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Abstract

Automatic processing of medical dictations
poses a significant challenge. We approach
the problem by introducing a statistical frame-
work capable of identifying types and bound-
aries of sections, lists and other structures
occurring in a dictation, thereby gaining ex-
plicit knowledge about the function of such
elements. Training data is created semi-
automatically by aligning a parallel corpus
of corrected medical reports and correspond-
ing transcripts generated via automatic speech
recognition. We highlight the properties of
our statistical framework, which is based on
conditional random fields (CRFs) and im-
plemented as an efficient, publicly available
toolkit. Finally, we show that our approach
is effective both under ideal conditions and
for real-life dictation involving speech recog-
nition errors and speech-related phenomena
such as hesitation and repetitions.

1 Introduction

It is quite common to dictate reports and leave the
typing to typists – especially for the medical domain,
where every consultation or treatment has to be doc-
umented. Automatic Speech Recognition (ASR) can
support professional typists in their work by provid-
ing a transcript of what has been dictated. However,
manual corrections are still needed. In particular,
speech recognition errors have to be corrected. Fur-
thermore, speaker errors, such as hesitations or rep-
etitions, and instructions to the transcriptionist have
to be removed. Finally, and most notably, proper
structuring and formatting of the report has to be

performed. For the medical domain, fairly clear
guidelines exist with regard to what has to be dic-
tated, and how it should be arranged. Thus, missing
headings may have to be inserted, sentences must be
grouped into paragraphs in a meaningful way, enu-
meration lists may have to be introduced, and so on.

The goal of the work presented here was to ease
the job of the typist by formatting the dictation ac-
cording to its structure and the formatting guide-
lines. The prerequisite for this task is the identifi-
cation of the various structural elements in the dic-
tation which will be be described in this paper.

complaint dehydration weakness and diarrhea
full stop Mr. Will Shawn is a 81-year-old
cold Asian gentleman who came in with fever
and Persian diaper was sent to the emergency
department by his primary care physician due
him being dehydrated period . . . neck physical
exam general alert and oriented times three
known acute distress vital signs are stable
. . . diagnosis is one chronic diarrhea with
hydration he also has hypokalemia neck number
thromboctopenia probably duty liver cirrhosis
. . . a plan was discussed with patient in
detail will transfer him to a nurse and
facility for further care . . . end of dictation

Fig. 1: Raw output of speech recognition

Figure 1 shows a fragment of a typical report as
recognized by ASR, exemplifying some of the prob-
lems we have to deal with:

• Punctuation and enumeration markers may be
dictated or not, thus sentence boundaries and
numbered items often have to be inferred;

• the same holds for (sub)section headings;

• finally, recognition errors complicate the task.
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CHIEF COMPLAINT

Dehydration, weakness and diarrhea.

HISTORY OF PRESENT ILLNESS

Mr. Wilson is a 81-year-old Caucasian
gentleman who came in here with fever and
persistent diarrhea. He was sent to the
emergency department by his primary care
physician due to him being dehydrated.
. . .

PHYSICAL EXAMINATION

GENERAL: He is alert and oriented times
three, not in acute distress.

VITAL SIGNS: Stable.
. . .

DIAGNOSIS

1. Chronic diarrhea with dehydration. He
also has hypokalemia.

2. Thromboctopenia, probably due to liver
cirrhosis.

. . .

PLAN AND DISCUSSION

The plan was discussed with the patient
in detail. Will transfer him to a nursing
facility for further care.
. . .

Fig. 2: A typical medical report

When properly edited and formatted, the same
dictation appears significantly more comprehensi-
ble, as can be seen in figure 2. In order to arrive
at this result it is necessary to identify the inherent
structure of the dictation, i.e. the various hierarchi-
cally nested segments. We will recast the segmenta-
tion problem as a multi-tiered tagging problem and
show that indeed a good deal of the structure of med-
ical dictations can be revealed.

The main contributions of our paper are as fol-
lows: First, we introduce a generic approach that can
be integrated seamlessly with existing ASR solu-
tions and provides structured output for medical dic-
tations. Second, we provide a freely available toolkit
for factorial conditional random fields (CRFs) that
forms the basis of aforementioned approach and is
also applicable to numerous other problems (see sec-
tion 6).

2 Related Work

The structure recognition problem dealt with here
is closely related to the field of linear text segmen-
tation with the goal to partition text into coherent

blocks, but on a single level. Thus, our task general-
izes linear text segmentation to multiple levels.

A meanwhile classic approach towards domain-
independent linear text segmentation, C99, is pre-
sented in Choi (2000). C99 is the baseline which
many current algorithms are compared to. Choi’s al-
gorithm surpasses previous work by Hearst (1997),
who proposed the Texttiling algorithm. The best re-
sults published to date are – to the best of our knowl-
edge – those of Lamprier et al. (2008).

The automatic detection of (sub)section topics
plays an important role in our work, since changes
of topic indicate a section boundary and appropri-
ate headings can be derived from the section type.
Topic detection is usually performed using methods
similar to those of text classification (see Sebastiani
(2002) for a survey).

Matsuov (2003) presents a dynamic programming
algorithm capable of segmenting medical reports
into sections and assigning topics to them. Thus, the
aims of his work are similar to ours. However, he is
not concerned with the more fine-grained elements,
and also uses a different machinery.

When dealing with tagging problems, statistical
frameworks such as HMMs (Rabiner, 1989) or, re-
cently, CRFs (Lafferty et al., 2001) are most com-
monly applied. Whereas HMMs are generative
models, CRFs are discriminative models that can in-
corporate rich features. However, other approaches
to text segmentation have also been pursued. E.g.,
McDonald et al. (2005) present a model based on
multilabel classification, allowing for natural han-
dling of overlapping or non-contiguous segments.

Finally, the work of Ye and Viola (2004) bears
similarities to ours. They apply CRFs to the pars-
ing of hierarchical lists and outlines in handwritten
notes, and thus have the same goal of finding deep
structure using the same probabilistic framework.

3 Problem Representation

For representing our segmentation problem we use a
trick that is well-known from chunking and named
entity recognition, and recast the problem as a tag-
ging problem in the so-called BIO1 notation. Since
we want to assign a type to every segment, OUTSIDE

labels are not needed. However, we perform seg-

1BEGIN - INSIDE - OUTSIDE
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Fig. 3: Multi-level segmentation as tagging problem

mentation on multiple levels, therefore multiple la-
bel chains are required. Furthermore, we also want
to assign types to certain segments, thus the labels
need an encoding for the type of segment they rep-
resent. Figure 3 illustrates this representation: B-Ti
denotes the beginning of a segment of type Ti, while
I-Ti indicates that the segment of type Ti continues.
By adding label chains, it is possible to group the
segments of the previous chain into coarser units.
Tree-like structures of unlimited depth can be ex-
pressed this way2. The gray lines in figure 3 denote
dependencies between nodes. Node labels also de-
pend on the input token sequence in an arbitrarily
wide context window.

4 Data Preparation

The raw data available to us consists of two paral-
lel corpora of 2007 reports from the area of medi-
cal consultations, dictated by physicians. The first
corpus, CRCG, consists of the raw output of ASR
(figure 1), the other one, CCOR, contains the corre-
sponding corrected and formatted reports (figure 2).

In order to arrive at an annotated corpus in a for-
2Note, that since we omit a redundant top-level chain, this

structure technically is a hedge rather than a tree.

mat suitable for the tagging problem, we first have
to analyze the report structure and define appropri-
ate labels for each segmentation level. Then, every
token has to be annotated with the appropriate begin
or inside labels. A report has 625 tokens on average,
so the manual annotation of roughly 1.25 million to-
kens seemed not to be feasible. Thus we decided
to produce the annotations programmatically and re-
strict manual work to corrections.

4.1 Analysis of report structure
When inspecting reports in CCOR, a human reader
can easily identify the various elements a report con-
sists of, such as headings – written in bold on a sepa-
rate line – introducing sections, subheadings – writ-
ten in bold followed by a colon – introducing sub-
sections, and enumerations starting with indented
numbers followed by a period. Going down further,
there are paragraphs divided into sentences. Using
these structuring elements, a hierarchic data struc-
ture comprising all report elements can be induced.

Sections and subsections are typed according to
their heading. There exist clear recommendations
on structuring medical reports, such as E2184-02
(ASTM International, 2002). However, actual med-
ical reports still vary greatly with regard to their
structure. Using the aforementioned standard, we
assigned the (sub)headings that actually appeared in
the data to the closest type, introducing new types
only when absolutely necessary. Finally we arrived
at a structure model with three label chains:

• Sentence level, with 4 labels: Heading,
Subheading, Sentence, Enummarker

• Subsection level, with 45 labels: Paragraph,
Enumelement, None and 42 subsection types
(e.g. VitalSigns, Cardiovascular ...)

• Section level, with 23 section types (e.g.
ReasonForEncounter, Findings, Plan ...)

4.2 Corpus annotation
Since the reports in CCOR are manually edited they
are reliable to parse. We employed a broad-coverage
dictionary (handling also multi-word terms) and a
domain-specific grammar for parsing and layout in-
formation. A regular heading grammar was used for
mapping (sub)headings to the defined (sub)section
labels (for details see Jancsary (2008)). The output
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CCOR OP CRCG

. . . . . . . . . . . . . . .
B− Head CHIEF del

Head COMPLAINT sub complaint B− Head

B− Sent Dehydration sub dehydration B− Sent

Sent , del

Sent weakness sub weakness Sent

Sent and sub and Sent

Sent diarrhea sub diarrhea Sent

Sent . sub fullstop Sent

B− Sent Mr. sub Mr. B− Sent

Sent Wilson sub Will Sent

ins Shawn Sent

Sent is sub is Sent

Sent a sub a Sent

Sent 81-year-old sub 81-year-old Sent

Sent Caucasian sub cold Sent

Sent ins Asian Sent

Sent gentleman sub gentleman Sent

Sent who sub who Sent

Sent came sub came Sent

Sent in del

Sent here sub here Sent

Sent with sub with Sent

Sent fever sub fever Sent

Sent and sub and Sent

Sent persistent sub Persian Sent

Sent diarrhea sub diaper Sent

Sent . del

. . . . . . . . . . . . . . .

Fig. 4: Mapping labels via alignment

of the parser is a hedge data structure from which
the annotation labels can be derived easily.

However, our goal is to develop a model for rec-
ognizing the report structure from the dictation, thus
we have to map the newly created annotation of re-
ports in CCOR onto the corresponding reports in
CRCG. The basic idea here is to align the tokens
of CCOR with the tokens in CRCG and to copy the
annotations (cf. figure 43). There are some peculiar-
ities we have to take care of during alignment:

1. non-dictated items in CCOR (e.g. punctuation,
headings)

2. dictated words that do not occur in CCOR (meta
instructions, repetitions)

3. non-identical but corresponding items (recog-
nition errors, reformulations)

Since it is particularly necessary to correctly align
items of the third group, standard string-edit dis-
tance based methods (Levenshtein, 1966) need to be
augmented. Therefore we use a more sophisticated

3This approach can easily be generalized to multiple label
chains.

cost function. It assigns tokens that are similar (ei-
ther from a semantic or phonetic point of view) a low
cost for substitution, whereas dissimilar tokens re-
ceive a prohibitively expensive score. Costs for dele-
tion and insertion are assigned inversely. Seman-
tic similarity is computed using Wordnet (Fellbaum,
1998) and UMLS (Lindberg et al., 1993). For pho-
netic matching, the Metaphone algorithm (Philips,
1990) was used (for details see Huber et al. (2006)).

4.3 Feature Generation

The annotation discussed above is the first step to-
wards building a training corpus for a CRF-based
approach. What remains to be done is to provide ob-
servations for each time step of the observed entity,
i.e. for each token of a report; these are expected to
give hints with regard to the annotation labels that
are to be assigned to the time step. The observa-
tions, associated with one or more annotation labels,
are usually called features in the machine learning
literature. During CRF training, the parameters of
these features are determined such that they indicate
the significance of the observations for a certain la-
bel or label combination; this is the basis for later
tagging of unseen reports.

We use the following features for each time step
of the reports in CCOR and CRCG:

• Lexical features covering the local context of
± 2 tokens (e.g., patient@0, the@-1, is@1)

• Syntactic features indicating the possible syn-
tactic categories of the tokens (e.g., NN@0,
JJ@0, DT@-1 and be+VBZ+aux@1)

• Bag-of-word (BOW) features intend to cap-
ture the topic of a text segment in a wider
context of ± 10 tokens, without encoding any
order. Tokens are lemmatized and replaced
by their UMLS concept IDs, if available, and
weighed by TF. Thus, different words describ-
ing the same concept are considered equal.

• Semantic type features as above, but using
UMLS semantic types instead of concept IDs
provide a coarser level of description.

• Relative position features: The report is di-
vided into eight parts corresponding to eight bi-
nary features; only the feature corresponding to
the part of the current time step is set.
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5 Structure Recognition with CRFs

Conditional random fields (Lafferty et al., 2001) are
conditional models in the exponential family. They
can be considered a generalization of multinomial
logistic regression to output with non-trivial internal
structure, such as sequences, trees or other graphical
models. We loosely follow the general notation of
Sutton and McCallum (2007) in our presentation.

Assuming an undirected graphical model G over
an observed entity x and a set of discrete, inter-
dependent random variables4 y, a conditional ran-
dom field describes the conditional distribution:

p(y|x;θ) =
1

Z(x)

∏
c∈G

φc(yc,x;θc) (1)

The normalization term Z(x) sums over all possible
joint outcomes of y, i.e.,

Z(x) =
∑
y′

p(y′|x;θ) (2)

and ensures the probabilistic interpretation of
p(y|x). The graphical model G describes interde-
pendencies between the variables y; we can then
model p(y|x) via factors φc(·) that are defined over
cliques c ∈ G. The factors φc(·) are computed from
sufficient statistics {fck(·)} of the distribution (cor-
responding to the features mentioned in the previous
section) and depend on possibly overlapping sets of
parameters θc ⊆ θ which together form the param-
eters θ of the conditional distribution:

φc(yc,x;θc) = exp

 |θc|∑
k=1

λckfck(x,yc)

 (3)

In practice, for efficiency reasons, independence as-
sumptions have to be made about variables y ∈ y,
so G is restricted to small cliques (say, (|c| ≤ 3).
Thus, the sufficient statistics only depend on a lim-
ited number of variables yc ⊆ y; they can, however,
access the whole observed entity x. This is in con-
trast to generative approaches which model a joint
distribution p(x,y) and therefore have to extend the
independence assumptions to elements x ∈ x.

4In our case, the discrete outcomes of the random variables
y correspond to the annotation labels described in the previous
section.

The factor-specific parameters θc of a CRF are
typically tied for certain cliques, according to the
problem structure (i.e., θc1 = θc2 for two cliques
c1, c2 with tied parameters). E.g., parameters are
usually tied across time if G is a sequence. The
factors can then be partitioned into a set of clique
templates C = {C1, C2, . . . CP }, where each clique
template Cp is a set of factors with tied parameters
θp and corresponding sufficient statistics {fpk(·)}.
The CRF can thus be rewritten as:

p(y|x) =
1

Z(x)

∏
Cp∈C

∏
φc∈Cp

φc(yc,x;θp) (4)

Furthermore, in practice, the sufficient statistics
{fpk(·)} are computed from a subset xc ⊆ x that
is relevant to a factor φc(·). In a sequence labelling
task, tokens x ∈ x that are in temporal proximity to
an output variable y ∈ y are typically most useful.
Nevertheless, in our notation, we will let factors de-
pend on the whole observed entity x to denote that
all of x can be accessed if necessary.

For our structure recognition task, the graphical
model G exhibits the structure shown in figure 3,
i.e., there are multiple connected chains of variables
with factors defined over single-node cliques and
two-node cliques within and between chains; the pa-
rameters of factors are tied across time. This corre-
sponds to the factorial CRF structure described in
Sutton and McCallum (2005). Structure recognition
using conditional random fields then involves two
separate steps: parameter estimation, or training, is
concerned with selecting the parameters of a CRF
such that they fit the given training data. Prediction,
or testing, determines the best label assignment for
unknown examples.

5.1 Parameter estimation
Given IID training dataD = {x(i),y(i)}N

i=1, param-
eter estimation determines:

θ∗ = argmax
θ′

(
N∑
i

p(y(i)|x(i);θ′)

)
(5)

i.e., those parameters that maximize the conditional
probability of the CRF given the training data.

In the following, we will not explicitly sum over
N
i=1; as Sutton and McCallum (2007) note, the train-
ing instances x(i),y(i) can be considered discon-
nected components of a single undirected model G.
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We thus assume G and its factors φc(·) to extend
over all training instances. Unfortunately, (5) cannot
be solved analytically. Typically, one performs max-
imum likelihood estimation (MLE) by maximizing
the conditional log-likelihood numerically:

`(θ) =
∑
Cp∈C

∑
φc∈Cp

|θp|∑
k=1

λpkfpk(x,yc)− log Z(x)

(6)
Currently, limited-memory gradient-based methods
such as LBFGS (Nocedal, 1980) are most com-
monly employed for that purpose5. These require
the partial derivatives of (6), which are given by:

∂`

∂λpk
=
∑

φc∈Cp

fpk(x,yc)−
∑
y′

c

fpk(x,y′
c)p(y′

c|x)

(7)
and expose the intuitive form of a difference be-
tween the expectation of a sufficient statistic accord-
ing to the empiric distribution and the expectation
according to the model distribution. The latter term
requires marginal probabilities for each clique c, de-
noted by p(y′

c|x). Inference on the graphical model
G (see sec 5.2) is needed to compute these.

Depending on the structure of G, inference can be
very expensive. In order to speed up parameter es-
timation, which requires inference to be performed
for every training example and for every iteration
of the gradient-based method, alternatives to MLE
have been proposed that do not require inference.
We show here a factor-based variant of pseudolike-
lihood as proposed by Sanner et al. (2007):

`p(θ) =
∑
Cp∈C

∑
φc∈Cp

log p(yc|x,MB(φc)) (8)

where the factors are conditioned on the Markov
blanket, denoted by MB6. The gradient of (8) can
be computed similar to (7), except that the marginals
pc(y′

c|x) are also conditioned on the Markov blan-
ket, i.e., pc(y′

c|x,MB(φc)). Due to its dependence
on the Markov blanket of factors, pseudolikelihood

5Recently, stochastic gradient descent methods such as On-
line LBFGS (Schraudolph et al., 2007) have been shown to per-
form competitively.

6Here, the Markov blanket of a factor φc denotes the set of
variables occurring in factors that share variables with φc, non-
inclusive of the variables of φc

cannot be applied to prediction, but only to param-
eter estimation, where the “true” assignment of a
blanket is known.

5.1.1 Regularization
We employ a Gaussian prior for training of CRFs

in order to avoid overfitting. Hence, if f(θ) is the
original objective function (e.g., log-likelihood or
log-pseudolikelihood), we optimize a penalized ver-
sion f ′(θ) instead, such that:

f ′(θ) = f(θ)−
|θ|∑

k=1

λ2
k

2σ2
and

∂f ′

∂λk
=

∂f

∂λk
− λk

σ2
.

The tuning parameter σ2 determines the strength of
the penalty; lower values lead to less overfitting.
Gaussian priors are a common choice for parame-
ter estimation of log-linear models (cf. Sutton and
McCallum (2007)).

5.2 Inference
Inference on a graphical model G is needed to ef-
ficiently compute the normalization term Z(x) and
marginals pc(y′

c|x) for MLE, cf. equation (6).
Using belief propagation (Yedidia et al., 2003),

more precisely its sum-product variant, we can com-
pute the beliefs for all cliques c ∈ G. In a tree-
shaped graphical model G, these beliefs correspond
exactly to the marginal probabilities pc(y′

c|x). How-
ever, if the graph contains cycles, so-called loopy
belief propagation must be performed. The mes-
sage updates are then re-iterated according to some
schedule until the messages converge. We use a TRP
schedule as described by Wainwright et al. (2002).
The resulting beliefs are then only approximations
to the true marginals. Moreover, loopy belief propa-
gation is not guaranteed to terminate in general – we
investigate this phenomenon in section 6.5.

With regard to the normalization term Z(x),
as equation (2) shows, naive computation requires
summing over all assignments of y. This is too ex-
pensive to be practical. Fortunately, belief propaga-
tion produces an alternative factorization of p(y|x);
i.e., the conditional distribution defining the CRF
can be expressed in terms of the marginals gained
during sum-product belief propagation. This repre-
sentation does not require any additional normaliza-
tion, so Z(x) need not be computed.
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5.3 Prediction
Once the parameters θ have been estimated from
training data, a CRF can be used to predict the la-
bels of unknown examples. The goal is to find:

y∗ = argmax
y′

(
p(y′|x;θ)

)
(9)

i.e., the assignment of y that maximizes the condi-
tional probability of the CRF. Again, naive computa-
tion of (9) is intractable. However, the max-product
variant of loopy belief propagation can be applied to
approximately find the MAP assignment of y (max-
product can be seen as a generalization of the well-
known Viterbi algorithm to graphical models).

For structure recognition in medical reports, we
employ a post-processing step after label prediction
with the CRF model. As in Jancsary (2008), this step
enforces the constraints of the BIO notation and ap-
plies some trivial non-local heuristics that guarantee
a consistent global view of the resulting structure.

6 Experiments and Results

For evaluation, we generally performed 3-fold cross-
validation for all performance measures. We cre-
ated training data from the reports in CCOR so as
to simulate a scenario under ideal conditions, i.e.,
perfect speech recognition and proper dictation of
punctuation and headings, without hesitation or rep-
etitions. In contrast, the data from CRCG reflects
real-life conditions, with a wide variety of speech
recognition error rates and speakers frequently hes-
itating, repeating themselves and omitting punctua-
tion and/or headings.

Depending on the experiment, two different sub-
sets of the two corpora were considered:

• C{COR,RCG}-ALL: All 2007 reports were used,
resulting in 1338 training examples and 669
testing examples at each CV-iteration.

• C{COR,RCG}-BEST : The corpus was restricted
to those 1002 reports that yielded the lowest
word error rate during alignment (see section
4.2). Each CV-iteration hence amounts to 668
training examples and 334 testing examples.

From the crossvalidation runs, a 95%-confidence
interval for each measure was estimated as follows:

Ȳ ± t(α/2,N−1)
s√
N

= Ȳ ± t(0.025,2)
s√
3

(10)
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Fig. 5: Accuracy vs. loss function on CRCG-ALL

where Ȳ is the sample mean, s is the sample stan-
dard deviation, N is the sample size (3), α is the de-
sired significance level (0.05) and t(α/2,N−1) is the
upper critical value of the t-distribution with N − 1
degrees of freedom. The confidence intervals are in-
dicated in the ± column of tables 1, 2 and 3.

For CRF training, we minimized the penalized,
negative log-pseudolikelihood using LBFGS with
m = 3. The variance of the Gaussian prior was set
to σ2 = 1000. All supported features were used for
univariate factors, while the bivariate factors within
chains and between chains were restricted to bias
weights. For testing, loopy belief propagation with
a TRP schedule was used in order to determine the
maximum a posteriori (MAP) assignment. We use
VieCRF, our own implementation of factorial CRFs,
which is freely available at the author’s homepage7.

6.1 Analysis of training progress

In order to determine the number of required train-
ing iterations, an experiment was performed that
compares the progress of the Accuracy measure on
a validation set to the progress of the loss function
on a training set. The data was randomly split into
a training set (2/3 of the instances) and a validation
set. Accuracy on the validation set was computed
using the intermediate CRF parameters θt every 5
iterations of LBFGS. The resulting plot (figure 5)
demonstrates that the progress of the loss function
corresponds well to that of the Accuracy measure,

7http://www.ofai.at/˜jeremy.jancsary/
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Estimated Accuracies

Acc. ±

Average 97.24% 0.33
Chain 0 99.64% 0.04
Chain 1 95.48% 0.55
Chain 2 96.61% 0.68
Joint 92.51% 0.97

(a) CCOR-ALL

Estimated Accuracies

Acc. ±

Average 86.36% 0.80
Chain 0 91.74% 0.16
Chain 1 85.90% 1.25
Chain 2 81.45% 2.14
Joint 69.19% 1.93

(b) CRCG-ALL

Table 1: Accuracy on the full corpus

Estimated Accuracies

Acc. ±

Average 96.48% 0.82
Chain 0 99.55% 0.08
Chain 1 94.64% 0.23
Chain 2 95.25% 2.16
Joint 90.65% 2.15

(a) CCOR-BEST

Estimated Accuracies

Acc. ±

Average 87.73% 2.07
Chain 0 93.77% 0.68
Chain 1 87.59% 1.79
Chain 2 81.81% 3.79
Joint 70.91% 4.50

(b) CRCG-BEST

Table 2: Accuracy on a high-quality subset

thus an “early stopping” approach might be tempt-
ing to cut down on training times. However, during
earlier stages of training, the CRF parameters seem
to be strongly biased towards high-frequency labels,
so other measures such as macro-averaged F1 might
suffer from early stopping. Hence, we decided to
allow up to 800 iterations of LBFGS.

6.2 Accuracy of structure prediction
Table 1 shows estimated accuracies for CCOR-ALL

and CRCG-ALL. Overall, high accuracy (> 97%)
can be achieved on CCOR-ALL, showing that the ap-
proach works very well under ideal conditions. Per-
formance is still fair on the noisy data (CRCG-ALL;
Accuracy > 86%). It should be noted that the la-
bels are unequally distributed, especially in chain 0
(there are very few BEGIN labels). Thus, the base-
line is substantially high for this chain, and other
measures may be better suited for evaluating seg-
mentation quality (cf. section 6.4).

6.3 On the effect of noisy training data
Measuring the effect of the imprecise reference an-
notation of CRCG is difficult without a correspond-
ing, manually created golden standard. However, to
get a feeling for the impact of the noise induced
by speech recognition errors and sloppy dictation

Estimated WD

WD ±
Chain 0 0.007 0.000
Chain 1 0.050 0.007
Chain 2 0.015 0.001

(a) CCOR-ALL

Estimated WD

WD ±
Chain 0 0.193 0.008
Chain 1 0.149 0.005
Chain 2 0.118 0.013

(b) CRCG-ALL

Table 3: Per-chain WindowDiff on the full corpus

on the quality of the semi-automatically generated
annotation, we conducted an experiment with sub-
sets CCOR-BEST and CRCG-BEST . The results are
shown in table 2. Comparing these results to ta-
ble 1, one can see that overall accuracy decreased
for CCOR-BEST , whereas we see an increase for
CRCG-BEST . This effect can be attributed to two
different phenomena:

• In CCOR-BEST , no quality gains in the anno-
tation could be expected. The smaller number
of training examples therefore results in lower
accuracy.

• Fewer speech recognition errors and more con-
sistent dictation in CRCG-BEST allow for bet-
ter alignment and thus a better reference anno-
tation. This increases the actual prediction per-
formance and, furthermore, reduces the num-
ber of label predictions that are erroneously
counted as a misprediction.

Thus, it is to be expected that manual correction of
the automatically created annotation results in sig-
nificant performance gains. Preliminary annotation
experiments have shown that this is indeed the case.

6.4 Segmentation quality
Accuracy is not the best measure to assess segmen-
tation quality, therefore we also conducted experi-
ments using the WindowDiff measure as proposed
by Pevzner and Hearst (2002). WindowDiff re-
turns 0 in case of a perfect segmentation; 1 is the
worst possible score. However, it only takes into
account segment boundaries and disregards segment
types. Table 3 shows the WindowDiff scores for
CCOR-ALL and CRCG-ALL. Overall, the scores are
quite good and are consistently below 0.2. Further-
more, CRCG-ALL scores do not suffer as badly from
inaccurate reference annotation, since “near misses”
are penalized less strongly.
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Converged (%) Iterations (∅)

CCOR-ALL 0.999 15.4
CRCG-ALL 0.911 66.5
CCOR-BEST 0.999 14.2
CRCG-BEST 0.971 37.5

Table 4: Convergence behaviour of loopy BP

6.5 Convergence of loopy belief propagation

In section 5.2, we mentioned that loopy BP is not
guaranteed to converge in a finite number of itera-
tions. Since we optimize pseudolikelihood for pa-
rameter estimation, we are not affected by this limi-
tation in the training phase. However, we use loopy
BP with a TRP schedule during testing, so we must
expect to encounter non-convergence for some ex-
amples. Theoretical results on this topic are dis-
cussed by Heskes (2004). We give here an empir-
ical observation of convergence behaviour of loopy
BP in our setting; the maximum number of itera-
tions of the TRP schedule was restricted to 1,000.
Table 4 shows the percentage of examples converg-
ing within this limit and the average number of iter-
ations required by the converging examples, broken
down by the different corpora. From these results,
we conclude that there is a connection between the
quality of the annotation and the convergence be-
haviour of loopy BP. In practice, even though loopy
BP didn’t converge for some examples, the solutions
after 1,000 iterations where satisfactory.

7 Conclusion and Outlook

We have presented a framework which allows for
identification of structure in report dictations, such
as sentence boundaries, paragraphs, enumerations,
(sub)sections, and various other structural elements;
even if no explicit clues are dictated. Furthermore,
meaningful types are automatically assigned to sub-
sections and sections, allowing – for instance – to
automatically assign headings, if none were dic-
tated.

For the preparation of training data a mechanism
has been presented that exploits the potential of par-
allel corpora for automatic annotation of data. Us-
ing manually edited formatted reports and the cor-
responding raw output of ASR, reference annotation
can be generated that is suitable for learning to iden-

tify structure in ASR output.
For the structure recognition task, a CRF frame-

work has been employed and multiple experiments
have been performed, confirming the practicability
of the approach presented here.

One result deserving further investigation is the
effect of noisy annotation. We have shown that
segmentation results improve when fewer errors are
present in the automatically generated annotation.
Thus, manual correction of the reference annotation
will yield further improvements.

Finally, the framework presented in this paper
opens up exciting possibilities for future work.
In particular, we aim at automatically transform-
ing report dictations into properly formatted and
rephrased reports that conform to the requirements
of the relevant domain. Such tasks are greatly facili-
tated by the explicit knowledge gained during struc-
ture recognition.
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