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Abstract

“Grounded” language learning employs train-
ing data in the form of sentences paired with
relevant but ambiguous perceptual contexts.
Börschinger et al. (2011) introduced an ap-
proach to grounded language learning based
on unsupervised PCFG induction. Their ap-
proach works well when each sentence po-
tentially refers to one of a small set of pos-
sible meanings, such as in the sportscasting
task. However, it does not scale to prob-
lems with a large set of potential meanings
for each sentence, such as the navigation in-
struction following task studied by Chen and
Mooney (2011). This paper presents an en-
hancement of the PCFG approach that scales
to such problems with highly-ambiguous su-
pervision. Experimental results on the naviga-
tion task demonstrates the effectiveness of our
approach.

1 Introduction

The ultimate goal of “grounded” language learning
is to develop computational systems that can acquire
language more like a human child. Given only su-
pervision in the form of sentences paired with rel-
evant but ambiguous perceptual contexts, a system
should learn to interpret and/or generate language
describing situations and events in the world. For
example, systems have learned to commentate sim-
ulated robot soccer games by learning from sample
sportscasts (Chen and Mooney, 2008; Liang et al.,
2009; Börschinger et al., 2011), or understand nav-
igation instructions by learning from action traces

produced when following the directions (Chen and
Mooney, 2011; Tellex et al., 2011).

Börschinger et al. (2011) recently introduced an
approach to grounded language learning using un-
supervised induction of probabilistic context free
grammars (PCFGs) to learn from ambiguous con-
textual supervision. Their approach first constructs
a large set of production rules from sentences paired
with descriptions of their ambiguous context, and
then trains the parameters of this grammar using
EM. Parsing a novel sentence with this grammar
gives a parse tree which contains the formal mean-
ing representation (MR) for this sentence. This ap-
proach works quite well on the sportscasting task
originally introduced by Chen and Mooney (2008).
In this task, each sentence in a natural-language
commentary describing activity in a simulated robot
soccer game is paired with the small set of actions
observed within the past 5 seconds, one of which
is usually described by the sentence. Even with this
low level of ambiguity in a constrained domain, their
method constructs a PCFG with about 33,000 pro-
ductions. More fundamentally, their approach is re-
stricted to a finite set of potential meaning represen-
tations, and the grammar size grows at least linearly
with the number of possible MRs, which in turn is
inevitably exponential in the number of objects and
actions in the domain.

The navigation task studied by Chen and Mooney
(2011) provides much more ambiguous supervision.
In this task, each instructional sentence is paired
with a formal landmarks plan (represented as a
large graph) that includes a full description of the
observed actions and world-states that result when
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someone follows this instruction. An instruction
generally refers to a subgraph of this large graph.
Therefore, there are a combinatorial number of pos-
sible meanings to which a given sentence can refer.

Chen and Mooney (2011) circumvent this combi-
natorial problem by never explicitly enumerating the
exponential number of potential meanings for each
sentence. Their system first induces a semantic lex-
icon that maps words and short phrases to formal
representations of actions and objects in the world.
This lexicon is learned by finding words and phrases
whose occurrence highly correlates with specific ob-
served actions and objects in the simulated environ-
ment when executing the corresponding instruction.
This learned lexicon is then used to directly infer
a formal MR for observed instructional sentences
using a greedy covering algorithm. These inferred
MRs are then used to train a supervised semantic
parser capable of mapping novel sentences to their
formal meanings.

We present a novel enhancement of Börschinger
et al.’s PCFG approach that uses Chen and Mooney’s
lexicon learner to avoid a combinatorial explosion in
the number of productions. The learned lexicon is
first used to build a hierarchy of semantic lexemes
(i.e. lexicon entries) called the Lexeme Hierarchy
Graph (LHG) for each ambiguous landmarks plan
in the training data. The intuition behind utilizing
an LHG is that the MR for each lexeme constitutes a
semantic concept that corresponds to some natural-
language (NL) word or phrase. Therefore, the LHG
represents how complex semantic concepts are com-
posed of simpler semantic concepts and ultimately
connected to NL words and phrases. Börschinger
et al.’s approach instead produces NL groundings at
the level of atomic MR constituents, which causes
an explosion in the number of PCFG productions
for complex MR languages. We estimated that
Börschinger et al.’s approach would require more
than 20! (> 1018) productions for our navigation
problem.1 On the other hand, our method, which
uses correspondences from the LHG at the seman-
tic concept level, constructs a more focused PCFG
of tractable size. It then extracts the MR for a novel

1The corpus contains quite a few examples with landmarks
plans containing more than 20 actions. This results in at least
20! permutations representing possible alignments between ac-
tions and NL words.

sentence from the most-probable parse tree for the
resulting PCFG. Our approach can produce a large,
combinatorial number of different MRs for a wide
range of novel sentences by composing relevant MR
components from the resulting parse tree, whereas
Börschinger et al.’s approach is only able to output
MRs that are explicitly included as a nonterminals
in the original learned PCFG.

The remainder of the paper is organized as fol-
lows. Section 2 reviews Börschinger et al.’s PCFG
approach as well as the navigation task and data.
Section 3 describes our enhanced PCFG approach
and Section 4 presents an experimental evaluation
of it. Then, Section 5 discusses the unique aspects
of our approach and Section 6 describes additional
related work. Finally, Section 7 presents future re-
search directions and Section 8 gives our conclu-
sions.

2 Background

2.1 Existing PCFG Approach

Our approach extends that of Börschinger et al.
(2011), which in turn was inspired by a series of
previous techniques (Lu et al., 2008; Liang et al.,
2009; Kim and Mooney, 2010) following the idea
of constructing correspondences between NL and
MR in a single probabilistic generative framework.
Particularly, their approach automatically constructs
a PCFG that generates NL sentences from MRs,
which indicates how atomic MR constituents are
probabilistically related to NL words. The nonter-
minals in the grammar correspond to complete MRs,
MR constituents, and NL phrases. The nontermi-
nal for a composite MR generates each of its MR
constituents, and each atomic MR, x, generates an
NL phrase, Phrasex. Each Phrasex then gener-
ates a sequence of Wordx’s for describing x, and
each Wordx can generate each possible word in the
natural language. This allows the system to learn
the words and phrases used to describe each atomic
MR by properly weighting these rules. Figure 1
shows one possible derivation tree for a sample NL-
MR pair and the PCFG rules that are constructed for
it. Once a set of productions are assembled, their
probabilities are learned using the Inside-Outside al-
gorithm. Computing the most probable parse for a
novel sentence with the trained PCFG provides its
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Figure 1: Derivation tree for the NL/MR pair: THE

PINK GOALIE PASSES THE BALL TO PINK11 /
pass(pink1, pink11). Left side shows PCFG rules
that are added for each stage (full MR to atomic
MRs, and atomic MRs to NL words ).

preferred MR interpretation in the topmost nonter-
minal.

Unfortunately, as discussed earlier, this approach
only works for finite MR languages, and the gram-
mar becomes intractably large even for finite but
complex MRs. It effectively assumes that MRs are
fairly small and includes every possible MR con-
stituent as a nonterminal in the PCFG. This is not
tractable for more complex MRs. Therefore, our ex-
tension incorporates a learned lexicon to constrain
the space of productions, thereby making the size
of the PCFG tractable for complex MRs, and even
giving it the ability to handle infinite MR languages.
Moreover, when processing novel sentences, our ap-
proach can produce a large space of novel MRs that
were not anticipated during training, which is not the
case for Börschinger et al.’s approach.

2.2 Navigation Task and Dataset

We employ the task and data introduced by Chen and
Mooney (2011) whose goal is to interpret and follow
NL navigation instructions in a virtual world. Fig-
ure 2 shows a sample execution path in a particular
virtual world. The challenge is learning to perform
this task by simply observing humans following in-
structions. Formally, given training data of the form
{(e1, a1, w1), . . . , (en, an, wn)}, where ei is an NL
instruction, ai is an observed action sequence, and
wi is the current world state (patterns of floors and
walls, positions of any objects, etc.), we want to pro-
duce the correct actions aj for a novel (ej , wj).

Figure 2: Sample virtual world from Chen and
Mooney (2011) of interconnecting hallways with
different floor and wall patterns and objects indi-
cated by letters (e.g. “H” for hatrack).

Figure 3: Sample instruction with its constructed
landmarks plan, components in bold compose the
correct plan.

In order to learn, their system infers the intended
formal plan pi (the MR for a sentence) which pro-
duced the action sequence ai from the instruction ei.
However, there is a large space of possible plans for
any given action sequence. Chen and Mooney first
construct a formal landmarks plan, ci, for each ai,
which is a graph representing the context of every
action and the world-state encountered during the
execution of the sequence. The correct plan MR,
pi, is assumed to be a subgraph of ci, and this causes
a combinatorial matching problem between ei and
ci in order to learn the correct meaning of ei among
all the possible subgraphs of ci. The landmarks and
correct plans for a sample instruction are shown in
Figure 3, illustrating the complexity of the MRs.

Instead of directly solving the combinatorial cor-
respondence problem, they first learn a semantic lex-
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Figure 4: An overview of Chen and Mooney
(2011)’s system. Our method replaces the plan re-
finement and semantic parser parts.

icon that maps words and short phrases to small sub-
graphs representing their inferred meanings from the
(ei, ci) pairs. The lexicon is learned by evaluating
pairs of n-grams, wj , and MR graphs, mj , and scor-
ing them based on how much more likely mj is a
subgraph of the context ci when w occurs in the
corresponding instruction ei. This process is simi-
lar to other “cross-situational” approaches to learn-
ing word meanings (Siskind, 1996; Thompson and
Mooney, 2003). Then, a plan refinement step esti-
mates pi from ci by greedily selecting high-scoring
lexemes of the form (wj , mj) whose words and
phrases (wj) cover the instruction ei and introduce
components (mj) from the landmarks plan ci. The
refined plans are used to construct supervised train-
ing data (ei, pi) for a supervised semantic-parser
learner. The trained semantic parser can parse a
novel instruction into a formal plan, which is finally
executed for end-to-end evaluation. Figure 4 illus-
trates the overall system.

As this figure indicates, our new PCFG method
replaces the plan refinement and semantic parser
components in their system with a unified model
that both disambiguates the training data and learns
a semantic parser. We use the landmarks plans and
the learned lexicon produced by Chen and Mooney
(2011) as inputs to our system.2

2In our experiments, we used the top 1,000 lexemes learned
by Chen and Mooney (2011).

3 Our PCFG Approach

Like Börschinger et al. (2011), our approach learns
a semantic parser directly from ambiguous su-
pervision, specifically NL instructions paired with
their complete landmarks plans as context. Our
method incorporates the semantic lexemes as build-
ing blocks to find correspondences between NL
words and semantic concepts represented by the lex-
eme MRs, instead of building connections between
NL words and every possible MR constituent as in
Börschinger et al.’s approach. Particularly, we uti-
lize the hierarchical subgraph relationships between
the MRs in the learned semantic lexicon to produce
a smaller, more focused set of PCFG rules.3 The
intuition behind our approach is analogous to the hi-
erarchical relations between nonterminals in syntac-
tic parsing, where higher-level categories such as S,
VP, or NP are further divided into smaller categories
such as V, N, or Det, thereby forming a hierarchi-
cal structure. Inspired by this idea, we introduce a
directed acyclic graph called the Lexeme Hierarchy
Graph (LHG) which represents the hierarchical rela-
tionships between lexeme MRs. Since complex lex-
eme MRs represent complicated semantic concepts
while simple MRs represent simple concepts, it is
natural to construct a hierarchy amongst them. The
LHGs for all of the training examples are used to
construct production rules for the PCFG, which are
then parametrized using EM. Finally, a novel sen-
tence is semantically parsed by computing its most-
probable parse using the trained PCFG, and then its
MR is extracted from the resulting parse tree.

3.1 Constructing a Lexeme Hierarchy Graph

An LHG represents the hierarchy of lexical mean-
ings relevant to a particular training instance by en-
coding the subgraph relations between the MRs of
relevant lexemes. Algorithm 1 describes how an
LHG is constructed for an ambiguous training pair
of a sentence and its corresponding context, (ei, ci).
First, we obtain all relevant lexemes (wi

j , m
i
j) in the

lexicon L, where the MR mi
j is a subgraph of the

context ci (denoted as mi
j ⊂ ci). These lexemes are

3The total number of PCFG rules constructed for our navi-
gation training sets is about 18,000, while Börschinger et al.’s
method produces 33,000 rules for the much simpler sportscast-
ing domain.
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Algorithm 1 LEXEME HIERARCHY GRAPH (LHG)

Input: Training instance (ei, ci), Lexicon L
Output: Lexeme hierarchy graph for (ei, ci)

Find relevant lexemes (wi
1, m

i
1), . . . , (w

i
n, mi

n)
s.t. mi

j ⊂ ci

Create a starting node T ; MR(T )← ci

for all mi
j in the descending order of size do

Create a node T i
j ; MR(T i

j )← mi
j

PLACELEXEME(T i
j ,T )

end for

procedure PLACELEXEME(T ′,T )
for all children Tj of T do

if MR(T ′) ⊂ MR(Tj) then
PLACELEXEME(T ′,Tj)

end if
end for
if T ′ was not placed under any child Tj then

Add T ′ as child of T
end if

end procedure

sorted in descending order based on the number of
nodes in their MRs mi

j . Then, after setting the con-
text ci as the MR of the root node (MR(T ) ← ci),
lexemes are inserted, in order, into the graph to cre-
ate a hierarchy of MRs, where each child’s MR is a
subgraph of the MR of each of its parents. Figure 5
illustrates a sample construction of an LHG for the
following landmarks plan (ci):

Turn(RIGHT),
Verify(side:HATRACK, front:SOFA),
Travel(steps:3),
Verify(at:EASEL)

The initial LHG may contain nodes with too many
children. This is a problem, because when we sub-
sequently extract PCFG rules, we need to add a pro-
duction for every k-permutation of the children of
each node (see Section 3.2). To reduce the branch-
ing factor in the LHG, we introduce pseudo-lexeme
nodes by repeatedly combining the two most similar
children of each node. Pseudocode for the process is
shown in Algorithm 2. The MR for a pseudo-lexeme
is the minimal graph, m′, that is a supergraph of both
of the lexeme MRs that it combines. The pair of

(a) All relevant lexemes are obtained for the training exam-
ple and ordered by the number of nodes in their MR.

(b) Lexeme MR [1] is added as a child of the top node. MR
[2] is a subgraph of [1], so it is added as its child.

(c) MR [3] is not a subgraph of [1] or [2], so it is added as a
child of the root. MR [4] is added under [3], and MR [5] is
recursively filtered down and added under [2].

Figure 5: Sample LHG construction.
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Algorithm 2 ADDING PSEUDO LEXEMES TO LHG
Input: LHG with root T
Output: LHG with pseudo lexemes added
procedure RECONSTRUCTLHG(T )

repeat
((Ti, Tj), m

′) ← pick the most similar
pair (Ti, Tj) of children of T and the minimal ex-
tension m′ s.t. MR(Ti) ⊂ m′, MR(Tj) ⊂ m′,
m′ ⊂ MR(T )

Add child T ′ of T ; MR(T ′)← m′

Move Ti and Tj to be children of T ′

until There are no more pairs to combine
for all non-leaf children Tk of T do

RECONSTRUCTLHG(Tk)
end for

end procedure

most similar children, (mi, mj), is determined by
measuring the fraction of the nodes in mi and mj

that overlap with their minimum extension m′ and
is calculated as follows:

Sim(mi, mj , m
′) =

|mi|+ |mj |
2 |m′|

where |m| is the number of nodes in the MR m.
Adding pseudo-lexemes also has another advan-
tage. They can be considered to be higher-level
semantic concepts composed of two or more sub-
concepts. These higher-level concepts will likely
occur in other training examples as well, which al-
lows for more flexible interpretations. For example,
assuming the rule A → BCD is constructed from
an LHG, we will introduce a pseudo lexeme E and
build two rules A→ BE and E → CD. It is likely
that E also occurs in another rule constructed from
other training examples such as E → FG. This
increases the model’s expressive power by support-
ing additional derivations such as A→∗ BFG, pro-
viding more flexibility when parsing novel NL sen-
tences.

3.2 Composing PCFG Rules

The next step composes PCFG rules from the LHGs
and is summarized in Figure 6. We basically fol-
low the scheme of Börschinger et al. (2011), but
instead of generating NL words from each atomic
MR, words are generated from each lexeme MR,

Figure 6: Summary of the rule generation process.
NLs refer to the set of NL words in the corpus. Lex-
eme rules come from the schemata of Börschinger
et al. (2011), and allow every lexeme MR to gener-
ate one or more NL words. Note that pseudo-lexeme
nodes do not produce NL words.

and smaller lexeme MRs are generated from more
complex ones as given by the LHGs. A nonterminal
Sm is generated for the MR, m, of each LHG node.
Then, for every LHG node, T , with MR, m, we add
rules of the form Sm → Smi ...Smj , where the RHS
is some k-permutation of the nonterminals for the
MRs of the children of node T . Börschinger et al.
assume that every atomic MR generates at least one
NL word. However, since we do not know which
subgraph of the overall context (i.e. ci, the MR of the
root node) conveys the intended plan and is therefore
expressed in the NL instruction, we must allow each
ordered subset of the children of a node (i.e. each
k-permutation) to be a possible generation.

The rest of the process more closely follows
Börschinger et al.’s. Every MR, m, of a lexeme
node4 generates a rule Sm → Phrasem, and ev-
ery Phrasem generates a sequence of NL words, in-
cluding one or more “content words” (Wordm) for
expressing m and zero or more “extraneous” words
(Word∅). While Börschinger et al. have Wordm

generate all possible NL words (each of which are

4We exclude pseudo-lexeme nodes in this process, because
they should only generate words through generating lexemes.
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subsequently weighted by EM training), in our ap-
proach, each Wordm only produces the NL phrase
associated with m in the lexicon, or individual words
that appear in this phrase. The words not covered
by Wordm also can be generated by Word∅ which
has rules for every word. Phm and PhXm ensure
that Phrasem produces at least one Wordm, where
PhXm indicates that one or more Wordm’s have
already been generated, and Phm indicates that no
Wordm has yet been generated.

3.3 Parsing Novel NL Sentences
To learn the parameters of the resulting PCFG, we
use the Inside-Outside algorithm.5 Then, the stan-
dard probabilistic CKY algorithm is used to produce
the most probable parse for novel NL sentences (Ju-
rafsky and Martin, 2000).

Börschinger et al. (2011) simply read the MR, m,
for a sentence off the top Sm nonterminal of the
most probable parse tree. However, in our approach,
the correct MR is constructed by properly compos-
ing the appropriate subset of lexeme MRs from the
most-probable parse tree. This allows the system to
produce a wide variety of novel MRs for novel sen-
tences, as long as the correct MR is a subgraph of the
complete context (ci) for at least one of the training
sentences.

First, the parse tree is pruned to remove all sub-
trees starting with Phrasex nodes. This leaves a
tree consisting of the Root and a set of Sm nodes.
The pruned subtrees only concern generating NL
words and phrases from the selected MRs. The re-
maining tree shows which MR constituents were se-
lected from the available context, from which the
sentence is then generated. Each leaf in the pruned
tree represents an MR constituent that was used to
generate a phrase in the sentence. These are the con-
stituents we want to assemble and compose into a
final MR for the sentence.

Algorithm 3 describes the procedure for extract-
ing the final MR from the pruned parse tree. Fig-
ure 7 graphically depicts a sample trace of this algo-
rithm. The algorithm recursively traverses the parse
tree. When a leaf-node is reached, it marks all of the
nodes in its MR. After traversing all of its children,

5We used the implementation available at http://web.
science.mq.edu.au/˜mjohnson/Software.htm
which was also used by Börschinger et al. (2011).

Algorithm 3 CONSTRUCT PARSED MR RESULT

Input: Parse tree T for input NL, e, with all
Phrasex subtrees removed.
Output: Semantic parse MR, m, for e
procedure OBTAINPARSEDOUTPUT(T )

if T is a leaf then
return MR(T ) with all its nodes marked

end if
for all children Ti of T do

mi ← OBTAINPARSEDOUTPUT(Ti)
Mark the nodes in MR(T ) corresponding

to the marked nodes in mi

end for
if T is not the root then

return MR(T )
end if
return MR(T ) with unmarked nodes removed

end procedure

a node in the MR for the current parse-tree node is
marked iff its corresponding node in any of the chil-
dren’s MRs were marked. The final output is the MR
constructed by removing all of the unmarked nodes
from the MR for the root node.

4 Experimental Evaluation

For evaluation, we used the same data and method-
ology as Chen and Mooney (2011). Please see their
paper for more details.

4.1 Data

We used the English instructions and follower data
collected by MacMahon et al. (2006).6 This data
contains 706 route instructions for three virtual
worlds. The instructions were produced by six in-
structors for 126 unique starting and ending loca-
tion pairs spread evenly across the three worlds, and
there were 1 to 15 human followers for each instruc-
tion who executed an average of 10.4 actions per in-
struction. Each instruction is a paragraph consist-
ing of an average of 5.0 sentences, each contain-
ing an average of 7.8 words. Chen and Mooney
constructed the additional single-sentence corpus by
matching each sentence with the majority of human

6Available at http://www.cs.utexas.edu/users/
ml/clamp/navigation/
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(a) Pruned parse tree showing only MRs for Sm

nodes
(b) Leaf nodes have all their elements marked

(c) Upper level nodes are marked according to leaf-
node markings

(d) Removing all unmarked elements for the root
node leads to the final MR output

Figure 7: Sample construction of MR output from pruned parse tree.

followers’ actions. We use this single-sentence ver-
sion for training, but use both the single-sentence
and the original paragraph version for testing. Each
sentence was manually annotated with a “gold stan-
dard” execution plan, which is used for evaluation
but not for training.

4.2 Methodology and Results
Experiments were conducted using “leave one envi-
ronment out” cross-validation, training on two envi-
ronments and testing on the third, averaging over all
three test environments. We perform direct compar-
ison to the best results of Chen and Mooney (2011)
(referred to as CM). A Wilcoxon signed-rank test
is performed for statistical significance, and ‘∗’ de-
notes significant differences (p < .01) in the tables.

Semantic Parsing Results
We first evaluated how well our system learns to

map novel NL sentences for new test environments
into their correct MRs. Partial semantic-parsing ac-
curacy (Chen and Mooney, 2011) is calculated by

Precision Recall F1
Our system 87.58 ∗65.41 ∗74.81
CM ∗90.22 55.10 68.37

Table 1: Test accuracy for semantic parsing.
‘∗’ denotes difference is statistically significant.

comparing the system’s MR output to the hand-
annotated gold standard. Accuracy is measured in
terms of precision, recall, and F1 for individual MR
constituents (thereby awarding partial credit for ap-
proximately correct MRs).

Table 1 demonstrates that our method outper-
forms CM by 6 points in F1. Our PCFG-based ap-
proach is able to probabilistically disambiguate the
training data as well as simultaneously learn a sta-
tistical semantic parser within a single framework.
This results in better overall performance compared
to CM, since they lose potentially useful informa-
tion, particularly during the refinement stage, due to
the separate disjoint components of the system.
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Single-sentence Paragraph
Our system ∗57.22% ∗20.17%
CM 54.40% 16.18%

Table 2: Successful plan execution rates for novel
test data. ‘∗’ means statistical significance.

Navigation Plan Execution Results
Next, we test the end-to-end system by execut-

ing the parsed navigation plans for test instructions
in novel environments to see if they reach the ex-
act desired destinations in the environment. Table
2 shows the successful end-to-end navigation-task
completion rate for both single-sentences and com-
plete paragraph instructions.

Again, our system outperforms CM’s best results
since more accurate semantic parsing produces more
successful plans. However, the difference in per-
formance is smaller than that observed for semantic
parsing. This is because the redundancy in the hu-
man generated instructions allows an incorrect se-
mantic parse to be successful, as long as the errors
do not affect its ability to guide the system to the
correct destination.

5 Discussion

Our approach improves on Börschinger et al.
(2011)’s method in the following ways:

• The building blocks for associating NL and MR
are semantic lexemes instead of atomic MR con-
stituents. This prevents the number of constructed
PCFG rules from becoming intractably large as hap-
pens with Börschinger et al.’s approach. As previ-
ously mentioned, lexeme MRs are intuitively anal-
ogous to syntactic categories in that complex lex-
eme MRs represent complicated semantic concepts
whereas higher-level syntactic categories such as S,
VP, or NP represent complex syntactic structures.

• Our approach has the ability to produce previ-
ously unseen MRs, whereas Börschinger et al. can
only generate an MR if it is explicitly included in
the PCFG rules constructed from the training data.
Even though our MR parse is restricted to be a sub-
graph of some training context, ci, our model allows
for exponentially many combinations.

In addition, our approach can produce a wider
range of MR outputs than Chen and Mooney

(2011)’s even though we use their semantic lexi-
con as input. Their system deterministically builds a
supervised training set by greedily selecting high-
scoring lexemes, thus implicitly including only
high-scoring lexemes during training. On the other
hand, our probabilistic approach also considers rela-
tively low-scoring but useful lexemes, thereby utiliz-
ing more semantic concepts in the lexicon. In partic-
ular, this explains why our approach obtains higher
recall in the evaluation of semantic parsing.

Even though we have demonstrated our approach
on the specific task of following navigation in-
structions, it is straightforward to apply it to other
language-grounding tasks where NL sentences po-
tentially refer to some subset of states, events, or ac-
tions in the world, as long as this overall context can
be represented as a semantic graph or logical form.
Since the semantic lexicon is an input to our system,
other approaches to lexicon learning are also easily
incorporated.

6 Related Work

Most work on learning semantic parsers that map
natural-language sentences to formal representa-
tions of their meaning have relied upon totally su-
pervised training data consisting of NL/MR pairs
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kate and Mooney, 2006; Wong and Mooney,
2007; Zettlemoyer and Collins, 2007; Lu et al.,
2008; Zettlemoyer and Collins, 2009). Several re-
cent approaches have investigated grounded learn-
ing from ambiguous supervision extracted from per-
ceptual context. A number of approaches (Kate and
Mooney, 2007; Chen and Mooney, 2008; Chen et al.,
2010; Kim and Mooney, 2010; Börschinger et al.,
2011) assume training data consisting of a set of sen-
tences each associated with a small set of MRs, one
of which is usually the correct meaning of the sen-
tence. Many of these approaches (Kate and Mooney,
2007; Chen and Mooney, 2008; Chen et al., 2010)
disambiguate the data and match NL sentences to
their correct MR by iteratively retraining a super-
vised semantic parser. Kim and Mooney (2010)
proposed a generative semantic parsing model that
first chooses which MRs to describe and then gen-
erates a hybrid tree structure (Lu et al., 2008) con-
taining both the MR and NL sentence. They train
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this model on ambiguous data using EM. As pre-
viously discussed, Börschinger et al. (2011) use a
PCFG generative model and also train it on ambigu-
ous data using EM. Liang et al. (2009) assume each
sentence maps to one or more semantic records (i.e.
MRs) and trains a hierarchical semi-Markov genera-
tive model using EM, and then finds a Viterbi align-
ment between NL words and records and their con-
stituents. Several recent projects (Branavan et al.,
2009; Vogel and Jurafsky, 2010) use NL instructions
to guide reinforcement learning from independent
exploration with delayed rewards. These systems do
not even need the ambiguous supervision obtained
from observing humans follow instructions; how-
ever, they do not learn semantic parsers that map
sentences to complex, structural representations of
their meaning.

Interpreting and executing NL navigation instruc-
tions is our primary task, and several other recent
projects have studied related problems. Shimizu and
Haas (2009) present a system that parses natural lan-
guage instructions into actions. However, they limit
the number of possible actions to only 15 and treat
the problem as a sequence labeling problem that is
solved using a CRF with supervised training. Ma-
tuszek et al. (2010) developed a system that learns to
map NL instructions to executable commands for a
robot navigating in an environment constructed by a
laser range finder. However, their approach has limi-
tations of ignoring any objects or other landmarks in
the environment to which the instructions can refer.
There are several recent projects (Vogel and Juraf-
sky, 2010; Kollar et al., 2010; Tellex et al., 2011)
which learn to follow instructions in more linguisti-
cally complex environments. However, they assume
predefined spatial words, direct matching between
NL words and the names of objects and other land-
marks in the MR, and/or an existing syntactic parser.
By contrast, our work does not assume any prior lin-
guistic knowledge, syntactic, lexical, or semantic,
and must learn the mapping between NL words and
phrases and the MR terms describing landmarks.

7 Future Work

In the future, we would like to develop a better lex-
icon learner since our PCFG approach critically re-
lies on the quality of the learned lexicon. Particu-

larly, we would like to investigate how syntactic in-
formation (such as part-of-speech tags induced us-
ing unsupervised learning) could be used to improve
semantic-lexicon learning. For example, some of the
current lexicon entries violate the general constraint
that nouns usually refer to objects and verbs to ac-
tions. Ideally, the lexicon learner would be able to
induce and then utilize this sort of relationship be-
tween syntax and semantics.

In addition, we want to investigate the use of dis-
criminative reranking (Collins, 2000), which has
proven effective in various other NLP tasks. We
would expect the final MR output to improve if a
discriminative model, which uses additional global
features, is used to rerank the top-k parses produced
by our generative PCFG model.

8 Conclusions

We have presented a novel method for learning a
semantic parser given only highly ambiguous su-
pervision. Our model enhances Börschinger et
al. (2011)’s approach to reducing the problem of
grounded learning of semantic parsers to PCFG in-
duction. We use a learned semantic lexicon to aid
the construction of a smaller and more focused set
of PCFG productions. This allows the approach
to scale to complex MR languages that define a
large (potentially infinite) space of representations
for capturing the meaning of sentences. By contrast,
the previous PCFG approach requires a finite MR
language and its grammar grows intractably large
for even moderately complex MR languages. In ad-
dition, our algorithm for composing MRs from the
final parse tree provides the flexibility to produce a
wide range of novel MRs that were not seen during
training. Evaluations on a previous corpus of nav-
igational instructions for virtual environments has
demonstrated the effectiveness of our method com-
pared to a recent competing system.
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