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Abstract

This paper introduces an attribute selection
task as a way to characterize the inherent mea-
ning of property-denoting adjectives in adjec-
tive-noun phrases, such as engtin hot sum-
mer denoting the attributeTEMPERATURE,
rather thantasTe. We formulate this task

in a vector space model that represents adjec-
tives and nouns as vectors in a semantic space
defined over possible attributes. The vectors
incorporate latent semantic information ob-
tained from two variants of LDA topic mod-
els. Our LDA models outperform previous ap-
proaches on a small set of 10 attributes with
considerable gains on sparse representations,
which highlights the strong smoothing power
of LDA models. For the first time, we extend
the attribute selection task to a new data set
with more than 200 classes. We observe that
large-scale attribute selection is a hard prob-
lem, but a subset of attributes performs ro-
bustly on the large scale as well. Again, the
LDA models outperform the VSM baseline.
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data. An example of the latter are topic models (Blei
et al., 2003), which have recently been applied to
modeling selectional preferences of verbs (Ritter et
al., 2010;0 Seaghdha, 2010), or word sense disam-
biguation (Li et al., 2010).

A topic that is increasingly studied in distribu-
tional semantics is the semantics of adjectives, both
in isolation (Almuhareb, 2006) and in compositional
adjective-noun phrases (Hartung and Frank, 2010;
Guevara, 2010; Baroni and Zamparelli, 2010).

In this paper, we propose a new approach to a
problem we denote atribute selectionThe task is
to predict the hidden attribute meaning expressed by
a property-denoting adjective in composition with
a noun. The adjectivdot, e.g., may denote at-
tributes such agEMPERATURE, TASTE Or EMO-
TIONALITY . These adjective meanings can be com-
bined with nouns such dea, soupor debate which
can be characterized in terms of attributes as well.
The goal of the task is to determine the hidden at-
tribute meaning predicated over the noun in a given
adjective-noun phrase, as illustrated in (1).

(1) a. ahofaue SUMMEEoncept
b. TEMPERATURESumme) = hot

Corpus-based statistical modeling of semantics is

gaining increased attention in computational linguis- It is by way of the composition of adjective and
tics. This field of research includes distributionafnoun that specific attributes are selected from the ad-
vector space models (VSMs), i.e., models that rerjective’s space of possible attribute meanings, and
resent the semantics of words or phrases as vectdy®ically lead to a disambiguation of the adjective
over high-dimensional cooccurrence data (Turne§nd possibly the noun. Hartung and Frank (2010)
and Pantel, 2010; Baroni and Lenci, 2010, i.a.), agere the first to model this insight in a VSM by rep-
well as latent variable models (LVMs) which aggrefesenting the meaning of adjectives and nouns in se-
gate distributional observations in ’hidden’, or latenfnantic vectors defined over attributes. The meaning
variables, thereby reducing the dimensionality of th8f adjective-noun phrases is computed by means of
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2|, % models on a much larger space of attributes, to probe
LB ol s & . their capacity on a more realistic data set.
Sl |g|%| w|2| 8|5l The remainder of this paper is divided as fol-
S|a|d3|5| a [3] 6 |2]"F] 3 lows. Section 2 reviews related work on distribu-
Ze; 114 318 (2) 210 ‘2‘2 8 :5 8 8 gé tional models of adjective semantics, and introduces
ext 12130l 20 w0 lololololano the two frameworks in which we ground our ap-
€+b| 15|39 | 2| 21| 71 |0| 49 |0|O| 41 proach: LVMs and VSMs. In Section 3 we introduce

_ B two LDA models for attribute selection: C-LDA and
Figure 1: Vectors foenormouge) andball (b) L-LDA. Section 4 describes the settings for two ex-

vector composition, such that the ‘hidden’ attributé:’?”memsz |r_1 the f|r§t experiment, we perform at-
meaning of the phrase can be ‘selected’ as a promtf-'bUte selection confined to a space of 10 attributes

nent component from the composed vector. This i compare against prior work. In the second setting
illustrated in Fig. 1 for the adjectivenormous(e) we perform attribute selection on a large scale, using
in combination with the nourball (g) with alter- 206 attributes. Section 5 presents and discusses the

native composition operations: vector muItipIicationreSUItS' Section 6 concludes.
(x) and addition ). Both yield size as the most 2 Rdated Work
prominent component in the composed vector.

In the present paper we offer a new approach t@istributional models of adjective semantics.
this formalization of the compositional meaning ofAlmuhareb (2006) aims at capturing the relationship
adjectives and nouns that owes to both distributiondletween adjectives and attributes based on lexico-
VSMs and LVMs. Through this combination, wesyntactic patterns, such e ATTR of the * is ADJ
attempt to improve on earlier work in AlImuharebApart from inherent sparsity issues, his approach
(2006) and Hartung and Frank (2010), which argloes not account for the compositional nature of the
both embedded in a purely distributional setting. problem, as the contextual information contributed

Specifically, we use Latent Dirichlet Allocation by a noun is neglected: For instance, his model is
(LDA; Blei et al. (2003)) to train an attribute model unable to predict thdtotis unlikely to denotaASTE
that captures semantic information encoded in adR the context osummeyother than irhot meal
jectives and nouns independently of one another. Compositionality of adjective-noun phrases and
Following Hartung and Frank (2010), this model ishow it can be adequately modeled in VSMs is
embedded into a VSM that employs vector comthe main concern in Baroni and Zamparelli (2010)
position to combine the meaning of adjectives anénd Guevara (2010), who are in search of the
nouns. We present two variants of LDA that differbest composition operator for combining adjective
in the way attributes are associated with the inducedlith noun meanings. While these works adhere
LDA topics: Controled LDA (C-LDA) and Labeled to a purely latent representation of meaning, Har-
LDA (L-LDA; Ramage et al. (2009)). Both will be tung and Frank (2010) include attributes as sym-
presented in detail in Section 3. bolic ‘hidden’ meanings of adjectives, nouns and

Our aims in this paper are two-fold: (i) We inves-adjective-noun phrases in a distributional VSM.
tigate LDA as a modeling framework in the attribute Finally, a large body of work dealing with com-
selection task, as its use of topics as latent variabl@sitionality in distributional frameworks is not con-
may alleviate inherent sparsity problems faced bfined to the special case of adjective-noun composi-
prior work using pattern-based (Almuhareb, 2006%ion (Mitchell and Lapata (2008), Rudolph and Gies-
or vector space models (Hartung and Frank, 2010brecht (2010), i.a.). All these approaches regard
(i) While these prior approaches were restricted t60mposition as a process combining vectors (or ma-
a confined set of 10 attributes, we will we apply outrices, resp.) to yield a new, contextualized vector

BT o _ representation within the same semantic space.
The figure is adopted from the distributional setting of Har-

tung and Frank (2010), with component values defined by paj- gtent Dirichlet Allocation, aka. Topic Models
tern frequency counts for the chosen attribute nouns. (TMs). LDA is a generative probabilistic model
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for document collections. Each document is represccur with the attribute nouns in local contextual re-
sented as a mixture over latetopics where each lations. The topic distributions obtained from fitting
topic is a probability distribution over words (Blei etan LDA model to the collection of these pseudo-
al., 2003). These topics can be used as dense felcuments can then be injected into semantic vector
tures for, e.g., document clustering. Depending orepresentations for adjectives and nouns.
the number of topics, which has to be pre-specified, In its original statement, LDA is a fully unsuper-
the dimensionality of the document representationised process (apart from the desired number of top-
can be considerably reduced in comparison to sinies which has to be specified in advance) that es-
ple bag-of-words models. The remainder of this paimates topic distributions over documerfig and
per will assume some familiarity with LDA and the topic-word distributionsp; with topics represented
LDA terminology as introduced in Blei et al. (2003). as latent variables. Estimating these parameters on a
Recent work investigates ways of accommodatindocument collection yield®pic proportionsP(t|d)
supervision with LDA, e.g. supervised topic modelsand topic distributionsP(w|t) that can be used to
(Blei and McAuliffe, 2007), Labeled LDA (L-LDA) compute a smooth distributio®?(w|d) as in (2),
(Ramage et al., 2009) or DiscLDA (Lacoste-Julierwheret denotes a latent topiay a word andd a
et al., 2008). We will discuss L-LDA in Section 3. document in the corpus.

Digtributional VSMsand TMs. The idea to inte-
grate topic models and VSMs goes back to Mitchell
and Lapata (2009) who build a distributional model

. . : Being designed for exploratory rather than dis-
with dimensions set to topics over bag-of-words fea- .~~~ . . .
. . criminative analysis, LDA does not intend condi-

tures. In their setting, LDA merely serves the pur-

ose of dimensionality reduction. whereas our atjoning of words or topics on external categories.
b nensionaity ! " P tl'hat is, the resulting topics cannot be related to pre-
ticular motivation is to use topics as probabilistic .

indicators for the prediction of attributes as sema viously defined target categories. For attribute se-

. R e . q_ection, the LDA-inferred topics need to be linked
tic target categories in adjective-noun composmo:%.

P(w|d) = P(w|t)P(t|d) )

Mitchell and Lapata (2010) compare VSMs define P sgmantlc attributes. Therefore, we apply two ex
. ._{ensions of standard LDA that are capable of taking
over bags of context words vs. latent topics in a sim- . . . )
oo ) . supervised category information into account, either
ilarity judgement task. Their results indicate thata " .. . . : "
R . implicitly or directly, by including an additional ob-
multiplicative setting works best for vector compo- . ; .
o . ... _servable variable into the generative process.
sition in word-based models, while vector addition
In general, LVMs can be expected to overcome

is better suited for topic vectors. S .
sparsity issues that are frequently encountered in
3 Topic Modelsfor Attribute Selection distributional models. This positive smoothing ef-
_ ) ) _ fect is achieved by marginalization over the latent
3.1 Using LDA for modeling lexical ssmantics  \ariaples (cf. Prescher et al. (2000)). For instance, it
Recently, LDA has been used for problems in lexicaik unlikely to observe a dependency path linking the
semantics, where the primary goal is not documeradjectivematureto the attributeMATURITY. Such
modeling but the induction of semantic knowledgea relation is more likely foyyoung for example. If
from high-dimensional co-occurrence data. Ritter gtoungco-occurs withmaturein a different pseudo-
al. (2010) and Séaghdha (2010) model selectionatlocument £GE might be a candidate), this results in
restrictions of verbs by inducing topic distributionsa situation where (iyoungandmatureshare one or
that characterize 'mixtures of topics’ observed irmore latent topics and (ii) the topic proportions for
verb argument positions. As a basis for LDA modthe attributesuaTurITY andAGE will become sim-
eling, they collectpseudo-documents.e. bags of ilar to the extent of common words in their pseudo-
words that co-occur in syntactic argument positionglocuments. Consequently, the final attribute model
We apply a similar idea to the attribute selectioris expected to assign a (small) positive probability to
problem: we collect pseudo-documents that chathe relation betweematureandMATURITY without
acterize attributes by adjectives and nouns that cobserving it in the training data.
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3.2 Controled LDA 1 For each topié € {1,..., K}:
. . . ) 2 Generatéd, = (Br1,- -, Bkv)T ~ Dir(-| n)
The generative story behind C-LDA is equivalent t® For each document

standard LDA. However, the collection of pseudo4  Foreachtopié € {1,..., K}
documents used as input to C-LDA is structured iR Generate\"” € {0,1} ~ Bernoulli(- | )
Generatex'? = L x o
a controled way such that each document conve 4 , 4
o . o . Generatd? = (6,,,...,601,, )" ~ Dir(-| ')
semantic information that specifically characterlzeg For eachi in {1 Na} d
L . . . . yeeey VA
the individual _categorles of_ mFere_st (attributes, iny Generate, ¢ {Aﬁd),--.,ASZ)d} ~ Mult(-| 69
our case). In line with the distributional hypothesisg Generatey; € {1,...,V} ~ Mult(-| z,)
(Harris, 1968), we consider the pseudo-documents
constructed in this way as d|str|bgt|onal fmgerprlntgcigure 2: L-LDA generative process (Ramage et al. 2009)
of the meaning of the corresponding attribute.
The contents of the pseudo-documents are se-
lected along syntactic dependency paths linking
each attribute noun to meaningful context words (ad-  P(wla) & P(wl|d) = > P(w|t)P(t|d)  (4)
jectives and noun$) A corpus consisting of the two t
sentences in (3), e.g., yields a pseudo-document fgf3 | apded LDA

the attribute noursPEEDcoNtainingcar andfast
g L-LDA (Ramage et al., 2009) extends standard LDA

(3) What is the speed of this car? The machine to include supervision for specific target categories,
runs at a very fast speed. yet in a different way: (i) The generative process
includes a second observed variable, i.e. each doc-
Though we are ultimately interested in triples ofument is explicitly labeled with a target category.
attributes, adjectives and nouns that define the com-document may be labeled with an arbitrary num-
positional semantics of adjective-noun phrases (dber of categories; unlabeled documents are also pos-
(1)), C-LDA is only exposed to binary tuples be-sible. However, L-LDA permits only binary as-
tween attributes and adjectives or nouns, respesignments of categories to documents; probabilistic
tively. This is in line with Hartung and Frank weights over categories are not intended. (ii) Con-
(2010), who obtained substantial performance imgrary to LDA, where the number of topics has to be
provements by splitting the ternary relation into twaspecified in advance, L-LDA sets this parameter to
binary relations. the number of unique target categories. Moreover,
Presenting LDA with pseudo-documents that chathe model is constrained such that documents may
racterize individual target attributes imports superbe assigned only those topics that correspond to their
vision into the LDA process in two respects: theobservable category label(s). That is, latent topics
estimated topic proportion®(t|d) will be highly ¢ in the standard formulation of LDA (2) are con-
attribute-specific, and similarly so for the topic dis-strained to correspond to explicit labels
tributions P(w|t). This makes the model more ex- More specifically, L-LDA extends the generative
pressive for the ultimate labeling task. Moreoverprocess of LDA by constraining the topic distribu-
since C-LDA collects pseudo-documents focused aiions over document8(®) to only those topics that
individual target attributes, we are able to link extercorrespond to the document’s set of lahelé). This
nal categories to the generative process by heurisis done by projecting the parameter vector of the
cally labeling pseudo-documents with their respedirichlet topic priora to a lower-dimensional vec-
tive attribute as target category. Thus, we approxor a(d) whose topic dimensions correspond to the
imate P(w|a), the probability of a word given an document labels.
attribute, byP(w|d) as obtained from LDA: This extension is integrated in steps 5 and 6 of

. . . . ) )
’The dependency paths, together with the set of attribut'glg' 2: First, in step 5, the document's labels’

nouns of interest, have to be manually specified. See the suBl€ generated for each togic The resulting vector
plementary material for the full list of dependency pathsdus  of document’s labels (@) = {k ’ Al(fd) = 1} is used
to define a document-specific label projection matrix
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Lfgzd)\xl{’ such thatLgl) =1if )\Z(d): j, and 0 oth- cation(x) or vector addition(-+).

erwise. This matrix is used in step 6 to project the For attribute selection on the composed vector, we
Dirichlet topic priora to a lower-dimensional vec- use two methods we found to perform best in Har-

tor (@, whose topic dimensions correspond to théung and Frank (2010): Entropy Selection (ESel)
document labels. Topic proportions are then, in stepnd Most Prominent Component (MPC). ESel mea-
7, generated for this reduced parameter space.  Sures entropy over the vector components to identify
In our instantiation of L-LDA, we collect pseudo- components that encode a high amount of informa-
documents for attributes exactly as for C-LDA. Doclion. Itselects all attributes that lead to an increase of
uments are labeled with exactly one category, the géntropy when suppressed from the vector represen-
tribute noun. Note that, even though the relationshiftion. If no informative components can be detected
between documents and topics is fixed, the one bl & vector due to a very broad, flat distribution of
tween topics and words is not. Any word occurringh€ probability mass (ch in Fig. 1), ESel yields an
in more than one document will be assigned a nor@mpty list. MPC always chooses exactly one vector
zero probability for each corresponding topic. component, i.e. the one with the highest value.
Thus, with regard to attribute modeling, C-LDA
and L-LDA build an interesting pair of opposites:
The L-LDA model assumes that attributes are seattribute selection over small and large semantic
mantically primitive in the sense that they cannotpaces. We evaluate the performance of the VSMs
be decomposed into smaller topical units, whereasased on C-LDA and L-LDA in two experimental
words may be associated with several attributes gkttings, contrasting the problem of attribute selec-
the same time. C-LDA, at the other end of the speaion on semantic spaces of radically different dimen-
trum, licenses semantic variability on both the atsjonality, using sets of 10 vs. 206 attributes.
tribute and the word level. Particularly, a word mightg,,o1yation measures. We evaluate against two

be associated with some of the topics underlying a4 standards consisting of adjective-noun phrases
attribute, but not with all of them, and an attrlbute(Or adjective-noun pairs) and their associated at-

can be characterized by multiple topics.

4 Experimental Settings

tribute meanings. We report precision, recall and
fi-score. Where appropriate, we test differences in
the performance of various model configurations for
statistical significance in a randomized permutation

LDA or L-LDA into a distributional VSM, we fol- test (Yeh, 2000), using thei gf tool (Pado, 2006).
low Hartung and Frank (2010): Adjectives and asdines. We compare our models against wo
nouns are modeled as independent semantic vect%rg ' P

along their relationship to attributes; the most promi- selines, RITVSM and DEPVSM. PATTSVM is

nent attribute(s) that represent the hidden meanir{econstructed from Hartung and Frank (2010). Itis

of adjective-noun phrases are selected from thegﬁounded in a selection of lexical patterns that iden-

composition (cf. Fig. 1). tify the target elements (adjectives and nouns) for

The dimensions of the VSM are set to the pre_t-he vector basis elements (i.e., the attribute nouns)

selected attributes. Semantic vectors are computg}ia local context window. The component values

are defined using raw frequency counts over the ex-

for all adjectives and nouns occurring at least fiv S .
times in the pseudo-documents. Vector compone(rErtaCteOI patterns. BPVSM is similar to RTTVSM;

values.y o are derived from the C-LDA and L MR T 0T B e 2 s,
LDA models in different ways: with C-LDA we 9 '

, L The paths are identical to the ones used for con-
obtaln_P(w\a) by_ap_proxmatlon from_P(w\d) (CT' structing pseudo-documents in C-LDA and L-LDA.
equation (4)), while in L-LDA we obtai(w|a) di- As in PATTVSM. th ¢ ¢ it
rectly from the induced topic-word distributiop,, > ':j M, the "e‘i or tc‘;mpct’;‘e” s are setto
through labeled topics= a (cf. equation (2)). raw frequencies over extracted pains.

Vector composition is defined agctor multipli- Implementations.  To implement our models, we
rely on MALLET (McCallum, 2002) for C-LDA and

3.4 Vector Space Framework
For integrating the information obtained from C-
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the Stanford Topic Modeling ToolbéXor L-LDA.  Trainingdata. The pseudo-documents are collec-
In both cases, we run 1000 iterations of Gibbs santed from dependency paths obtained from section 2
pling, using default values for all hyperparameters.of the parsed pukWacC corpus (Baroni et al., 2009).

Data set for attribute selection over 10 attributes. Di . f Result
The first experiment is conducted on the data sé ISCUSSIon of RESUts
used in Hartung and Frank (2010). It consists 061 Experiment 1

100 adjective-noun pairs manually annotated folrn Experiment 1, we evaluate the performance

ten attributes: COLOR, DIRECTION, DURATION, ot | DA and L-LDA on the attribute selection
SHAPE SIZE, SMELL, SPEED TASTE, TEMPER taq1 over 10 attributes against the pattern-based
ATURE, WEIGHT. To enable comparison, the dl—and dependency-based models P/SM and De-
mensions of our models are set to exactly these gl g\ as competitive baselines. Besides a com-
tributes. parison to standard VSMs, we are especially in-
Data set for attribute selection over a large se-  terested in the relative performance of the LDA
mantic space (206 attributes). In the second ex- models. Given that C-LDA and L-LDA estimate
periment, we max out the attribute selection taskytripute-specific topic distributions in the structured
to a much larger set of attributes in order to anpseudo-documents under different assumptions re-
alyze the difficulty of the task on more represenyarding the correspondence of attributes and topics
tative data. We automatically construct a data sggf. Sec. 3.2 and 3.3), we expect the two LDA vari-

of adjective-noun phrases labeled with appropriatgnts to differ in their capability to capture the topic
attributes from WordNet 3.0 (Fellbaum, 1998), reqjistributions in the labeled pseudo-documents.

lying on the assumption that examples given in
glosses correspond to the respective word sense -1 Attribute Selection for 10 Attributes
the adjective. We first extract all adjectives that Tables 1 and 2 summarize the results for at-
are linked to at least one attribute synset by thtribute selection over 10 attributes against the la-
at tri but e relation. Next, we run the glosses ofbeled adjective-noun pairs in the test set, using ESel
these adjectives (3592 in number) through TreeTagnd MPC as selection functions on vectors com-
ger (Schmid, 1994) to find examples of adjectiveposed by multiplication (Table 1) and addition (Ta-
modifying nouns in attributive constructions. Theble 2). The results reported for C-LDA correspond
resulting adjective-noun phrases are labeled with tHe the best performing model (with number of top-
attribute label linked to the given adjective sense. ics set to 42, as this setting yields the best and most

This method yields 7901 labeled adjective-nourgonstant results over both composition operators).
phrases. They are divided into development and test C-LDA shows highest f-scores and recall over all
data according to a sampling procedure that respeasttings, and highest precision with vector addifion.
the following criteria: (i) Both sets must containIn line with Mitchell and Lapata (2010) (cf. Sec. 2),
all attributes with an equal number of phrases fowe obtain the best overall results with vector addi-
each attribute; (ii) phrases with both elements cortion (ESel: P: 0.55, R: 0.66, F: 0.61; MPC: P: 0.59,
tained in CoreWordNétare preferred, while others R: 0.71, F: 0.64). The difference between C-LDA
are only considered if necessary to satisfy the firstnd L-LDA is small but significant for vector mul-
criterion. This procedure yields 496/345 phrasetiplication; for vector addition, it is not significant.
in the development/test set, distributed over 206 at- Compared to the LDA models, the VSM baselines
7trib3ute§. 206 attributes, while all models were trained on 262 atteibu

etp://nlp.stanford. edu/software/tnt/. obtained from WordNet in the first extraction step.

A subset of WordNet restricted to the 5000 most fre-  6n Taples 1 and 2, statistical significance of the differance

quently used word senses.  Available fromhttp://  petween the models is marked by the superscripts L, D and P,
wor dnet code. pri ncet on. edu/ standoff-fil es/ denoting a significant difference ovérLDA, DepVSM and

cor e- wordnet . t xt PattVSM, respectively. All differences reported are siggaifit

®If an attribute provides only one example, this was addedt, < 0.05, except for the difference between C-LDA and L-
to the development set. Therefore, the test set only coe®ris|_pa in Table 3 (p < 0.1).
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Table 1: Attribute selection over 10 attributes)(

F-Score

0.35

0.4

ESd MPC : ‘ ‘ ‘
P RFE | P RF S =

C-LDA | 0.58 0.65 061°" | 0.57 0.64 0.60 /\/ WM /M

L-LDA | 0.68 0.54 0.66 | 0.55 0.61 0.58 o= | e 1

DepVSM | 0.48 0.58 0.53 | 0.57 0.60 0.58 V '

PattvSM | 0.63 0.46 0.54 | 0.60 0.58 0.59

ESdl MPC
P R F P R F
C-LDA | 0.55 0.66 0.61°F | 0.59 0.71 0.64
L-LDA | 0.53 0.57 0.587 | 0.50 0.45 0.4%7 - - - - - .
DepVSM | 0.38 0.65 0.48 | 0.57 0.60 0.58 Num. Topics
PattvSM | 0.71 0.35 0.47 | 0.47 0.56 0.51

Figure 3: Performance of C-LDAs.;, x for different

Table 2: Attribute selection over 10 attributes)( topic numbers, compared against all other models

0.65

é'LDA

T T T
L-LDA -------

DepVSM -+ |

e

are competitive, but tend to perform lower. This ef- ‘
fect is statistically significant for ESel with vector  *°|
multiplication: each of the LDA models statistically o
significantly outperforms one of the VSM models, f
DEPVSM and RTTVSM. With ESel and vector , os!
addition, both LDA models outperform both VSM
models statistically significantly. The LDAs; +
models outperform the ARTVSMgg,; + model of
Hartung and Frank (2010) by a high margin in
f-score: +0.14 for C-LDA; +0.08 for L-LDA.
Compared to the stronger multiplicative settings o 10 = 0 w0 5 )
PATTVSMpserx and RTTVSMpe x this still

represents a plus of +0.07 and +0.02 in f-score, rédgure 4: Performance of C-LDAs., 4 for different
spectively. We further observe a clear improvemeri@Pic numbers, compared against all other models
ofthe LDA models over the VSM models in terms Ofdition at topic ranges larger than 10. With vector

recall (+0.20, C-LDAgsei,+ VS. ITTVSMEsei <), aqdition, C-LDA outperforms L-LDA in almost all

ﬁgz\]e expenseF;)f i;)énl\(; loss in $L§C|s||on I('O'OB’ onfigurations, yet at an overall lower performance
ESel,+ VS. FATT psel,x). This clearly con- 1o 0061 | pa (0.55 with addition vs. 0.6 with mul-

firms a stronger generalization power of LDA Com'tiplication). Note that in the multiplicative setting,

pareq to VSM models. . , C-LDA reaches the performance of L-LDA only in
With regard to selection functions, we observe ot configurations, while with vector addition it

that MP_C tends_ to perform bette-r for the VSM mod-y i aing high performance that exceeds L-LDA's top

els, while ESel is more suitable in the LDA models ...« ot 0 6 for topic ranges between 10 and 20.
Figures 3 and 4 display the overall performance Based on these observations, vector addition

Elgxe ranging dO\grLlefferent topic number forhc'seems to offer the more robust setting for C-LDA,
psel,+ Nd C-LDAgse; . — compared 10 the o oo that is less strict with regard to topic-

remaining m_odels that are not dependent on PG ribute correspondences. Vector multiplication, on
size. For topic numbers smaller than the attribute Sgt . 1 or hand. is more suitable for L-LDA and its

size, C.'LDA underperforms, for obvious réasonSqiricter association of topics with class labels.
Increasing ranges of topic numbers to 60 does not
show a linear effect on performance. Parameter sei-1.2 Smoothing Power of LDA Models

tings with performance drops below the VSM base- Our hypothesis was that LDA models should be
lines are rare, which holds particularly for vector adpetter suited for dealing with sparse data, compared

hd
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ESel MPC
P R F P R F
C-LDA | 039 031 0.35 | 0.37 0.27 0.32
L-LDA 0.30 0.18 0.23 0.20 0.18 0.19
DepVSM | 0.20 0.10 0.13] 0.37 0.26 0.30
PattvSM | 0.00 0.00 0.00] 0.00 0.00 0.00

Table 3: Performance figures on sparse vectajs (

ESel

MPC

all property

X + X +
C-LDA | 0.04 0.02| 018" 0.1@
L-LDA 0.03 0.04| 0.15 0.15
DepVSM | 0.02 0.02| 0.12 0.07

Table 5: Performance figures (in f-score) of C-LRA,;
on 206 (all) and 73 property attributes (property)

all | property
P R F| P R F P R F P R F
C-LDA | 043 033 0.38 | 044 0.28 0.34 WIDTH 0.67 1.00 0.80 1.00 0.50 0.6/
L-LDA | 0.34 0.16 0.22 0.37 0.18 0.24 WEIGHT | 0.80 0.57 0.67 0.50 0.57 0.58
DepVSM | 0.16 0.17 0.17] 0.36 0.21 0.27 VAGNETISM 1050 1.00 067
PattVSM | 0.13 0.04 0.06] 0.17 0.25 0.20 SPEED 050 050 050 1.00 050 0.67
Table 4: Performance figures on sparse vecte)s ( JE:AT:IEIE\I g:gg é:gg 8:28 2:83 1:88 (1):38
P TEMPERATURE | 0.30 0.75 0.43 0.43 0.75 0.55
to pattern-based or purely distributional approaches. GE 5.33 050 0.20
While this is broadly confirmed in the above results THICKNESS 1.00 0.25 0.40 050 0.13 0.20
by global gains in recall, we conduct a special evalu- DEGREE 1.00 0.20 0.33
ation focused on those pairs in the test set that suffer LENGTH 0.17 1.00 0.29 0.50 1.00 0.67
from sparse data. We selected all adjective and noun DEPTH 1.00 0.14 0.25 1.00 0.86 0.92
vectors that did not yield any positive component AL?;':TN 8';; 8";’3 8'2‘;’ S5 0T ok
values in the RTTVSM model. The 22 adjective- 50STIoN | 0.14 025 0.18 020 0.25 020
noun pairs in the test set affected by these 'zero vec- [ snarpNEss 1.00 1.00 1.00
tors’ were evaluated using the remaining models. SERIOUSNESS 0.50 1.00 0.67
The results in Tables 3 and 4 yield a very clear pic- COLOR 0.13 0.25 0.17 0.29 0.50 0.36
ture: C-LDA obtains highest precision, recall and LOYALTY 1.00 1.00 1.00
f.score across all settings, followed by L-LDA and L__average [0.49 0.54 0.51 0.63 063 063

DEPVSMgs.;, while their ranks are reversed whentaple 6: Attribute selection on 206 attributes (all) and 73
using MPC. Again, MPC works better for the VSM property attributes (property); performance figures of C-
models, ESel for the LDA models. Vector additionLDA gs.;,» for best attributes (50)

performs best for C-LDA with f-scores of 0.38 and

0.34 — outperforming the pattern-based results 0(l*.llimensions, contrasting vector addition and multi-
sparse vectors by orders of magnitude. plication. The number of topics was set to 400. As

the overall performance is close to 0 for both com-
position methods, no parameter setting can be iden-

Experiment 2 is designed to max out the space (5i,fied as part.icularly suited fpr this large-scale at-
attributes to be modeled, to assess the capacity iPute selection task. The differences between the
both LDA models and the EPVSM baseline model three models are very small and not signifiéant

in the attribute selection task on a large attributg 2 2 Focused Evaluation and Data Analysis

space’. In contrast to Experiment 1, with its con- 1) gain a deeper insight into the modeling capac-
fined semantic space of _10 target attributes, this reRy of the LDA models for this large-scale selection
resents a huge undertaking. task, Table 6 (columall) presents a partial evalua-
5.2.1 Large-scale Attribute Selection tion of attributes that could be assigned to adjective-
¢ noun pairs with an f-score:0 by C-LDAgs.;, x-

Table 5 (columrall) displays the performance o : ‘ s
all models on attribute selection over a range of 206 Despite the disappointing overall performance of

5.2 Experiment 2

8again, statistically significant differences are marked by
superscripts (cf. footnote 6). All differences reported sig-
nificant ata: < 0.05.

"We did not apply RTTVSM to this large-scale experiment,
as only poor performance can be expected.
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prediction | correct tributesattr’ that are associated with each adjective

thin layer THICKNESS | THICKNESS in pairs(adj,n> € TP,y in WordNet:

heavy load WEIGHT WEIGHT

shallow water | DEPTH DEPTH Zattr’ Z(adj nYETPace \(adj, attr’}WN]

short holiday | DURATION | DURATION ARgttr = ’ a—

attractive force| MAGNETISM MAGNETISM |TPatt7‘|

short hat')r . LENGTH LENGTH Correlating this figure with the performance per at-
Serious poo DIFFICULTY MIND . . .

blue line COLOR UNION _tr'lbute in terms of f—score1 yields only a small pos-
fluid society | REPUTE CHANGEABLENESS In fact, the qualitative analysis in Table 7 shows that
short flight DISTANCE | DURATION C-LDA is capable of assigning meaningful attributes
roughbark | TEXTURE | EVENNESS to adjective-noun phrases not only in easy, but also
faint heart CONSTANCY | COWARDICE

ambiguous cases (c$hallow watey whereDEPTH
Table 7: Sample of correct and false predictions of Cis the only attribute provided foshallowin Word-
LDA Eser,x in Experiment 2 Net vs.short holiday short hairor short fligh).

(i) Although the 206 attributes used in Exp. 2 are
ather diverse, including concepts suchHEGHT,
KINDNESS Or INDIVIDUALITY , we observe a high

the LDA models on this large attribute space, it i§
remarkable that C-LDA is able to induce distinctive
topic distributions for a number of attributes with up umber of attributes from Exp. 1 that are success-
to 0.51 f-score with balanced precision and recal lly modeled in Exp. 2 (5 out of 10, cf. column
a mod_erate drop_ of only -0.10 relat|\{e to the CO€A1 in Table 6). Given that they are categorized into
sponding model induced over 10 attributes.

- . . hepropertyclass in WordNét, we presume that the
Raising the attribute selection task from 10 to 20 arying performance across attributes might be in-

?;mbl#es POSES adtrg_e chillen]?t::hto our m(t)_dels, l?Pﬁenced by their ontological subtype. This hypoth-

€ ;deerd3|z_|(_a ;n y versity ot t (—:]ts.eTatr;lc Slct)a%%is is validated in a replication of Exp. 2, with train-
considered. fable £ gives an Insight into the na ur|’Te1g data limited to the 73 attributes pertaining to the
of the data and the difficulty of the task, by “Stmgpropertysubtype in WordNet. The test set was re-

correct and fi.i|86. preditions (.)f C-LDA .for a Sma”stricted accordingly, resulting in 112 pairs that are
sample of adjective-noun pairs. Possible eXplan%hked to apropertyattribute

tions fo_r false predlptlons arliNmaﬂlfold,_gmch]g t?em The overall performance of the models in this ex-
near misses (e.gerious bookweak presidenshor periment is shown in Table 5 (colunproperty):

]:'ght’ Eugt}.barlé, |d|omt§1t|c eb>|<pr|eSbS|T>ns (e'%": b With vector multiplication, the best-performing op-
eart blue ling or questionable labels provide Yeration across all models, all models benefit consid-

WordNet (e.gserious book
: . ._erably (+0.10 or more). C-LDA shows the largest
As seen above, C-LDA achieves relatively hlg)—“ Y ( ) g

) _ mprovement, significantly outperforming both L-
performance figures on selected attributes (cf. Tab €A and DEPVSM. With vector addition. the per-

6, col.all). In order to identify what makes theseformance gains are slightly lower in general. In

attributes different from others that resist succesgy,. setting, L-LDA shows higher f-score than C-

ful modeling, we investigated three factors: (i) thq_DA, though this difference is not statistically sig-

amount of training data available for each attribute, ... .+ Still, C-LDA significantly outranges i

PVSM. Note that we can not show a significant dif-

(i) the ambiguity rate per attribute, and (iii) their

ontological subtype.

: ) .. ference between C-LDAg.; « and L-LDAgg.; +.

0 Measurlng the dependgnce between trammgo the comparison between these models remains in-
data size and f-score per attribute shows that a Iar% nclusive here. Note further that the affinity of C-

amount of training data is generally helpful, but nOLDA with vector addition and L-LDA with vector

the"deTcrllswe fi(_:tor_t(Pe?;czrs: 0.19, lt)t'<b0f011)tylf multiplication, respectively, is inverted in the large-
(i) The ambiguity rated Roy, per attributeattr .0 o neriment (cf. Table 5).

is computed by averaging over all test pdlt®,;;,

labeled withattr, counting the total number of at- *WordNet separates attributes imimperties qualitiesand
states among several others.
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While these overall results are far from satisfactically equate pseudo-documents with target cate-
tory, they still clearly indicate that the LDA models gories, to approximate category-specific word-topic
work effectively for at least a subset of attributesdistributions. By adhering to standard LDA, C-LDA
and outperform the VSM baseline. accommodates a greater variety in the distributions

Again, a more detailed analysis is given in Taof topics to attribute-specific documents and words,
ble 6 (columnproperty), showing the performance as compared to L-LDA. Combining standard LDA
of the best individual property attribute$'£0) in  topic modeling with a means of interpreting the in-
the restricted experiment. Average performance afuced topics relative to a set of external categories,
the best property attributes withi>0, individually, C-LDA offers greater flexibility and expressiveness.
amounts toF'=0.63°. In comparison to the unres- Our experimental results show that modeling at-
tricted setting (cf. columrall), nearly all property tributes as latent or explicit topics with C-LDA and
attributes benefit from model training on selectivd_-LDA, respectively, outperforms the purely distri-
data. Exceptions an@IDTH, WEIGHT, THICKNESS,  butional baseline model EPVSM and RTTVSM
AGE, DEGREEandLIGHT. Thus, apparently, some of prior work. Targeted evaluation on sparse data
of the adjectives associated with non-property apoints confirms that LDA models help to overcome
tributes in the full set provide some discriminativeinherent sparsity effects of VSMs. C-LDA and L-
power that is helpful to distinguish property types. LDA are close in performance in Experiment 1. C-

In a qualitative analysis of the 133 non-property_.DA outperforms L-LDA only with optimal topic
attributes filtered out in this experiment, we find thaparameter settings.
the WordNet-SUMO mapping (Niles, 2003) does Finally, we probed the modeling capacity of LDA
not provide differentiating definitions for about 60%and VSM models on a vast space of 206 attributes.
of these attributes, linking them instead to a singl&his task proved to be extremely difficult. However,
subjective assessment attribufehis suggests that we obtain respectable results on a subset of attributes
in many cases the distinctions drawn by WordNetlenoting properties, where C-LDA performs best in

are too subtle even for humans to reproduce. guantitative performance measures. It yields high-
] est f-scores in full and partial evaluation — both with
6 Conclusion the full-size attribute model, and when training and

This paper explored the use of LDA topic modeldesting is restricted to property attributes. The differ-

in a semantic labeling task that predicts attribute§Nces are small, but statistically significant between
as "hidden’ meanings in the compositional semari’® '-_DA models and the_VSM baseline in a setting
tics of adjective-noun phrases. LDA topic modeld®€Stricted to property attributes.

are expected to alleviate sparsity problems of dis- Data analysis indicates that our models perform
tributional VSMs as encountered in prior work bymore robustly on concrete attributes in contrast to

incorporating latent semantic information about at@bstract attribute types that lack clear categorization.

tribute nouns. We investigated two variants of LDATNIS suggests that our approach to attribute selec-

that employ different degrees of supervision for adion is most appropriate for detecting attributes that
sociating topics with attributes. reflect clear ontological distinctions.

Our contributions are as follows. We proposed However, there is ample space for improvement.
two LDA models for the attribute selection task thafn Hartung and Frank (2011), we show that the
import supervision for a target category parametéfuality of the noun vectors lags behind the adjec-
in different ways: L-LDA (Ramage et al., 2009) tive vectors. This clearly affects the performance
embeds the target categories into the LDA proces8f our models in cases where the semantic contri-

by defining a 1:1 correspondence of topics and tgRution of the noun is decisive for disambiguation.
get categories. C-LDA, by contrast, does not af_Future work will focus on ways to enhance the noun

fect the LDA generative process. Here, we heuriZector representations through additional contextual

- features, to make them denser and more articulated
1 comparison, !_-LDAE'SSI,X yields an ave.rage f-score of in structure.
0.47 for attributes witlF">0 in the property setting.
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