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Abstract

Statistical parsers have become increasingly
accurate, to the point where they are useful in
many natural language applications. However,
estimating parsing accuracy on a wide variety
of domains and genres is still a challenge in
the absence of gold-standard parse trees.

In this paper, we propose a technique that au-
tomatically takes into account certain charac-
teristics of the domains of interest, and ac-
curately predicts parser performance on data
from these new domains. As a result, we have
a cheap (no annotation involved) and effective
recipe for measuring the performance of a sta-
tistical parser on any given domain.

1 Introduction

Statistical natural language parsers have recently
become more accurate and more widely available.
As a result, they are being used in a variety of
applications, such as question answering (Herm-
jakob, 2001), speech recognition (Chelba and Je-
linek, 1998), language modeling (Roark, 2001), lan-
guage generation (Soricut, 2006) and, most notably,
machine translation (Charniak et al., 2003; Galley et
al., 2004; Collins et al., 2005; Marcu et al., 2006;
Huang et al., 2006; Avramidis and Koehn, 2008).
These applications are employed on a wide range of
domains and genres, and therefore the question of
how accurate a parser is on the domain and genre of
interest becomes acute. Ideally, one would want to
have available a recipe for precisely answering this
question: “given a parser and a particular domain of
interest, how accurate are the parse trees produced?”

The only recipe that is implicitly given in the large
literature on parsing to date is to have human anno-
tators build parse trees for a sample set from the do-
main of interest, and consequently use them to com-
pute a PARSEVAL (Black et al., 1991) score that is
indicative of the intrinsic performance of the parser.
Given the wide range of domains and genres for
which NLP applications are of interest, combined
with the high expertise required from human anno-
tators to produce parse tree annotations, this recipe
is, albeit precise, too expensive. The other recipe
that is currently used on a large scale is to measure
the performance of a parser on existing treebanks,
such as WSJ (Marcus et al., 1993), and assume that
the accuracy measure will carry over to the domains
of interest. This recipe, albeit cheap, cannot provide
any guarantee regarding the performance of a parser
on a new domain, and, as experiments in this paper
show, can give wrong indications regarding impor-
tant decisions for the design of NLP systems that
use a syntactic parser as an important component.

This paper proposes another method for measur-
ing the performance of a parser on a given domain
that is both cheap and effective. It is a fully auto-
mated procedure (no expensive annotation involved)
that uses properties of both the domain of interest
and the domain on which the parser was trained in
order to measure the performance of the parser on
the domain of interest. It is, in essence, a solution to
the following prediction problem:

Input: (1) a statistical parser and its training data,
(2) some chunk of text from a new domain or genre

Output: an estimate of the accuracy of the parse
trees produced for that chunk of text
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Accurate estimations for this prediction problem
will allow a system designer to make the right de-
cisions for the given domain of interest. Such deci-
sions include, but are not restricted to, the choice of
the parser, the choice of the training data, the choice
of how to implement various components such as the
treatment of unknown words, etc. Altogether, a cor-
rect estimation of the impact of such decisions on the
resulting parse trees can guide a system designer in a
hill-climbing scenario for which an extrinsic metric
(such as the impact on the overall quality of the sys-
tem) is usually too expensive to be employed often
enough. To provide an example, a machine transla-
tion engine that requires parse trees as training data
in order to learn syntax-based translation rules (Gal-
ley et al., 2006) needs to employ a syntactic parser
as soon as the training process starts, but it can take
up to hundreds and even thousands of CPU hours
(for large training data sets) to train the engine be-
fore translations can be produced and measured. Al-
though a real estimate of the impact of a parser de-
sign decision in this scenario can only be gauged
from the quality of the translations produced, it is
impractical to create such estimates for each design
decision. On the other hand, estimates using the so-
lution proposed in this paper can be obtained fast,
before submitting the parser output to a costly train-
ing procedure.

2 Related Work and Experimental
Framework

There have been previous studies which explored the
problem of automatically predicting the task diffi-
culty for various NLP applications. (Albrecht and
Hwa, 2007) presented a regression based method
for developing automatic evaluation metrics for ma-
chine translation systems without directly relying on
human reference translations. (Hoshino and Nak-
agawa, 2007) built a computer-adaptive system for
generating questions to teach English grammar and
vocabulary to students, by predicting the difficulty
level of a question using various features. There
have been a few studies of English parser accuracy
in domains/genres other than WSJ (Gildea, 2001;
Bacchiani et al., 2006; McClosky et al., 2006), but
in order to make measurements for such studies, it
is necessary to have gold-standard parses in the non-

WSJ domain of interest.
Gildea (2001) studied how well WSJ-trained

parsers do on the Brown corpus, for which a gold
standard exists. He looked at sentences with 40
words or less. (Bacchiani et al., 2006) carried out
a similar experiment on sentences of all lengths,
and (McClosky et al., 2006) report additional re-
sults. The table below shows results from our own
measurements of Charniak parser1 (Charniak and
Johnson, 2005) accuracy (F-measure on sentences of
all lengths), which are consistent with these studies.
For the Brown corpus, the test set was formed from
every tenth sentence in the corpus (Gildea, 2001).

Training Set Test Set Sent.
count

Charniak
accuracy

WSJ sec. 02-21 WSJ sec. 24 1308 90.48
(39,832 sent.) WSJ sec. 23 2343 91.13

Brown-test 2186 86.34

Here we investigate algorithms for predicting the
accuracy of a parser P on sentences, chunks of sen-
tences, and whole corpora. We also investigate and
contrast several scenarios for prediction: (1) the pre-
dictor looks at the input text only, (2) the predictor
looks at the input text and the output parse trees of
P , and (3) the predictor looks at the input text, the
output parse trees of P , and the outputs of other pro-
grams, such as the output parse trees of a different
parser Pref used as a reference. Under none of these
scenarios is the predictor allowed to look at gold-
standard parses in the new domain/genre.

The intuition behind what we are trying to achieve
here can be compared to an analogous task—trying
to assess the performance of a median student from
a math class on a given test, without having access to
the answer sheet. Looking at the test only, we could
probably tell whether the test looks hard or not, and
therefore whether the student will do well or not.
Looking at the student’s answers will likely give us
an even better idea of the performance. Finally, the
answers of a second student with similar proficiency
will provide even better clues: if the students agree
on every answer, then they probably both did well,
but if they disagree frequently, then they (and hence
our student) probably did not do as well.

Our first experiments are concerned with validat-
ing the idea itself: can a predictor be trained such

1Downloaded from ftp.cs.brown.edu/pub/nlparser/reranking-
parserAug06.tar.gz in February, 2007.
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that it predicts the same F-scores as the ones ob-
tained using gold-trees? We first validate this using
the WSJ corpus itself, by dividing the WSJ treebank
into several sections:

1. Training (WSJ section 02-21). The parser P is
trained on this data.

2. Development (WSJ section 24). We use this
data for training our predictor.

3. Test (WSJ section 23). We use this data for
measuring our predictions. For each test sentence,
we compute (1) the PARSEVAL F-measure score
using the test gold standard, and (2) our predicted
F-measure. We report the correlation coefficient (r)
between the actual F-scores and our predicted F-
scores. We will also use a root-mean-square error
(rms error) metric to compare actual and predicted
F-scores.

Section 3 describes the features used by our pre-
dictor. Given these features, as well as actual
F-scores computed for the development data, we
use supervised learning to set the feature weights.
To this end, we use SVM-Regression2 (Smola and
Schoelkopf, 1998) with an RBF kernel, to learn the
feature weights and build our predictor system.3 We
validate the accuracy of the predictor trained in this
fashion on both WSJ (Section 4) and the Brown cor-
pus (Section 5).

3 Features Used for Predicting Parser
Accuracy

3.1 Text-based Features

One hypothesis we explore is that (all other things
being equal) longer sentences are harder to parse
correctly than shorter sentences. When exposed
to the development set, SVM-Regression learns
weights to best predict F-scores using the values for
this feature corresponding to each sentence in the
corpus.

Does the predicted F-score correlate with actual
F-score on a sentence by sentence basis? There was
a positive but weak correlation:

2Weka software (http://www.cs.waikato.ac.nz/ml/weka/)
3We compared a few regression algorithms like SVM-

Regression (using different kernels and parameter settings) and
Multi-Layer Perceptron (neural networks) – we trained the al-
gorithms separately on dev data and picked the one that gave
the best cross-validation accuracy (F-measure).

Feature set dev (r) test (r)
Length 0.13 0.19

Another hypothesis is that the parser performance
is influenced by the number of UNKNOWN words
in the sentence to be parsed, i.e., the number of
words in the test sentence that were never seen be-
fore in the training set. Training the predictor with
this feature produces a positive correlation, slightly
weaker compared to the Length feature.

Feature set dev (r) test (r)
UNK 0.11 0.11

Unknown words are not the only ones that can in-
fluence the performance of a parser. Rare words,
for which statistical models do not have reliable es-
timates, are also likely to impact parsing accuracy.
To test this hypothesis, we add a language model
perplexity–based (LM-PPL) feature. We extract the
yield of the training trees, on which we train a tri-
gram language model.4 We compute the perplexity
of each test sentence with respect to this language
model, and use it as feature in our predictor system.
Note that this feature is meant as a refinement of the
previous UNK feature, in the sense that perplexity
numbers are meant to signal the occurrence of un-
known words, as well as rare (from the training data
perspective) words. However, the correlation we ob-
serve for this feature is similar to the correlation ob-
served for the UNK feature, which seems to suggest
that the smoothing techniques used by the parsers
employed in these experiments lead to correct treat-
ment of the rare words.

Feature set dev (r) test (r)
LM-PPL 0.11 0.10

We also look at the possibility of automatically
detecting certain “cue” words that are appropriate
for our prediction problem. That is, we want to see
if we can detect certain words that have a discrimi-
nating power in deciding whether parsing a sentence
that contains them is difficult or easy. To this end,
we use a subset of the development data, which con-
tains the 200 best-parsed and 200 worst-parsed sen-
tences (based on F-measure scores). For each word
in the development dataset, we compute the infor-
mation gain (IG) (Yang and Pedersen, 1997) score
for that word with respect to the best/worst parsed

4We trained using the SRILM language modeling toolkit,
with default settings.
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dataset. These words are then ranked by their IG
scores, and the top 100 words are included as lex-
ical features in our predictor system. As expected,
the correlation on the development set is quite high
(given that these lexical cues are extracted from this
particular set), but a positive correlation holds for
the test set as well.

Feature set dev (r) test (r)
lexCount100 0.43 0.18

3.2 Parser P–based Features
Besides exploiting the information present in the in-
put text, we can also inspect the output tree of the
parser P for which we are interested in predicting
accuracy. We create a rootSYN feature based on
the syntactic category found at the root of the out-
put tree (“is it S?”, “is it FRAG?”). We also create
a puncSYN feature based on the number of words
labeled as punctuation tags (based on the intuition
that heavy use of punctuation can be indicative of
the difficulty of the input sentences), and a label-
SYN feature in which we bundled together informa-
tion regarding the number of internal nodes in the
parse tree output that have particular labels (“how
many nodes are labeled with PP?”). In our predictor,
we use 72 such labelSYN features corresponding to
all the syntactic labels found in the parse tree out-
put for the development set. The test set correlation
given by the rootSYN and the labelSYN features are
higher than some of the text-based features, whereas
the puncSYN feature seems to have little discrimi-
native power.

Feature set dev (r) test (r)
rootSYN 0.21 0.17
puncSYN 0.09 0.01
labelSYN 0.33 0.28

3.3 Reference Parser Pref –based Features
In addition to the text-based features and parser P–
based features, we can bring in an additional parser
Pref whose output is used as a reference against
which the output of parser P is measured. For the
reference parser feature, our goal is to measure how
similar/different are the results from the two parsers.
We find that if the parses are similar, they are more
likely to be right. In order to compute similarity, we
can compare the constituents in the two parse trees
from P and Pref , and see how many constituents

match. This is most easily accomplished by consid-
ering Pref to be a “gold standard” (even though it is
not necessarily a correct parse) and computing the
F-measure score of parser P against Pref . We use
this F-measure score as a feature for prediction.

For the experiments presented in this section we
use as Pref , the parser from (Bikel, 2002). Intu-
itively, the requirement for choosing parser Pref in
conjunction with parser P seems to be that they
are different enough to produce non-identical trees
when presented with the same input, and at the
same time to be accurate enough to produce reli-
able parse trees. The choice of P as (Charniak and
Johnson, 2005) and Pref as (Bikel, 2002) fits this
bill, but many other choices can be made regarding
Pref , such as (Klein and Manning, 2003; Petrov and
Klein, 2007; McClosky et al., 2006; Huang, 2008).
We leave the task of creating features based on the
consensus of multiple parsers as future work.

The correlation given by the reference parser–
based feature Pref on the test set is the highest
among all the features we explored.

Feature set dev (r) test (r)
Pref 0.40 0.36

3.4 The Aggregated Power of Features
The table below lists all the individual features we
have described in this section, sorted according to
the correlation value obtained on the test set.

Feature set dev (r) test (r)
Pref 0.40 0.36
labelSYN 0.33 0.28
lexCount500 0.56 0.23
lexBool500 0.58 0.20
lexCount1000 0.67 0.20
lexBool1000 0.58 0.20
Length 0.13 0.19
lexCount100 0.43 0.18
lexBool100 0.43 0.18
rootSYN 0.21 0.17
UNK 0.11 0.11
LM-PPL 0.11 0.10
puncSYN 0.09 0.01

Note how the lexical features tend to over-fit the
development data—the words were specifically cho-
sen for their discriminating power on that particular
set. Hence, adding more lexical features to the pre-
dictor system improves the correlation on develop-
ment (due to over-fitting), but it does not produce
consistent improvement on the test set. However,
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Method (using 3 features:
Length, UNK, Pref )

# of random
restarts

dev (r)

SVM Regression 0.42
1 0.138
5 0.136

Maximum Correlation 10 0.166
Training (MCT) 25 0.178

100 0.232
1000 0.27
10,000 0.401

Table 1: Comparison of correlation (r) obtained using MCT versus
SVM-Regression on development corpus.

there is some indication that the counts of the lex-
ical features are important, and count-based lexical
features tend to have similar or better performance
compared to their boolean-based counterparts.

Since these features measure different but over-
lapping pieces of the information available, it is to
be expected that some of the feature combinations
would provide better correlation that the individual
features, but the gains are not strictly additive. By
taking the individual features that provide the best
discriminative power, we are able to get a correla-
tion score of 0.42 on the test set.

Feature set dev (r) test (r)
Pref + labelSYN + Length + lexCount100 +
rootSYN + UNK + LM-PPL

0.55 0.42

3.5 Optimizing for Maximum Correlation
If our goal is to obtain the highest correlations
with the F-score measure, is SVM regression the
best method? Liu and Gildea (2007) recently in-
troduced Maximum Correlation Training (MCT), a
search procedure that follows the gradient of the for-
mula for correlation coefficient (r). We implemented
MCT, but obtained no better results. Moreover, it
required many random re-starts just to obtain results
comparable to SVM regression (Table 1).

4 Predicting Accuracy on Multiple
Sentences

The results for the scenario presented in Section 3
are encouraging, but other scenarios are also im-
portant from a practical perspective. For instance,
we are interested in predicting the performance of a
particular parser not on a sentence-by-sentence ba-
sis, but for a representative chunk of sentences from
the new domain. In order to predict the F-measure
on multiple sentences, we modify our feature set to
generate information on a whole chunk of sentences

Sentences in
chunk (n)

WSJ-test (r) WSJ-test
(rms error)

1 0.42 0.098
20 0.61 0.026
50 0.62 0.019
100 0.69 0.015
500 0.79 0.011

Table 2: Performance of predictor on n-sentence chunks from WSJ-test
(Correlation and rms error between actual/predicted accuracies).

rather than a single sentence. Predicting the corre-
lation at chunk level is, not unexpectedly, an eas-
ier problem than predicting correlation at sentence
level, as the results in the first two columns of Ta-
ble 2 show.

For 100-sentence chunks, we also plot the pre-
dicted accuracies versus actual accuracies for the
WSJ-test set in Figure 1. This scatterplot brings to
light an artifact of using correlation metric (r) for
evaluating our predictor’s performance. Although
our objective is to improve correlation between ac-
tual and predicted F-scores, the correlation metric (r)
does not tell us directly how well the predictor is
doing. In Figure 1, the system predicts that on
an average, most sentence chunks can be parsed
with an accuracy of 0.9085 (which is the mean pre-
dicted F-score on WSJ-test). But the range of pre-
dictions from our system [0.89,0.92] is smaller than
the actual F-score range [0.86,0.95]. Hence, even
though the correlation scores are high, this does not
necessarily mean that our predictions are on target.
An additional metric, root-mean-square (rms) error,
which measures the distance between actual and pre-
dicted F-measures, can be used to gauge the qual-
ity of our predictions. For a particular chunk-size,
lowering the rms error translates into aligning the
points of a scatterplot as the one in Figure 1, closer
to the x=y line, implying that the predictor is getting
better at exactly predicting the F-score values. The
third column in Table 2 shows the rms error for our
predictor at different chunk sizes. The results using
this metric also show that the prediction problem be-
comes easier as the chunk size increases.

Assuming that we have the test set of WSJ sec-
tion 23, but without the gold-standard trees, how
can we get an approximation for the overall accu-
racy of a parser P on this test set? One possibility,
which we use here as a baseline, is to compute the
F-score on a set for which we do have gold-standard
trees. If we use our development set (WSJ section
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Figure 1: Plot showing Actual vs. Predicted accuracies for
WSJ-test (100-sentence chunks). Each plot point represents a
100-sentence chunk. (rms error = 0.015)
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Figure 2: Plot showing Actual vs. Adjusted Predicted accu-
racies (shifting with α = 0.757, skewing with β = 1.0) for
WSJ-test (100-sentence chunks). (rms error = 0.014)

System F-measure
Charniak F-measure on WSJ-dev (baseline) 90.48 (fd)
Predictor (feature weights set with WSJ-dev) 90.85 (fp)
Actual Charniak accuracy 91.13 (ft)

Table 3: Comparing Charniak parser accuracy (from different systems)
on entire WSJ-test corpus

24) for this purpose, and (Charniak and Johnson,
2005) as the parser P , the baseline is an F-score of
90.48 (fd), which is the actual Charniak parser accu-
racy on WSJ section 24. Instead, if we run our pre-
dictor on the test set (a single chunk containing all
the sentences in the test set), it predicts an F-score
of 90.85 (fp). These two predictions are listed as
the first two rows in Table 3. Of course, having the
actual gold-standard trees for WSJ section 23 helps
us decide which prediction is better: the actual ac-
curacy of the Charniak parser on WSJ section 23 is
an F-score of 91.13 (ft), which makes our prediction
better than the baseline.

4.1 Shifting Predictions to Match Actual
Accuracy

We correctly predict (in Table 3) that the
WSJ-test is easier to parse than the WSJ-
dev (90.85 > 90.48). However, our predictor is too
conservative—the WSJ-test is actually even easier
to parse (91.13 > 90.85). We can fix this by shift-
ing the mean predicted F-score (which is equal to
fp) further away from the dev F-measure (fd), and
closer to the actual F-measure (ft). This is achieved
by shifting all the individual predictions by a certain
amount as shown below.

Let p be an individual prediction from our system.

The shifted prediction p′ is given by:
p′ = p+ α(fp − fd) (1)

We can tune α to make the new mean predic-
tion (f ′p) to be equal to the actual F-measure (ft).

f ′p = fp + α(fp − fd) (2)

α =
ft − fp

fp − fd
(3)

Using the F-score values from Table 3, we get an
α = 0.757 and an exact prediction of 91.13. Of
course, this is because we tune on test, so we need
to validate this idea on a new test set to see if it leads
to improved predictions (Section 5).

4.2 Skewing to Widen Prediction Range
Our predictor is also too conservative about its dis-
tribution (see Figure 1). It knows (roughly) which
chunks are easier to parse and which are harder, but
its range of predictions is lower than the range of
actual F-measure scores.

We can skew individual predictions so that sen-
tences predicted to be easy are re-predicted to be
even easier (and those that are hard to be even
harder). For each prediction p′ (from Equation 1),
we compute

p′′ = p′ + β(p′ − f ′p) (4)

We simply set β to 1.0, doubling the distance
of each prediction p′ (in Equation 1) from the (ad-
justed) mean prediction f ′p, to obtain the skewed pre-
diction p′′.

Figure 2 shows how the points representing 100-
sentence chunks in Figure 1 look after the predic-
tions have been shifted (α = 0.757) and skewed
(β = 1.0). These two operations have the desired
effect of changing the range of predictions from
[0.89,0.92] to [0.87,0.94], much closer to the actual
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Sentences
in chunk
(n)

WSJ-test
(rms error)

Brown-test
Prediction
(rms error)

Brown-test
Adjusted
Prediction
(rms error)

1 0.098 0.129 0.139
20 0.026 0.039 0.036
50 0.019 0.032 0.029
100 0.015 0.025 0.020
500 0.011 0.038 0.024

Table 4: Performance of predictor on n-sentence chunks from WSJ-test
and Brown-test (rms error between actual/predicted accuracies).

range of [0.86,0.95]. The points in the new plot (Fig-
ure 2) also align closer to the “x=y” line than in the
original graph (Figure 1). The rms error also drops
from 0.015 to 0.014 (7% relative reduction), show-
ing that the predictions have improved.

Since we use the WSJ-test corpus to tune the pa-
rameter values for shifting and skewing, we need to
apply our predictor on a different test set to see if we
get similar improvements by using these techniques,
which we do in the next section.

5 Predicting Accuracy on the Brown
Corpus

The Brown corpus represents a genuine challenge
for our predictor, as it presents us with the oppor-
tunity to test the performance of our predictor in
an out-of-domain scenario. Our predictor, trained
on WSJ data, is now employed to predict the per-
formance of a WSJ-trained parser P on the Brown-
test corpus. As in the previous experiments, we use
(Charniak and Johnson, 2005) trained on WSJ sec-
tions 02-21 as parser P . The feature weights for our
predictor are again trained on section 24 of WSJ, and
the shifting and skewing parameters (α = 0.757,
β = 1.0) are determined using section 23 of WSJ.

The results on the Brown-test, both the origi-
nal predictions and after they have been adjusted
(shifted/skewed), are shown in Table 4, at different
level of chunking. For chunks of size n > 1, the
shifting and skewing techniques help in lowering the
rms error. On 100-sentence chunks from the Brown
test, shifting and skewing (α = 0.757, β = 1.0)
leads to a 20% relative reduction in the rms error.

In a similar vein with the evaluation done in Sec-
tion 4, we are interested in estimating the overall ac-
curacy of a WSJ-trained parser P given an out-of-
domain set such as the Brown test set (for which, at
least for now, we do not have access to gold-standard

System F-measure
Baseline1 (F-measure on WSJ sec. 23) 91.13
Baseline2 (F-measure on WSJ sec. 24) 90.48
Predictor (base) 88.48
Adjusted Predictor (shifting using α = 0.757) 86.96
Actual accuracy 86.34

Table 5: Charniak parser accuracy on entire Brown-test corpus

trees). If we use (Charniak and Johnson, 2005) as
parser P , a cheap and readily-available answer is
to approximate the performance using the Charniak
parser performance on WSJ section 23, which has
an F-score of 91.13. Another cheap and readily-
available answer is to take the Charniak parser per-
formance on WSJ section 24 with an F-score of
90.48. Table 5 lists these baselines, along with the
prediction made by our system when using a single
chunk containing all the sentences in the Brown test
set (both base predictions and adjusted predictions,
i.e. shifting using α = 0.757). Again, having gold-
standard trees for the Brown test set helps us decide
which prediction is better. Our predictions are much
closer to the actual Charniak parser performance on
the Brown-test set, with the adjusted prediction at
86.96 compared to the actual F-score of 86.34.

6 Ranking Parser Performance

One of the main goals for computing F-score figures
(either by traditional PARSEVAL evaluation against
gold standards or by methods such as the one pro-
posed in this paper) is to compare parsing accu-
racy when confronted with a choice between vari-
ous parser deployments. Not only are there many
parsing techniques available (Collins, 2003; Char-
niak and Johnson, 2005; Petrov and Klein, 2007;
McClosky et al., 2006; Huang, 2008), but recent
annotation efforts in providing training material for
statistical parsing (LDC, 2005; LDC, 2006a; LDC,
2006b; LDC, 2006c; LDC, 2007) have compounded
the difficulty of the choices (“Do I parse using parser
X?”, “Do I train parser X using the treebank Y or
Z?”). In this section, we show how our predictor can
provide guidance when dealing with some of these
choices, namely the choice of the training material
to use with a statistical parser, prior to its applica-
tion in an NLP task.

For the experiments reported in this paper, we
use as parser P , our in-house implementation of
the Collins parser (Collins, 2003), to which various
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speed-related enhancements (Goodman, 1997) have
been applied. This choice has been made to better
reflect a scenario in which parser P would be used
in a data-intensive application such as syntax-driven
machine translation, in which the parser must be
able to run through hundreds of millions of training
words in a timely manner. We use the more accurate,
but slower Charniak parser (Charniak and Johnson,
2005) as the reference parser Pref in our predictor
(see Section 3.3). In order to predict the Collins-
style parser behavior on the ranking task, we use the
same predictor model (including feature weights and
adjustment parameters) that was used for predicting
Charniak parser behavior on the Brown corpus (Sec-
tion 5).

We compare three training scenarios that make for
three different parsers:

(1) PWSJ - trained on sections 02-21 of WSJ.
(2) PNews - trained on the union of the English

Chinese Translation Treebank (LDC, 2007) (news
stories from Xinhua News Agency translated from
Chinese into English) and the English Newswire
Translation Treebank (LDC, 2005; LDC, 2006a;
LDC, 2006b; LDC, 2006c) (An-Nahar new stories
translated from Arabic into English).

(3) PWSJ−News - trained on the union of all the
above training material.

When comparing the performance of these three
parsers on a development set from WSJ (section 0),
we get the following F-scores.5

Parser WSJ (sec. 0) Accuracy
(F-scores)

PWSJ 88.25
PNews 83.00
PWSJ−News 88.00

Consider now that we are interested in compar-
ing the parsing accuracy of these parsers on a do-
main completely different from WSJ. The ranking
PWSJ>PWSJ−News>PNews, given by the evalua-
tion above, provides some guidance, but is this guid-
ance accurate? The intuition here is that the in-
formation that we already have about the new do-
main of interest (which implicitly appears in texts

5Because of tokenization differences between the different
treebanks involved in these experiments, we have to adopt a to-
kenization scheme different from the one used in the Penn Tree-
bank, and therefore the F-scores, albeit in the same range, are
not directly comparable with the ones in the parsing literature.

Parser Xinhua News
Prediction
(F-scores)

Xinhua News
Accuracy
(F-scores)

PWSJ 85.1 79.14
PNews 87.0 84.84
PWSJ−News 89.4 85.14

Table 6: Performance of predictor on the Xinhua News domain, com-
pared with actual F-scores.

extracted from this domain), can be used to bet-
ter guide this decision. Our predictor is able to
capitalize on this information, and provide domain-
informed guidance for choosing the most accurate
parser to use with the new data, which in this case
relates to choosing the best training strategy for the
parser P . If we consider as our domain of interest,
news stories from Xinhua News Agency, then using
our predictor on a chunk of 1866 sentences from this
domain gives the F-scores shown in the second col-
umn of Table 6.

As with the previous experiments, we can com-
pute the actual PARSEVAL F-scores (using gold-
standard) for this particular 1866-sentence test set,
as it happens to be part of the English Chinese Trans-
lation Treebank (LDC, 2007). These F-score fig-
ures are shown in the third column of Table 6. As
these results show, for this particular domain the cor-
rect ranking is PWSJ−News>PNews>PWSJ , which
is exactly the ranking predicted by our method, with-
out the aid of gold-standard trees.

We observe that even though the system predicts
the ranking correctly, the predictions in the Xinhua
News domain might not be as accurate in compar-
ison to the predictions on Brown corpus (predicted
F-score = 86.96, actual F-score = 86.34). One pos-
sible reason for this lower accuracy is that we use
the same prediction model without optimizing for
the particular parser on which we wish to make pre-
dictions. Still, the model was able to make distinc-
tions between multiple parsers for the ranking task
correctly, and decide the best parser to use with the
given data. We believe this to be useful in typical
NLP applications which use parsing as a component,
and where making the right choice between differ-
ent parsers can affect the end-to-end accuracy of the
system.

7 Conclusion

The steady advances in statistical parsing over the
last years have taken this technology to the point
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where it is accurate enough to be useful in a va-
riety of natural language applications. However,
due to large variations in the characteristics of the
domains for which these applications are devel-
oped, estimating parsing accuracy becomes more
involved than simply taking for granted accuracy
estimates done on a certain well-studied domain,
such as WSJ. As the results in this paper show, it
is possible to take into account these variations in
the domain characteristics (encoded in our predictor
as text-based, syntax-based, and agreement-based
features)—to make better predictions about the ac-
curacy of certain statistical parsers (and under dif-
ferent training scenarios), instead of relying on accu-
racy estimates done on a standard domain. We have
provided a mechanism to incorporate these domain
variations for making predictions about parsing ac-
curacy, without the costly requirement of creating
human annotations for each of the domains of inter-
est. The experiments shown in the paper were lim-
ited to readily available statistical parsers (which are
widely deployed in a number of applications), and
certain domains/genres (because of ready access to
gold-standard data on which we could verify predic-
tions). However, the features we use in our predic-
tor are independent of the particular type of parser
or domain, and the same technique could be applied
for making predictions on other parsers as well.

There are many avenues for future work opened
up by the work presented here. The accuracy of the
predictor can be further improved by incorporating
more complex syntax-based features and multiple-
agreement features. Moreover, rather than predict-
ing an intrinsic metric such as the PARSEVAL F-
score, the metric that the predictor learns to pre-
dict can be chosen to better fit the final metric on
which an end-to-end system is measured, in the style
of (Och, 2003). The end-result is a finely-tuned tool
for predicting the impact of various parser design de-
cisions on the overall quality of a system.
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