,
and has focused on finding the correct normalization
for these words (Han and Baldwin, 2011; Han et al.,
2013). Recall has been defined as the proportion of
words requiring normalization which are normalized
correctly; precision is defined as the proportion of
normalizations which are correct.

Results We run our training algorithm for two it-
erations (pass the training data twice). The results
are presented in Table 2. Our system, UNLOL,
achieves the highest published F-measure on both
datasets. Performance on LexNorm1.2 is very simi-
lar to LexNorm1.1, despite the fact that roughly 8%
of the examples were relabeled.

In the normalization task that we consider, the to-
kens to be normalized are specified in advance. This
is the same task specification as in the prior work
against which we compare. At test time, our system
attempts normalizes all such tokens; every error is
thus both a false positive and false negative, so pre-
cision equals to recall for this task; this is also true
for Han and Baldwin (2011) and Liu et al. (2011).

It is possible to trade recall for precision by re-
fusing to normalize words when the system‘s confi-
dence falls below a threshold. A good setting of this
threshold can improve the F-measure, but we did not
report these results because we have no development
set for parameter tuning.

Regularization One potential concern is that the
number of non-zero feature weights will continually
increase until the memory cost becomes overwhelm-
ing. Although we did not run up against mem-

68

0 100000 200000 300000 400000
number of features

79

80

81

82

83

F-
m

ea
su

re

λ=1e−04

λ=5e−05

λ=1e−05

λ=5e−06
λ=1e−06 λ=0e+00 λ Dataset F-measure # of features

10−4

LexNorm 1.1

79.05 9,281
5× 10−5 80.32 11,794

10−5 81.00 42,466
5× 10−6 82.52 74,744

10−6 82.35 241,820
0 82.26 369,366

5× 10−6 LexNorm 1.2 82.23 74,607

Figure 1: Effect of L1 regularization on the F-measure and the number of features with non-zero weights

ory limitations in the experiments producing the re-
sults in Table 2, this issue can be addressed through
the application of L1 regularization, which produces
sparse weight vectors by adding a penalty of λ||θ||1
to the log-likelihood. We perform online optimiza-
tion of the L1-regularized log-likelihood by apply-
ing the truncated gradient method (Langford et al.,
2009). We use an exponential decreasing learning
rate ηk = η0α

k/N , where k is the iteration counter
andN is the size of training data. We set η0 = 1 and
α = 0.5. Experiments were run until 300,000 train-
ing instances were observed, with a final learning
rate of less than 1/32. As shown in Figure 1, a small
amount of regularization can dramatically decrease
the number of active features without harming per-
formance.

7 Analysis

We apply our normalization system to investi-
gate the orthographic processes underlying language
variation in social media. Using a dataset of 400,000
English language tweets, sampled from the month
of August in each year from 2009 to 2012, we ap-
ply UNLOL to automatically normalize each token.
We then treat these normalizations as labeled train-
ing data, and examine the Levenshtein alignment be-
tween the source and target tokens. This alignment
gives approximate character-level transduction rules
to explain each OOV token. We then examine which
rules are used by each author, constructing a matrix

of authors and rules.2

Factorization of the author-rule matrix reveals sets
of rules that tend to be used together; we might
call these rulesets “orthographic styles.” We apply
non-negative matrix factorization (Lee and Seung,
2001), which characterizes each author by a vector
of k style loadings, and simultaneously constructs
k style dictionaries, which each put weight on dif-
ferent orthographic rules. Because the loadings are
constrained to be non-negative, the factorization can
be seen as sparsely assigning varying amounts of
each style to each author. We choose the factoriza-
tion that minimizes the Frobenius norm of the recon-
struction error, using the NIMFA software package
(http://nimfa.biolab.si/).

The resulting styles are shown in Table 3, for
k = 10; other values of k give similar overall re-
sults with more or less detail. The styles incor-
porate a number of linguistic phenomena, includ-
ing: expressive lengthening (styles 7-9; see Brody
and Diakopoulos, 2011); g- and t-dropping (style 5,
see Eisenstein 2013a) ; th-stopping (style 6); and
the dropping of several word-final vowels (styles
1-3). Some of these styles, such as t-dropping
and th-stopping, have direct analogues in spoken
language varieties (Tagliamonte and Temple, 2005;
Green, 2002), while others, like expressive length-
ening, seem more unique to social media. The re-
lationships between these orthographic styles and
social variables such as geography and demograph-

2We tried adding these rules as features and retraining the
normalization system, but this hurt performance.

69

style rules examples
1. you; o-dropping y/_ ou/_u *y/*_ o/_ u, yu, 2day, knw, gud, yur, wud, yuh, u’ve, toda,

everthing, everwhere, ourself
2. e-dropping, u/o be/b_ e/_ o/u e*/_* b, r, luv, cum, hav, mayb, bn, remembr, btween,

gunna, gud
3. a-dropping a/_ *a/*_ re/r_ ar/_r r, tht, wht, yrs, bck, strt, gurantee,

elementry, wr, rlly, wher, rdy, preciate,
neway

4. g-dropping g*/_* ng/n_ g/_ goin, talkin, watchin, feelin, makin
5. t-dropping t*/_* st/s_ t/_ jus, bc, shh, wha, gota, wea, mus, firts, jes,

subsistutes
6. th-stopping h/_ *t/*d th/d_ t/d dat, de, skool, fone, dese, dha, shid, dhat,

dat’s
7. (kd)-lengthening i_/id _/k _/d _*/k* idk, fuckk, okk, backk, workk, badd, andd,

goodd, bedd, elidgible, pidgeon
8. o-lengthening o_/oo _*/o* _/o soo, noo, doo, oohh, loove, thoo, helloo
9. e-lengthening _/i e_/ee _/e _*/e* mee, ive, retweet, bestie, lovee, nicee, heey,

likee, iphone, homie, ii, damnit
10. a-adding _/a __/ma _/m _*/a* ima, outta, needa, shoulda, woulda, mm,

comming, tomm, boutt, ppreciate

Table 3: Orthographic styles induced from automatically normalized Twitter text

ics must be left to future research, but they offer a
promising generalization of prior work that has fo-
cused almost exclusively on exclusively on lexical
variation (Argamon et al., 2007; Eisenstein et al.,
2010; Eisenstein et al., 2011), with a few exceptions
for character-level features (Brody and Diakopoulos,
2011; Burger et al., 2011).

Note that style 10 is largely the result of mis-
taken normalizations. The tokens ima, outta, and
needa all refer to multi-word expressions in stan-
dard English, and are thus outside the scope of the
normalization task as defined by Han et al. (2013).
UNLOL has produced incorrect single-token nor-
malizations for these terms: i/ima, out/outta, and
need/needa. But while these normalizations are
wrong, the resulting style nonetheless captures a co-
herent orthographic phenomenon.

8 Conclusion

We have presented a unified, unsupervised statistical
model for normalizing social media text, attaining
the best reported performance on the two standard
normalization datasets. The power of our approach
comes from flexible modeling of word-to-word re-
lationships through features, while exploiting con-
textual regularity to train the corresponding feature

weights without labeled data. The primary techni-
cal challenge was overcoming the large label space
of the normalization task; we accomplish this us-
ing sequential Monte Carlo. Future work may con-
sider whether sequential Monte Carlo can offer sim-
ilar advantages in other unsupervised NLP tasks. An
additional benefit of our joint statistical approach is
that it may be combined with other downstream lan-
guage processing tasks, such as part-of-speech tag-
ging (Gimpel et al., 2011) and named entity resolu-
tion (Liu et al., 2012b).

Acknowledgments
We thank the reviewers for thoughtful comments
on our submission. This work also benefitted
from discussions with Timothy Baldwin, Paul Cook,
Frank Dellaert, Arnoud Doucet, Micha Elsner, and
Sharon Goldwater. It was supported by NSF SOCS-
1111142.

References
S. Argamon, M. Koppel, J. Pennebaker, and J. Schler.

2007. Mining the blogosphere: age, gender, and the
varieties of self-expression. First Monday, 12(9).

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A
phrase-based statistical model for SMS text normaliza-
tion. In Proceedings of ACL, pages 33–40.

70

Richard Beaufort, Sophie Roekhaut, Louise-Amélie
Cougnon, and Cédrick Fairon. 2010. A hybrid
rule/model-based finite-state framework for normaliz-
ing sms messages. In Proceedings of ACL, pages 770–
779.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Painless un-
supervised learning with features. In Proceedings of
NAACL, pages 582–590.

Samuel Brody and Nicholas Diakopoulos. 2011.
Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using
word lengthening to detect sentiment in microblogs.
In Proceedings of EMNLP.

John D. Burger, John C. Henderson, George Kim, and
Guido Zarrella. 2011. Discriminating gender on twit-
ter. In Proceedings of EMNLP.

Olivier Cappe, Simon J. Godsill, and Eric Moulines.
2007. An overview of existing methods and recent ad-
vances in sequential monte carlo. Proceedings of the
IEEE, 95(5):899–924, May.

M. Choudhury, R. Saraf, V. Jain, A. Mukherjee, S. Sarkar,
and A. Basu. 2007a. Investigation and model-
ing of the structure of texting language. Interna-
tional Journal on Document Analysis and Recognition,
10(3):157–174.

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh
Mukherjee, Sudeshna Sarkar, and Anupam Basu.
2007b. Investigation and modeling of the structure of
texting language. International Journal of Document
Analysis and Recognition (IJDAR), 10(3-4):157–174.

Danish Contractor, Tanveer A. Faruquie, and L. Venkata
Subramaniam. 2010. Unsupervised cleansing of noisy
text. In Proceedings of COLING, pages 189–196.

Paul Cook and Suzanne Stevenson. 2009. An unsu-
pervised model for text message normalization. In
Proceedings of the Workshop on Computational Ap-
proaches to Linguistic Creativity, CALC ’09, pages
71–78, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

A. Doucet, N.J. Gordon, and V. Krishnamurthy. 2001.
Particle filters for state estimation of jump markov lin-
ear systems. Trans. Sig. Proc., 49(3):613–624, March.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith,
and Eric P. Xing. 2010. A latent variable model for ge-
ographic lexical variation. In Proceedings of EMNLP.

Jacob Eisenstein, Noah A. Smith, and Eric P. Xing.
2011. Discovering sociolinguistic associations with
structured sparsity. In Proceedings of ACL.

Jacob Eisenstein. 2013a. Phonological factors in social
media writing. In Proceedings of the NAACL Work-
shop on Language Analysis in Social Media.

Jacob Eisenstein. 2013b. What to do about bad language
on the internet. In Proceedings of NAACL, pages 359–
369.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. 2011. Part-of-speech tagging for
twitter: annotation, features, and experiments. In Pro-
ceedings of ACL.

Simon J. Godsill, Arnaud Doucet, and Mike West. 2004.
Monte carlo smoothing for non-linear time series. In
Journal of the American Statistical Association, pages
156–168.

Stephan Gouws, Dirk Hovy, and Donald Metzler. 2011.
Unsupervised mining of lexical variants from noisy
text. In Proceedings of the First Workshop on Unsu-
pervised Learning in NLP, EMNLP ’11.

Lisa J. Green. 2002. African American English: A
Linguistic Introduction. Cambridge University Press,
September.

Bo Han and Timothy Baldwin. 2011. Lexical normalisa-
tion of short text messages: makn sens a #twitter. In
Proceedings of ACL, pages 368–378.

Bo Han, Paul Cook, and Timothy Baldwin. 2013. Lex-
ical normalization for social media text. ACM Trans-
actions on Intelligent Systems and Technology, 4(1):5.

Hany Hassan and Arul Menezes. 2013. Social text nor-
malization using contextual graph random walks. In
Proceedings of ACL.

Catherine Kobus, François Yvon, and Géraldine
Damnati. 2008. Normalizing sms: are two metaphors
better than one? In Proceedings of COLING, pages
441–448.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of ICML, pages 282–289.

John Langford, Lihong Li, and Tong Zhang. 2009.
Sparse online learning via truncated gradient. The
Journal of Machine Learning Research, 10:777–801.

D. D. Lee and H. S. Seung. 2001. Algorithms for Non-
Negative Matrix Factorization. In Advances in Neural
Information Processing Systems (NIPS), volume 13,
pages 556–562.

Fei Liu, Fuliang Weng, Bingqing Wang, and Yang Liu.
2011. Insertion, deletion, or substitution?: normaliz-
ing text messages without pre-categorization nor su-
pervision. In Proceedings of ACL, pages 71–76.

Fei Liu, Fuliang Weng, and Xiao Jiang. 2012a. A broad-
coverage normalization system for social media lan-
guage. In Proceedings of ACL, pages 1035–1044.

Xiaohua Liu, Ming Zhou, Xiangyang Zhou, Zhongyang
Fu, and Furu Wei. 2012b. Joint inference of named
entity recognition and normalization for tweets. In
Proceedings of ACL.

71

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. The edinburgh twitter corpus. In Proceedings
of the NAACL HLT Workshop on Computational Lin-
guistics in a World of Social Media, pages 25–26.

Noah A. Smith and Jason Eisner. 2005. Contrastive
estimation: training log-linear models on unlabeled
data. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 354–362, Stroudsburg, PA, USA. Association
for Computational Linguistics.

R. Sproat, A.W. Black, S. Chen, S. Kumar, M. Os-
tendorf, and C. Richards. 2001. Normalization of
non-standard words. Computer Speech & Language,
15(3):287–333.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. In Proceedings of ICSLP, pages
901–904.

Sali Tagliamonte and Rosalind Temple. 2005. New
perspectives on an ol’ variable: (t,d) in british en-
glish. Language Variation and Change, 17:281–302,
September.

Congle Zhang, Tyler Baldwin, Howard Ho, Benny
Kimelfeld, and Yunyao Li. 2013. Adaptive parser-
centric text normalization. In Proceedings of ACL,
pages 1159–1168.

72

