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Abstract

Neural encoder-decoder models have been widely applied to conversational response generation,
which is a research hot spot in recent years. However, conventional neural encoder-decoder mod-
els tend to generate commonplace responses like "I don't know" regardless of what the input is. In
this paper, we analyze this problem from a new perspective: latent vectors. Based on it, we pro-
pose an easy-to-extend learning framework namedMEMD (Multi-Encoder to Multi-Decoder), in
which an auxiliary encoder and an auxiliary decoder are introduced to provide necessary training
guidance without resorting to extra data or complicating network's inner structure. Experimental
results demonstrate that our method effectively improve the quality of generated responses ac-
cording to automatic metrics and human evaluations, yielding more diverse and smooth replies.

1 Introduction

Human-computer conversation is attracting particular attention recently. Research in this field falls
into two categories: the retrieval-based method (Ji et al., 2014; Yan et al., 2017; Wu et al., 2017) and
the generative method (Shang et al., 2015; Serban et al., 2016). While the retrieval-based method can
guarantee completeness of output sentences, it fails to customized for particular posts from users. By
contrast, the generative method may produce sentences with grammatical errors, however, it shows great
promise in flexibility, which gives rise to a research hot spot.

Figure 1: Conventional encoder-decoder model. Blue part represents the encoder, while red part repre-
sents the decoder.

Of the generative method, neural encoder-decoder based model (Sutskever et al., 2014) has become the
mainstream (Figure 1). (Shang et al., 2015) firstly formalized the generation of response as a decoding
process based on the latent representation of the input text, and both encoding and decoding are realized
with recurrent neural networks (RNN). Such formalization is widely adopted by later work. However,
the conventional encoder-decoder model's performance is far from satisfactory, for it tends to generate
meaningless and generic responses like "I don't know".
To tackle the issue of response diversity, lots of models have been proposed, and they can be broadly

divided into three categories: (1) introducing external priori knowledge into the procedure of encod-
ing/decoding (Mou et al., 2016; Xing et al., 2017), which usually requires pretreatment on extra large
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data. (2) complicating network's structure to enhance model's capacity for encoding/decoding (Zhou et
al., 2017; Serban et al., 2017a; Serban et al., 2017b; Zhao et al., 2017; Clark and Cao, 2017; Shen et
al., 2017). (3) directly modifying the objective function to penalize generation probability of trivial re-
sponses (Li et al., 2016). However, these models merely discuss the latent vector, which is the vital link
connecting the encoder and the decoder together.
Different from previous work, we analyse the problem of general response generation from the per-

spective of latent vectors. We notice that in the basic encoder-decoder model, what the decoder needs to
generate a response is only a hidden vector. In other words, for the same decoder, latent vectors directly
decide what will be generated. If latent vectors are clustered, the decoder is likely to generate similar re-
sponses. If latent vectors are dispersed, the decoder is likely to generate diverse responses. Based on the
conjecture that dispersion of latent vectors has positive correlation with diversity of generated responses,
encoder-decoder model's poor performance can be discussed in the two following situations:

• Suppose that the decoder is capable to generate different sentences given different latent vectors,
model's unsatisfying performance of generating meaningless sentences should be imputed to the
encoder—it tends to map whatever inputs to similar vectors. In this situation, to promote diversity
in generation, the encoder should be encouraged to generate different latent vectors given different
inputs.

• Suppose that the encoder is capable to generate different latent vectors with specific and concrete
semantics given different inputs, model's unsatisfying performance of generating meaningless sen-
tences should be imputed to the decoder—it is insensitive to latent vectors and tends to generate
similar sentences given whatever latent vectors. In this situation, to promote diversity in generation,
decoder's capacity for generating sentences should be enhanced.

During training, however, since there is no constraint on the latent vector's specificity, neither encoder's
capacity for latent vector generation nor decoder's capacity for sentence generation can be guaranteed,
which leads to poor performance in conversation generation.
For the above motivation, we propose a learning framework named MEMD (Multi-Encoder to Multi-

Decoder). In proposed framework, an auxiliary encoder, which aims at guiding the major encoder to
generate diverse latent vectors, and an auxiliary decoder, which aims at providing latent vectors with
specific and concrete semantics for the major decoder to "practice" decoding, are introduced. During
training, parameters of these two encoders and two decoders are updated. While in test, only the major
encoder and the major decoder are employed.
In summary, our contributions are as follows:

• We present a new angle to tackle the problem of response diversity—the latent vectors generated by
the encoder.

• We propose an easy-to-extend learning framework: MEMD, which introduces necessary training
guidance for both encoder and decoder without resorting to extra data or complicating inner structure
of networks.

• Experimental results demonstrate thatMEMD effectively improves the quality of generated respons-
es according to automatic metrics and human evaluations, yielding more diverse and smooth replies.

2 Technical Background

2.1 Gated Recurrent Unit (GRU)

GRU (Cho et al., 2014) is a special kind of RNN, which is widely used for learning long-term de-
pendencies. It is defined as follows: given a sequence of inputs (w1, w2, . . . , wN ), GRU iterates each
timestep with an update gate zn and a reset gate rn. Let hn denote the vector of hidden layer computed
by GRU at time n, σ denote the sigmoid function and ⊙ denote the element-wise product. The vector



1283

representation of hidden layer for each timestep n is given by:

zn = σ(Wzwwn +Wzhhn−1) (1)
rn = σ(Wrwwn +Wrhhn−1) (2)
h̃n = tanh(Whwwn +Whh(rt ⊙ ht−1)) (3)
hn = (1− zn)hn−1 + znh̃n (4)

whereW∗w is the transformation matrix from the input to GRU states,W∗h is the recurrent transformation
matrix between the recurrent states hn.

2.2 Encoder-decoder Models

In an encoder-decoder model, given a source sequence message X = (x1, x2, . . . , xM ) and a target
sequence response Y = (y1, y2, . . . , yN ), the model would maximizes the generation probability of Y
conditioned on X . While the encoder reads X word by word and represents it as a latent vector hX
through a recurrent neural network (RNN), the decoder estimates the generation probability of Y with
hX as initial state. The objective function of the model is as follows:

p(y1, . . . , yN |x1, . . . , xM ) = p(y1|X)

N∏
t=2

p(yt|y1, . . . , yt−1, X), (5)

The latent vector hX is calculated by

ht = f(xt, ht−1) (6)
hX = hM (7)

where ht is the hidden state at time t and f is a non-linear transformation which can be a gated recurrent
unit (GRU). The decoder is a standard RNN language model except the addition of the context vector c.
The probability distribution pt of candidate words at each timestep t is calculated as

s0 = hX (8)
st = f(yt−1, st−1) (9)
pt = softmax(st) (10)

where st is the hidden state of the decoder RNN at timestep t.

2.3 Attention Mechanism

The traditional sequence-to-sequencemodel assumes that eachword is generated from the same context
vector. However, in practice, different words in Y might be related to different words or phrases inX . In
order to solve this problem, attention mechanism (Bahdanau et al., 2015; Cho et al., 2014) is introduced
into this model. With attention, the context vector ci corresponded to each yi in Y is a weighted average
of all hidden states of the encoder. Formally, ci is defined as

ci =
M∑
j=1

αijhj (11)

αij =
exp(eij)∑M
k=1 exp(eik)

(12)

eij = η(si−1, hj) (13)

where η is a multi-layer perceptron (MLP).
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3 Proposed Framework
The basic idea of MEMD is simple: we want the encoder to be able to generate different latent vectors

given different inputs and the decoder to be able to generate sentence given a latent vector. We prevent
the encoder from generating similar vectors by requiring that posts themselves should be reconstructed
from the latent vectors, since if vectors are similar, they cannot be interpreted into diverse sentences by the
same decoder. And for decoder, we strengthen its decoding ability by requiring it to reconstruct responses
given vectors that really encode responses, since latent vectors' effectiveness cannot be guarantee when
the encoder takes as input not responses but posts.

I love to bake .(post)

(major-encoder)

_GO

So do I .

So do I

(major-decoder)

(response) So do I .

(aux-encoder)

I love to bake_GO

I love to bake .

(aux-decoder)

Figure 2: Architecture ofMEMD. This framework contains four main components: 1) amajor encoder, 2)
amajor decoder, 3) an auxiliary encoder, and 4) an auxiliary decoder. Three training paths are constructed:
1) frommajor-encoder to aux-decoder, 2) frommajor-encoder to major-decoder, and 3) from aux-encoder
to major-decoder. Blue parts' inputs/targets are posts, while red parts' inputs/targets are responses.

3.1 Model Architecture
Suppose that short-text conversation consists of a post and a response, we denote a post of lengthM as

X = [x1, . . . , xM ] and a response of lengthN as Y = [_GO, y1, . . . , yN ]where _GO is a special symbol
indicating the begin of a response. Each training example is a (post, response) pair, namely, (X,Y ).
Figure 2 illustrates the architecture ofMEMD, in which there are two encoders—major encoder (major-

encoder) and auxiliary encoder (aux-encoder), and two decoders—major decoder (major-decoder) and
auxiliary decoder (aux-decoder). These four components constitute three training paths: path 1 is from
major-encoder to aux-decoder, path 2 is from major-encoder to major-decoder, and path 3 is from aux-
encoder to major-decoder. Note that the major-encoder produces only one latent vector when fed one
post, and the major-decoder receives only one latent vector per decoding procedure. In other words, the
major-encoder is shared between path 1 and path 2, and the major-decoder is shared between the path 2
and path 3.
The major-encoder takes as input a postX , and returns its hidden state vector at the last step, i.e., hM ,

as output. The aux-encoder has the same structure as the major-encoder, but takes as input the response
Y . The output of the aux-encoder is also it's hidden state vector at the last step, i.e., ĥN . The major-
decoder takes as input hM or ĥN , and it's generation target is Y . When it takes hM as input, it constitutes
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a conventional encoder-decoder model with the major-encoder. When it takes ĥN as input, it constitutes
an auto-encoder with the aux-encoder. The aux-decoder has same structure as the major-decoder. It takes
as input hM , and its generation target isX .

3.2 Training Procedure

We first present the training objective along each path, and then give the whole training algorithm.
We denote the parameters of the major-encoder as θME , and the parameters of aux-decoder as θAD.

The training objective of path 1 (from the major-encoder to the aux-decoder) is:

min
θME ,θAD

LME−AD = − log p1(X|X) (14)

The parameters of the major-decoder are denoted as θMD. The training objective of path 2 (from the
major-encoder to the major-decoder) is:

min
θME ,θMD

LME−MD = − log p2(Y |X) (15)

The parameters of the aux-encoder are denoted as θAE . The training objective of path 3 (from the
aux-encoder to the major-decoder) is:

min
θAE ,θMD

LAE−MD = − log p3(Y |Y ) (16)

The overall training objective is:

min
θME ,θAE ,θMD,θAD

L = LME−AD + LME−MD + LAE−MD (17)

In actual implementation, for the sake of flexibility and extendibility, we don't directly optimize Eq.(17)
but interleave the optimization of Eq.(14), Eq.(15) and Eq.(16) at each iteration, which is inspired by the
alternating training approach (Dong et al., 2015). Algorithm 1 summarizes the training procedure.

Algorithm 1MEMD for short-text conversation
Input: Training data {(X,Y )n}
Output: major-encoder, aux-encoder, major-decoder, aux-decoder
1: Initialize θME , θAE , θMD, θAD

2: repeat
3: Train through path 1 by Eq.(14)
4: Train through path 2 by Eq.(15)
5: Train through path 3 by Eq.(16)
6: until convergence

3.3 Discussion

Our proposed framework MEMD is seemingly similar to the many-to-many setting in multi-task
sequence-sequence learning (Luong et al., 2015). However, there are obvious distinctions between
MEMD and multi-task sequence-sequence learning. MEMD aims at introducing constrains for encoder
and decoder from the perspective of latent vectors, and does not require extra data for training. These
introduced constrains are designed based on the characteristics of conversational response generation
task. The many-to-many setting in multi-task sequence-sequence learning, however, aims at improving
the generalization performance of the central task by resorting to training data of other related tasks.
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4 Experiments

4.1 Dataset
We carry out experiment on an open-domain dialogue dataset: STC-weibo corpus developed by (Shang

et al., 2015). STC-weibo corpus consists of millions of post-response pairs crawled from Weibo1, which
is popular Twitter-like microblogging service in China and has length limit of 140 Chinese characters on
both posts and responses. We filter post-response pairs that include "alink" which represents a hyperlink,
since we find that sentences are low-quality when "alink" appears. Besides, each post corresponds to 28
different responses at average. To minimize noise, we selected the response that contains the maximum
number of frequent bigram in the whole corpus. After data cleaning, we finally get 199384 post-response
pairs, and conduct the train/dev/test split of 197424/1000/960.

4.2 Baselines
We use the following models that needn't resort to extra data as our baselines for fair comparison:
Enc-Dec: the standard encoder-decoder model.
Enc-Dec-A: the standard encoder-decoder model with attention.
MMI: the best performing model in (Li et al., 2016).
For each baseline, there is a corresponding version ofMEMD,whosemajor-encoder andmajor-decoder

are the same to the baseline's encoder and decoder respectively. In other words, the baseline and its
corresponding MEMD are structurally identical in test. Under this controlled setting we can validate the
effectiveness of the proposed learning framework.

4.3 Implementation Details
We implement models in TensorFlow2 and train them using Adam. The encoder is implemented as

bidirectional GRU, and the decoder is implemented as multi-layer GRU (3 layers in Enc-Dec and Enc-
Dec-A, 2 layers in MMI). The dimensions of hidden state are set to be 512 in Enc-Dec and Enc-Dec-A,
and 256 in MMI. We use 100-dimension word embedding, and keep the size of vocabulary to be 60000.
The word embedding is pretrained on the training set and updated during training. We set the learning
rate to be 2× 10−3 for path 2 and 3× 10−4 for path 1 and path 3. And the batch size is set to be 48. We
test the model on development data every 1000 mini-batches. When the model's performance on object
function doesn't improve within 4 successive tests on development data, we view it convergent and stop
training.

4.4 Evaluation metrics
Distinct-1 & distinct-2: Follow (Xing et al., 2017), we counted numbers of distinct unigrams and

bigrams in the generated responses, and divide them by the total number of unigram and bigram respec-
tively. The higher these two metrics are, the more informative and diverse the generated responses are.
Distinct-B & distinct-S: To measure the diversity of sentence pattern, we counted the number of

distinct four words at the beginning of sentences, and divide them by the total number of generated
sentences. We denote this metric as distinct-B. Moreover, we count the number of distinct sentence, and
also calculate the ratio of distinct sentence to the total number of generated sentences. We denote this
metric as distinct-S. The higher these two metrics are , the more diverse the generated responses are.
Sentence-level BLEU: Inspired by metrics used for evaluating machine translation, we use BLEU

(Chen and Cherry, 2014) to evaluate the responses generated by different models.
Human annotation: Since automatic metrics may not consistently agree with human perception (Stent

et al., 2005), we conduct human evaluation on 50 randomly sampled generated sentences. Three labelers
with rich Weibo experience were invited to do evaluation. Responses generated by different models were
pooled and randomly shuffled for each labeler. we adopt the criteria used in (Xing et al., 2017):
+2:The response is not only relevant and natural, but also informative and interesting.
1http://www.weibo.com/.
2https://www.tensorflow.org/
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+1: The response can be used as a reply to the message, but it is too universal like “Yes, I see”,
“Me too”and“I don’t know”.

0: The response cannot be used as a reply to the message. It is either semantically irrelevant or disfluent
(e.g., with grammatical errors).

4.5 Results and Analysis
We investigate three strategies to initialize parameters of the major-encoder and the major-decoder.

From Table 1 we can find that the way of initialization have a great influence on model's performance.
When major-encoder and the major-decoder are pretained through path 1 and path 3 (advance-1&3),
which in fact constitute two independent auto-encoders, the model tends to use the same words, and lack-
s variety on sentence pattern according to distinct-1, distinct-2, distinct-B and distinct-S. What's more,
results of human annotation suggest that generated sentences are low-quality. When no pretraining is
adopted, the model's diversity and generation quality are improved. When pretraining is conducted on
path 2 (advance-2), which means the major-encoder and the major-decoder are initialized with a conver-
gent Enc-Dec, the model gets significant improvement on diversity and generation quality. We notice
that BLEU scores are somewhat incompatible to human annotation, here we put more priority on human
annotation, and use BLEU scores as reference.

pretrain strategy distinct-1 distinct-2 distinct-B distinct-S BLEU +2 +1 0
advance-1&3 102/.010 308/.038 69/.072 388/.404 0.569 16% 54% 30%
no pretrain 172/.017 478/.059 154/.160 456/.475 0.536 26% 52% 22%
advance-2 882/.086 2294/.276 547/.570 910/.948 0.559 40% 36% 24%

Table 1: Results of MEMD on evaluation metrics. The first four columns are in the format of "the
total number/proportion". Before employing algorithm 1, three strategies are adopted to initialize major-
encoder's and major-decoder's parameters: 1) train them on path 1 and path 3 in advance. 2)no pretrain.
3)train them on path 2 in advance.

Figure 3: The left subfigure shows models' all 512 sorted PV under different pretraining strategies. The
upper-right subfigure shows PV in the interval of 1 to 10, and the lower-right subfigure shows PV in the
interval of 300 to 350.

Besides of evaluation metrics, we carry out analysis on latent vectors' distribution under different pre-
training strategies. Since latent vectors under different pretraining strategies aren't in the same semantic
space, direct comparison is infeasible. To tackle this problem, we utilize PCA (Principal Component
Analysis) to get variances along each axes, which are represented by eigenvalues of covariance matrix
subtracted the mean of each latent vectors. By dividing the eigenvalue by the sum of all eigenvalues, we
get the percentage of variance (PV) explained by corresponding axis. If the variance of PV is large, which
indicates variances are mainly distributed along a few axes, latent vectors are clustered. If the variance of
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PV is small, which indicates they may have high variances along many axes, latent vectors are scattered.
We use the variance of PV to indicate the dispersion of latent vectors. Models' sorted PV along all 512
axes are showed in Figure 3.
From Figure 3 we can clearly observe that the blue line has the largest value among three lines at

the very beginning, then it drops down most sharply, and keeps small value later. This indicates that its
most part of variances are occur on only a few axes, which means the latent vectors are clustered in the
semantic space. The green line has the smallest value among three lines at the beginning and drops down
most smoothly. This indicates its variances are distributed more evenly on all axes, so the latent vectors
are more scattered in the whole semantic space. The PV variances of advance-1&3, no pretrain, and
advance-2 are 4.251× 10−5, 3.142× 10−5, and 2.138× 10−5 respectively, indicating that latent vectors
of them are more scattered accordingly. The sorted PV distribution and variances of PV echo the results
from Table 1.
To validate the effectiveness of the aux-encoder and the aux-encoder in the proposed MEMD, we

designed two variations: 1) MEnc-Dec, which only has aux-encoder. 2)Enc-MDec, which only has aux-
decoder. Together with MEMD, we get three models and train them with pretraining method of advance-
2. The evaluation results are shown in Table 2. Both MEnc-Dec and Enc-MDec get higher scores on
distinct-1, distinct-2, distinct-B, distinct-S, and human annotation comparing with Enc-Dec, which can
prove that both aux-encoder and the aux-encoder do help promote diversity in response generation. The
effectiveness of aux-decoder and aux-encoder support the two situations discussed in introduction. When
compare Enc-MDec withMEnc-Dec, we find the latter brings greater promotion to the baseline on human
annotation, which indicates that the aux-encoder plays important role in digesting the major decoder's
ability to generate smooth sentences. When both aux-encoder and aux-decoder are adopted, MEMD's
performance is further improved and gets best results on distinct-1, distinct-2, distinct-B，distinct-S, and
human annotation.

distinct-1 distinct-2 distinct-B distinct-S BLEU +2 +1 0
Enc-Dec 148/.016 412/.055 145/.151 383/.399 0.555 18% 46% 36%
MEnc-Dec 796/.079 2125/.259 512/.533 870/.906 0.568 32% 42% 26%
Enc-MDec 730/.068 2133/.241 536/.558 877/.914 0.554 22% 50% 28%
MEMD 882/.086 2294/.276 547/.570 910/.948 0.559 40% 36% 24%

Table 2: Results of MEMD's variations on evaluation metrics. The first four columns are in the format of
"the total number/proportion". Enc-Dec is the baseline, MEnc-Dec represents Enc-Dec with aux-encoder,
and Enc-MDec represents Enc-Dec with aux-decoder.

(a) (b) (c)

Figure 4: Visualization of all latent vectors generated by Enc-Dec, Menc-Dec, Enc-MDec and MEnc-
MDec in test.

We visualize two sets of all 960 latent vectors which are generated by Enc-Dec, MEnc-Dec, Dec-
MDec and MEMD respectively in Figure 4. Note that the major-encoders and the major-decoders of
MEnc-Dec, Dec-MDec and MEMD are initialized using Enc-Dec's parameters. We can clearly observe
that after training under the MEMD framework, latent vectors become much scattered. Taking Figure 4
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and Table 2 together, we find that dispersion of latent vectors has positive correlation with diversity of
generated responses, which supports our conjecture.

distinct-1 distinct-2 distinct-B distinct-S BLEU +2 +1 0
Enc-Dec 148/.016 412/.055 145/.151 383/.399 0.555 18% 46% 36%
MEMD 882/.086 2294/.276 547/.570 910/.948 0.559 40% 36% 24%

Enc-Dec-A 310/.032 683/.088 162/.168 447/.466 0.571 20% 42% 38%
MEMD-A 822/.074 2157/.236 550/.573 873/.909 0.562 42% 36% 22%
MMI 345/.056 661/.157 317/.330 500/.521 0.440 32% 48% 20 %

MEMD-M 478/.073 820/.178 344/.358 572/.596 0.463 46% 32% 22%

Table 3: Results of baselines and their corresponding MEMD on evaluation metrics. The first four
columns are in the format of "the total number/proportion".

To reveal the expansibility of the proposed learning framework, we apply MEMD to the other two
baselines—Enc-Dec-A andMMI. From Table 3 we can see that MEMD-A has superior performance than
Enc-Dec-A on distinct-1, distinct-2, distinct-B, distinct-S and human annotation, which indicates better
diversity and quality of generated responses. MMI can produce smoother and more specific sentences
than Enc-Dec and Enc-Dec-A, andMEMD-Mgets better performance on distinct-1, distinct-2, distinct-B,
distinct-S and human annotation than MMI. We also find that better performance on distinct-1, distinct-
2, distinct-B, and distinct-S cannot guarantee better performance on human annotation, which can be
explained as sentences contain varied words but have poor quality or are irrelevant to posts. Table 4
exhibits some examples. From Table 4 we can see that responses generated by Enc-Dec are general and
lack pertinency to posts, while MEMD can catch some keywords in posts like "Hangzhou", "snow", and
"talk". For Enc-Dec-A and MMI, they can sometimes generate natural responses, and based on them,
MEMD-A and MEMD-M generate more informative and relevant responses.

Post Enc-Dec MEMD Enc-Dec-A MEMD-A MMI MEMD-M

杭州又下雪了，雪
中西湖是最美的

这是哪里
啊？我也想

去

杭州下雪了，
我也在杭州

我也想去杭
州了。

是杭州吗？杭州
下雪了？

... 西湖下雪了，
西湖下雪了。

It snows again in
Hangzhou, and West
Lake in the snow is
the most beautiful.

Where is
this? I want
to go, too.

It snows in
Hangzhou, and I
am in Hangzhou,

too.

I want to go
to Hangzhou,

too.

Is this Hangzhou?
Is it snowing in
Hangzhou?

...
It snows in West
Lake, it snows
in West Lake.

已过零点，跟自己
说一声：生日快乐。

我也是
你这是在说什
么啊？

这是一个
UNK

生日快乐，我的
生日快乐

生日快乐
祝生日快乐，
祝生日快乐

The time has passed
twelve o'clock at
night, I talked to
myself: happy

birthday.

Me too. What are you
talking about?

This is a
UNK

Happy birthday,
happy birthday to

me
Happy
birthday

Happy birthday
to you, happy
birthday to you

Table 4: Case study.

5 Conclusion

In this paper, we view the generation diversity from a new angle: the latent vectors. Base on it,
we propose an easy but effective learning framework named MEMD. In experiment, we found that the
initialization method for the major-encoder and the major-decoder have great impact on the model's per-
formance. Besides, we verify the effectiveness of the aux-encoder and the aux-decoder, and transfer
the basic MEMD to MEMD-A and MEMD-M. We analyze the distribution of latent vectors, and find
it consistent with evaluation metrics, which supports our conjecture that dispersion of latent vectors has
positive correlation with diversity of generated responses.
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