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Abstract 
In a proposal, Vijay-Shanker and Joshi presented a definition for combining ttw two formalisms Tree 

Adjoining Grammars and PATR unification. The essential idea for that combination is the separation 
of the two recursion operations - adjoining and unification - to preserve all properties of both 
formalisms which is not desirable for natural language applications. In this paper, a definition for the 
integrated use of both processes is given and the remaining properties of the resulting formalism are 
discussed - especially weighing the appropriateness of this d~finition for natural language processing. 

i1 Introduction 
iln the field of natural language analysis, Unification 
Grammars are a main research topic. Presently, 
Unification is defined as extension of context-flee 
grmnm~s. 
Knowing th, e formalism of Tree Adjoining Grammars 
(in the following called TAGs in short), which is 
closely related to context-free gr,'tmmars (in the 
I611owing abbreviated CFG), the idea arises to replace 
the context-free grammar in a Unification Grammar by 
;t TAG. The advantage of TAGs is that complete 
context-fl'ee derivation trees or parts of them build the 
rqles of that grammar type (e.=.,, with the intention of 
~epresenting a whole linguistic phenomenon). The 
~ecursion operation for TAGs allows the replacement of 
nodes by a tree (defined by a TAG-rule), so that larger 
t;tructure u'ees are processed. 
In the literature, a first definition for combining these 
two formalisms was proposed, where the main idea is 
Io sepwate the two recursion processes - adjoining and 
unification - to preserve all properties of both Here a 
different approach is chosen, where both recursion 
processes are integrated. The main point to emphasize 
here is that the different approaches not only represent a 
.';witch between two modes of interpreting the same 
definition, but a change in the properties of the 
resulting formalism. 
This can be sirnply demonstrated by the property of 
monotonicity of the unification. Associated with each 
lree of a TAG all sp¢ification rules for the unification 
are interpreted at once (e.g., represented as links 
between the DAG representation of the specification 
rules at each node in the tree). If now the recursion 
process of TAGs, the adjoining operation, combines 
two trees, which both have DAGs, a strategy for 
reinterpretation of specification information must be 
defined, because an adjoining modifies inner nodes, 
where links still are installed. 
la the following, the two formalisms are briefly 
revisited to have a common terminological basis with 
rite reader, before the existing definition of Tree 
Adjoining Grammars with Unification is presented. In 
contrast to this approach, the new definition is 

motivated and its properties are discussed. Finally, our 
experience with an implementation of that definition in 
the application domain of syntax analysis (e.g., in a 
natural language dialogue system) is summarized. 

2 T h e  T w o  Bas i c  F o r m a l i s m s  T A G  
a n d  P A T R  
In this section, the formalism of TAGs is motivated to 
be appropriate to replace a context-free grammar in 
natural  language descr ipt ion.  Weighing  the 
disadvantages remaining for TAGs, which are the seane 
as for CFGs, the same extending formalism as for 
CFGs - Unification Grammars - has been chosen to 
resolve these disadvantages for TAGs. 

2.1 A Sho r t  Ou t l ine  of  T r e e  Adjo in ing  
G r a m m a r s  
In 1975, the formalism of Tree Adjoining Grammars 
(TAGs) was introduced by Aravind K. Joshi, Leon S. 
Levy and Masako Takahashi (see [Joshi et al. 75]). 
Since then, a wide variety of properties - formal 
properties as well as linguistically relevant ones - were 
studied (see, e.g., [Joshi 85] for a good overview). 
The following example  describing the crossed 
dependencies in Dutch should illustrate the formalism 
(see Figure 1, where the node numbers written in 
slanted font should be ignored here, they make sense in 
combination with Figure 3). A TAG is a tree 
generation system. It consists of two different sets of 
trees, which are combinable. Intuitively, the set of 
initial trees can be seen as context-free derivation trees. 
This means, the start symbol is the root node, all inner 
nodes are nonterminals and all leaves are terminals 
(e.g., in Figure 1 tree ~). The second set, the auxiliary 
trees, which can replace a node in an initial tree (which 
is possibly modified by further adjoinings) during the 
process of adjoining, must have a form that again a 
derivation tree results. The trees ~31 and [~2 demonstrate 
that restriction. A special leaf (the foot node) must 
exist, labelled with the same nonterminal as the root 
node is labelled with. Further, it is obligatory that an 
auxiliary tree derives at least one terminal. The union of 
the initial mid the auxili~u:y trees, so to speak the set of 
rules of a 'FAG, is called lhe set of elementary trees. 
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Tree y in Figure 1 shows a TAG derivation tree, which 
is an initial tree with an arbitrary number of adjoinings 
(here [51 is adjoined at the node S* in ct and ~2 in the 
node S* in the adjoined tree 131). 
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Figure 1: A small sample TAG demonstrating the 
process of adjoining 

The most obvious property of TAG rules (elementary 
trees), which arises from the close relation with 
context-free derivation trees - with which linguists are 
familiar - is the easy way to write and understand such 
rules. The advantage instead of a context-free grammar 
producing the derivation trees is that related facts can be 
described in one rule. E.g., in Figure 1, each tree 
contains exactly the dependent pieces without any 

further processing (for more examples see, e.g., [Kroch, 
Joshi 85]). 
With the close relation between TAGs and CFGs, one 
can think that both formalisms are equivalent. But 
TAGs are more powerful. In the linguistic community, 
it is discussed controversially, how powerful a 
linguistic formalism should be (see, e.g., Pullum 84] 
or [Shieber 85]). TAGs are mildly context-sensitive, 
which means that they can describe some context- 
sensitive languages, but not all (e.g., www with w e 

{a,b} , but ww is acceptable for a TAG). There is the 
thesis that natural language can be described very well 
by a mildly context-sensitive formalism. But this can 
only be empirically confirmed by describing difficult 
linguistic phenomenons (here, the example in Figure 1 
can only give an idea for the appropriateness of TAGs 
fbr natural language description). 
If an efficient implementation of a parser for TAGs is 
desired (e.g., in a natural language access system to an 
expert system), the existence of polynomial time 
acceptors for the word problem of TAGs becomes 
relevant (upper time bound O(n 4 log n), see [Harbusch 
89]). On the basis of thi~ efficient algorithm the new 
definition has been implemented which is mentioned 
later in the summary. 
With this short impression of some advantages of the 
TAG formalism, the disadvantages sbould now be 
tackled. The main property, which has its roots in the 
close relation to context-free grammars, is the same 
problem with subcategorisation. Further information 
encoded in the category name leads to combinatory 
explosion of the grammar. In the framework of CFGs, 
this disadvantage is removed by defining a Unification 
Gr~Jnrnar c× tending a context-free grcunmar. 

2.2 PATR Unificat ion Brief ly Revisited 
A Unification Grammar U (brief!y called UG or PATR 
grammar) consists of a CFG G, where each rule is 
extended by a possibly empty set of specification rules 
(for a good introduction to Unification Grammars, e.g., 
see [Shieber 87]). Such a rule consists of two paths 
which ,are unified. A path consists of a number uniquely 
referring to a constituent in the context-free rule 
together with a list of feature names and/or an atomic 
value. 
A pair (context-free rule, list of specification rules) is 
called unification rule. E.g.,((S NP VP)) (((0 fset)(1 
fset))((lfset syntax)(2 fset syntax))((2 fset syntax 
verbform) active)))) is such a rule. Another 
representation of the specification rules is a DAG 
( d i r e c t e d  a c y c l i c  graph). Figure 2 shows this 
representation for the above described exauaple rule. It is 
built by representing the numbers, feature names and 
values as nodes which are connected in the way riley are 
put together in the string representation. Common 
prefixes are represented only once. 

0 ---£set ~,) 

1 - - f s e t  - L s y n t a x ~  

2 - - f s e t  - - s y n t a x - X - v e r  b f o r m  - - ' a c t i ve  

Figure 2: Example of a DAG representation 
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The pro~'ess of recursion - called u n i f i c a t i o n  - is defined 
as an operation of union on all specification rules 
according to a context-free derivation, loosely spoken. 
More h)rmally, the result of  the unification of two 
DAGs x and y (UNIFY(x,y)) is defined inductively as a 
new DAG z, where 
- z = x ,  i f x = y ,  
- z = x, if x is atomic and y is empty, and vice versa 

z = y, if y is atomic and x is empty, 
- if neither x nor y is atomic, then V features I such 

that II,ul ~ x, II,vl e y, I1,UNIFY(u,v)I e z and 
V features I such that II,wl ~ (u u v) - (u r~ v), 
II,wl e z. 

It is easy to see that this extension of the context-free 
formalism allows us to introduce various additional 
information by specification rules. The main problem 
of the formalism is that it has Turing capacity - and so 
all disadvan 'tages inherited with this power. Informally, 
this paper shows that the combination with TAGs 
restricts the power of unification. 

3 The Two Different Definitions 
of TAGs with Unification 
Although Turing capacity is not a wishful property, 
unification seems to be a good extension for TAGs as 

speeif iat ion rules : 

(((10 
(11 

((11 

well. In this section, two different definitions for TAGs 
with Unification (UTAGs) are presented in a common 
terminology to simplify their comparison. 

3.1  T i l e  D e f i n i t i o n  o f  t i l e  G r a m m a r  f o r  
T A G s  w i t h  U n i f i c a t i o n  
Same as to define specification rules according to a 
context-free rule, where the relation between both sets 
is represented by unique node numbers to refer to the 
different constituents in a rule. Here, according to an in- 
itial or an auxiliary tree, these specifications are defined 
between father and sons or between brothers via unique 
node numbers all over the trees. The trees c~, 131 and ~2 
in Figure 1 (now interpreting the unique node numbers 
of the elementary trees) together with the according 
specifications in Figure 3 describe an example TAG 
with Unification, which produces the propagation of 
some syntactic and senmntic information from the lexi- 
cal items to the root node of the different subsentences. 
Note that the unique node numbers are also helpful to 
identify the individual adjoined trees in the derivation 
tree. To prevent the ambiguity resulting from adjoining 
the same tree more than once, the node number of the 
eliminated node is taken as a prefix for all new nodes. 

(((00 fset)(01 fset)) 
((01 fset)(02 fset)) 
((01 fset)(012 set)) 
((011 fset)(012 fset)) 
((012 fset)(0121 fset)) 
((011 fset)(0111 fset))) 

fset sem_role dep sent action) (((20 fset sere_role dep_sent action) 
fset sem_role action)) (22 fset sere_role action)) 
fset)(12 fset)) ((20 fset sem role dep_sent dep_sent action) 

((11 fset)(112 fset)) 
((111 fset)(112 fset)) 
((111 fset)(1111 fset)) 
((11 2 fset)(1121 fset) 

((112 fset sem_role dep_sent actor) 
(1121 fset sem_role actor))) 

Lexicon 

(22 fset sem__role dep_sent action)) 
((21 fset)(22 fset)) 
((211 fset)(211 fset)) 
((22 fset)(222 fset)) 
((22 fset sem_role dep_sent dep sent actor) 
(221 fset sem_role dep sent actpr)) 

((22 fset sere_role dep sent actor) 
(221 fset sem_role actor))) 

: (Marie ((N ((syntax hum) sing)((syntax case) nom)((syntax pers) 3) 
((synt_role subject) Marie)(sem_role actor) Marie))) 

((N ((syntax hum) sing)((syntax case) dat)((syntax pers) 3) 
((syntrole d_obj) Marie) ((sere_role recipient) Marie)) ) 

((N ((syntax num) sing)((syntax case) acc)((syntax pers) 3) 
((syntrole i d obj) Marie)((sem_role recipient) Marie)))) 

... same information for Jan and Piet ... 
(zwemmen ((V ((syntax verbform) inf)((syntrole verb) zwemmen) 

((synt role subject))((synt_role d_obj) NONE) 
((syntrole i d obj) NONE)((sem_role action ) zwemmen)) 

(laten ((V ((syntax verbform) inf) 
((syntrole verb)laten)syntrole d_obj) NONE) 
((syntrole i d obj) NONE)(((sem role action) laten))) 

(zag ((V ((syntax verbform) fin) ((syntax pers) 3)((syntax hum) sing) 
((syntrole verb) zagen)((synt_role d_obj) NONE) 
((synt_role i d obj) NONE)((sem_role action) zagen))) 

Figure 3: Specification rules for c~, 131 and 132 in Figure 1 
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To get an impression of what that grammar does, one 
can read all relations between father and sons in all 
initial and auxiliary trees as context-free rules annotated 
with the corresponding specification rules. 
To realize this partial interpretation of specification 
rules, the following sets for each node x are defined: 
l"x := the set of all specification rules with x father or 
brother of the other mentioned node in that rule, 
Sx := the set of all specification rules, where x is a son 
of the further mentioned node in that rule and 
0x := the set of all specification rules, where a value of 
x is defined. 
It is easy to see that for each node these sets can be 
automatically computed. E.g, for the node 01 in c~, 1"01 
:= {(((00 fset)(01 fset)), ((01 fset)(02 fset))}, $01 := 
{(((01 fest)(012 fset))}, 001 := ~ .  Vijay-Shanker and 
Joshi prefer to write the grammar in the 1" (TOP, or 
briefly called t) and $ (BOTTOM, b) terminology, 
which allows slide differences in expressiveness, e.g., a 
non-empty TOP set of the root node of an auxiliary tree 
can be specified. 
The Unification Grammar, consisting of all rules built 
by interpreting each father and all its sons in all 
elementary trees as context-free rules, together with all 
TOP sets, can be interpreted as described in section 2.2. 
But it is important to note, the two resulting grammars 
are not equivalent, because the context-free grammar 
doesn't require the derivation of the whole tree, if one 
context-free rule out of it is in use. 
Considering this simple and intuitive interpretation of a 
UTAG, the problem of defining adjoining and 
unification directly for such a grammar becomes 
obvious. Only the relations between father and sons or 
brothers are interpreted directly, although there are links 
defined over a whole tree. This is exactly the point, 
where the two defin~.tions differ. 

3.2 The  Definition of Vijay-Shanker and 
Joshi  
The definition of Vijay-Shanker and Joshi separates this 
local information (for a description of their approach 
see, e.g., [Vijay-Shanker 87]). It reminds us of the 
interpretation of attributes after computing the context- 
free derivation tree for an Attribute Grammar (e.g., see 
[Aho et al. 86]). 
In their approach, the 1" and $ sets remain isolated until 
all adjoinings are made. With this strategy it is clear 
that the unification cannot be used to reduce the number 
of structure trees, which are unificationally ill-formed. 
More formally spoken, the adjoining is defined as 
described in Figure 4 (for the reason of uniquely 
referencing to the 1" and $ sets at each node X, t and b 
with different bar levels are used). After all adjoinings 
were made, all 1" and $ sets at each node are unified. 
The disadvantage of this sequential interpretation of 
adjoining and unification can be demonstrated by the 
example grammar. In the lexicon, all names, "Marie", 
"Piet" and "Jan", have three different cases (nominative, 
dative and accusative). Therefore, three structurally 
equivalent trees are produced for each tree c¢, [~1 and ~2. 
These are structurally combined by adjoining. Out of 
this collection, by the specification rule, which 
demands a subject, unification selects one correct 

reading. But this is checked after building nine different 
derivation trees. 

Figure 4: The adjoining definition for the approach of 
Vijay-Shanker and Joshi 

One way to handle that problem is to use unification 
with disjunction to reduce the set of structurally 
equivalent trees. But this doesn't  tackle the problem 
fundamentally, because it cannot reduce ambiguities, 
which only can be eliminated by interpreting the 
specification rules at once. This integration is realized 
in our new approach. The different approaches are 
abbreviated with SUTAG for the more sequential 
approach of Vijay-Shanker and Joshi, and IUTAG for a 
more integrated approach, which is presented now. 

3.3 All Integrated Definition for TAG and 
Unif icat ion 
The basis for our definition is a UTAG given in the 
notation as described in section 3.1. For each 
elementary tree, a set of specification rules is defined, 
which can be interpreted as unified DAGs over the 
whole tree. E.g., the path "fset sem_role action" of node 
01 has the value "zwemmen". 
If an adjoining should happen in a node X, for this node 
the sets '['X, SX and <)X are computed because this 
node and with it "all links from its DAG to other DAGs 
are replaced by an auxiliary tree. Structurally, the 
adjoining looks like the original one for TAGs (and 
same as for SUTAGs). In the case of an adjoining, a 
node in an (possibly modified) initial tree should be 
replaced by a whole auxiliary tree [3, and all links that 
node had have to be modified by the information of ~. 
You can imagine the new linked DAGs all over the 
adjoined Iree as being a filter for the former propagated 
information. E.g., information passing a node X, where 
an adjoining will take place, must not be supported by 
the path from the root to the foot node of the adjoined 
auxiliary tree. So the propagation is stopped somewhere 
in the tree. 
More formally spoken, the definition of adjoining can 
be given as described in Figure 5. The DAG of the 
node, in which the adjoining will take place, is 
represented by $ and $ sets. 
Here, r and f stand for the whole DAG of the root and 
foot node of the auxiliary tree, which will be adjoined. 
But it is obvious that the 1" set of r is empty as well as 
the $ set of f. This is clear because there exists no 
father of the root and no son of the foot node where 
these links can end. 
Using the same terminology for the auxiliary tree as in 
Figure 4 (r is separated in t" and b', and f in t "  and b") ,  
one can write instead of "UNIFY(t,r)" as well 
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"UNIFY(t ,b ' )"  and for "UNIFY(b,f)" as well 
"UNIFY(b,t")". What becomes obvious is that in the 
:cesulting m~e each node has a DAG, which is connected 
with the DAGs of its neighbors in the tree. This was 
lhe aim of the new definition, always to produce linked 
DAGs all over the derivation tree to test for failure of 
anification at once. 

~ i  IFY(t'r) 

NIF¥(b, f) 

Figure 5: Tile adjoining definition for IUTAGs 

~ut this is not the complete definition; there are two 
things to be added. One is the concrete handling of the 
elimination of links and the second is the reintroduction 
of the value definition of the eliminated node. 
t~eginning with the elimination of links, the separation 
into q" and $ at a node X, an adjoining will take place, 
means that all information propagated along the node X 
is eliminated (e.g., one can imagine a reason mainte- 
nance system to keep track of that task, so that unifi- 
cation is no more commutative and independent from 
the time of introducing information). E.g., information 
t'rom a leaf is propagated to the root of the whole tree. 
This propagation can be interrupted, modit'ied or kept 
tmtouched if an adjoining takes place. Intuitively, the 
adjoined tree can be imagined as a filter for the propa- 
?~ation. 
Some extra computation must be done for tile reintro- 
duction of 'din value inl\-)rmation (0X) in the following 
way. Since tim node, in which a value is defined, will 
be eliminated in the case of an adjoining, the question 
arises, what should happen to the value definition? 
tlere, it was decided to find a point for the reintro- 
duction of that information. The first idea can be to say, 
i.~y definition add it to the root node. But now a fail can 
t,,e produced in the case ltmt lhe adjoined tree adds parts 
~f the path to reach that value (e.g., if the value 
definition in node X with the node number 01 is ((01 
ilset) val) and in tile root node (10) of the adjoined tree, 
dm specification rule exists ((10 fset next) (11 fset)), a 
tail is produced because fset has at the same time a 
feature and a value as successo0. To allow this property 
to be interpreted without failure, which is desirable for 
ihe idea of defining a filter via adjoining, a computation 
t)f such paris of paths in the adjoined tree is done to find 
the maximal extension of the path, behind which the 
value can be added without producing a fail. 
in this process, called computation of the inheritance 
history, all maximal prefixes of paths in the adjoined 
auxiliary tree are computed. Out of this set, those 
candidates are chosen, which have the value definition 
as prefix p. Behind these maximal paths the value is 
reintroduced. Because this selection does not always 
have a unique path at exactly one node as result (e.g., if 
~-oot and foot node add two different feature names 
behind p, but between both no propagation occurs), at 

the end of both paths the value is reintroduced by 
definition. It is clear that the computation of the 
inheritance history can be done once for all paths in all 
auxiliary trees, so that this part of the definition doesn't 
extend the execution time very much. The most 
elaborate work has to be done in reconstructing the 
correct links all over the derivation tree after an 
adjoining. In the worst case, changes of propagation all 
over the derivation tree are required. 
To give an idea of how this definition works, in Figure 
6 the changes during the adjoining of [31 and 132 in a 
are represented. Here only the nominatve reading is in 
use, because the lexical reading with case dative and 
accusative produces a fail in unification with the 
valency description of the verbs. Concentrating on the 
feature path "fset sere_role" (note, we don't claim that 
this is a serious semantics of the sentence!), first the 
meaning of "Marie zwemmen" is produced (action is 
"zwemmen" and actor is "Marie"), which is modified 
during the adjoining by "Piet laten" and "Jan zag". 

3.4 Tile Comparison of tile Properties of 
SUTAG and IUTAG 
Finally, let's weigh the two approaches. A first 
impression in reading both definitions can be that the 
differences are marginal. It is simply a decision in 
ordering processes. But a second look offers that there 
,are more differences. The ideas of what should be 
represented by an adjoining are different. A SUTAG 
supports the monotone idea behind unification and the 
parallel and absolute presence of propagated knowledge 
(what is written in tile '1" and ,[, sets should be 
propagated exactly fiom that node all over the tree 
withot,t any more changes). In a UTAG, the idea of 
filtering propagated information has the highest 
priority. Specification information should be revisable 
by new adjoinings. Each of the two approaches works 
more efficient for different problem classes, which 
cannot be characterized in more detail here. 
For SUTAGs, the main disadvantage is the late 
interpretation of the specifcation rules. Especially here 
lies the motivation for the definition of IUTAGs. In the 
above mentioned example, the focus in describing the 
advantage of online unification is demonstated by the 
representation of the intermediate states of the DAGs, 
but it is clear as well, how the lexical readings with 
case equal dative or accusative for "Marie","Pict" and 
"Jan" are eliminated. 
Another distinguishing feature of IUTAGs is that 
unification is not further a monotone process as it is in 
SUTAGs (same as for UGs). Links, which have been 
installed, can be eliminated. This is the more formally 
circumscribed effect of a filter, which is the intuitive 
idea behind that definition. It is obvious that the 
realization of that fact is more expensive than to wait 
until all adjoinings are realized. But it comes up with a 
reduction of execution time for invalid readings. 
Actually, this is a trade off, which has more or less 
effect on the time complexity in the relation in which 
specification rules are used to subcategorize and restrict 
the structural descriptions. Therefore, both definitions 
probably have more lxzrfect application domains. 
A point which was mentioned as a disadvantage of the 
Unification formalism, was the Turing capacity. For 
both definitions of UTAGs, the power is restricted in a 
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way t!hat no path can be introduced via specifications 
without adding a piece of structure, because the 
definition of an elementary tree requires a non-empty 
leaf. Therefore, the defined unification process underlies 
the constant growth property. At the moment, it is not 
yet clear, what class of languages can exactly be 

described with that formalism, but it is obvious that it 
is less powerful than Turing machines (e.g., languages 
such as a 2n are not describable). But a result for an 
upper time bound of an algorithm for that formalism is 
yet unknown. 

by 1'(01) reaching 01 in cc by 1'(11) reaching 11 in ~1: 

and reintroduced at 11 (and reintroduced at 20 
~ r  yd!oining ,of 131) ' , after adjoining of [32) 

ntax- veroform- in! ~set'~" . . . . . .  fset t-syntax- verbform- inf 
y[It [ule vero-zwemmen , ~, .^, . . . . . .  a ~,^~ 

~:1 i - . d obj-NONE 
Ld_obj-NONE i d obj 

g e m  role-actiontzwemmen / , 7 . - , .  
- ~, sem_role,~ actlon-laten 

, - , ~ ~ ~ sent k ac_tj.oj3,, 
oy 4,(01) reacning 01 in cc - -  . . , . . " bv .$tl 1 ~ r e a c ~  
(ano reintroouceo at 1121 . . . . .  
after adjoining of [31) (and reintroduced at2_21 

~,fset rsyntax ~-uase-nom after adjoining of ~9) 
Ipers. 3 fset [syntax i-ease-nSm 
-num-sg i ~pers-3  / / "  

[synt_role--subject- Marie ~ num-sg [ 
'sem role- a c t o r k , , ~ ~  }ynt  role--subjeet-fPiet 

- - ~ " - ~  ~em-roleltactor ~ 
~lep sent L a c t ~  

information at the root of 7: 

fset, syntax-~erbform-fin 
' c a s e - n o m  

'pers-3 
~synt role~'verb-lzagen 

- ~subject-Jan 
| ~d _obj-NONE 

I 'i d__obj-NONE 
\ 'sem_role~action-laten 
\ [actor-Jan 
\ Idep sent- a c t o r - - " ~  
\ \ dep_sen ~action .... " - ~  ! 
[ N I "dep-sent aet°r ~)~ I 
~ i ~ - d e p  sent a e t ~  

Figure 6: Some intermediate states for an example demonstrating the adjoining definition for IUTAGs 

4 Summary 
Also the UTAG definition can be seen purely as a 
theoretical result, syntax description as the most 
prominent application domain has influenced the 
design. Therefore, our experience with an imple- 
mentation of the IUTAG definition running a natural 
language grammar is mentioned here (for all technical 
details see [Buschauer et al. 89]). The system is written 
in Common LISP on a Hewlett Packard machine of the 
9000 series with emphazise on efficiency. E.g., the 
response time for a small test grammar and sentences of 
a lertgth of about 10 words is less than 10 milli- 
seconds. Presently, this pure parser is extended by tools 
(e.g., consistency check) to build a workbench for 
linguists designing IUTAGs. 
On this basis, more empirical results should be 
produced for that domain. Currently, we work on further 
extensions of the definition (e.g., ID/LP for free word 
order in German). Our main emphazise lies on the 
aspect of incrementality. In this paper the interpretation 
direction of the definitions was analysis. But the other 
direction, the problems in generation are faced now, 
with the ambitious aim to verify that IUTAGs are 
appropriate for a bidirectional and integrated description 
of syntactic, semantic and pragmatic facts. 
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