
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 1254–1263, Osaka, Japan, December 11-17 2016.

Semantic Relation Classification via Hierarchical Recurrent Neural
Network with Attention

Minguang Xiao Cong Liu∗
School of Data and Computer Science, Sun Yat-sen University

xiaomg@mail2.sysu.edu.cn, liucong3@mail.sysu.edu.cn

Abstract

Semantic relation classification remains a challenge in natural language processing. In this pa-
per, we introduce a hierarchical recurrent neural network that is capable of extracting informa-
tion from raw sentences for relation classification. Our model has several distinctive features:
(1) Each sentence is divided into three context subsequences according to two annotated nom-
inals, which allows the model to encode each context subsequence independently so as to se-
lectively focus as on the important context information; (2) The hierarchical model consists of
two recurrent neural networks (RNNs): the first one learns context representations of the three
context subsequences respectively, and the second one computes semantic composition of these
three representations and produces a sentence representation for the relationship classification of
the two nominals. (3) The attention mechanism is adopted in both RNNs to encourage the model
to concentrate on the important information when learning the sentence representations. Experi-
mental results on the SemEval-2010 Task 8 dataset demonstrate that our model is comparable to
the state-of-the-art without using any hand-crafted features.

1 Introduction

Semantic relation classification is an important task in natural language processing, which has attracted
great attention in recent years. The goal is to identify the semantic relationship between a pair of nominals
marked in a sentence. For instance, in the sentence “The software [company]e1 addressed the problem
with the [publication]e2 of a fix on Saturday”, the marked nominals of company and publication are of
relationship Product-Producer(e2, e1). Most conventional models focus on machine learning and feature
design, which have been shown to obtain performance improvements (Kambhatla, 2004; Tratz and Hovy,
2010; Rink and Harabagiu, 2010).

Recently, neural network approaches have been widely used for relation classification, which aim at
reducing the need of hand-crafted features. These approaches are broadly divided into two categories:
one explores the effectiveness of using dependency paths and its attached subtrees between two nominals,
and various neural networks are adopted to model the shortest dependency paths and dependency sub-
trees (Xu et al., 2015a; Xu et al., 2015b; Liu et al., 2015); the other exploits deep neural networks to learn
syntactic and semantic features from raw sentences (Zeng et al., 2014; Dos Santos et al., 2015; Zhang
et al., 2015), which has been proved effective, but inevitably suffers from irrelevant parts. Our paper
introduces an attentive neural network that selectively focuses on useful information on raw sentences.

Context information of the annotated nominals has been widely believed to be useful for relation clas-
sification (Zhang et al., 2015; Thang Vu et al., 2016). In this work, we further explore the effectiveness
of context information around the annotated nominals in a sentence. In our model, a sentence with two
marked nominals is divided into three context subsequences according to two marked nominals: the left
context subsequence, the middle context subsequence and the right context subsequence. This method
is similar to Pei et al. (2015) and Thang Vu et al. (2016), which have showed that contextual infor-
mation is effectively obtained by deep learning techniques. Instead of combining the middle context
∗Cong Liu is the corresponding author.
This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1254



subsequence with the left and right context subsequences, respectively, as in (Thang Vu et al., 2016), we
propose to learn context representations via recurrent neural networks that work on each context sub-
sequence independently. For example, the sentence “The software [company]e1 addressed the problem
with the [publication]e2 of a fix on Saturday” is split into three subsequences: “ The software”, “ad-
dressed the problem with the” and “of a fix on Saturday”. And the marked nominals of [company]e1 and
[publication]e2 are not included in any context subsequence. As a result, the sentence is divided into five
parts: three context subsequences and two annotated nominals. Our sentence representations are leant hi-
erarchically from context subsequences to sentences using a hierarchical recurrent neural network, which
firstly learns the context representation of each context subsequence independently, and then encodes the
semantics of context subsequences into a sentence representation for the relation classification. Further-
more, we introduce the attention mechanism (Bahdanau, 2014; Rush, 2015; Rocktäschel et al., 2016)
that encourages the model to focus on the important information. Experimental results demonstrate that
our model is comparable to the state-of-the-art with a single model that works on the raw sentences.

In the rest of this paper, we review recurrent neural networks in Section 2. We provide details about our
model in Section 3. Section 4 presents our experiments and their results. Finally, we make a conclusion
in Section 5.

2 Recurrent Neural Networks

Recurrent neural networks (RNNs) (Elman, 1990; Mikolov et al., 2010) project a sequence of inputs
x1, . . . , xT to a sequence of outputs y1, . . . , yT via an affine transformation followed by a non-linear
function. At timestep t, a standard RNN computes the new hidden vector as

ht = f(Wxt + Uht−1 + b) (1)

where W is trained matrix transforming the current input xt into the current state linearly, U is also
trained matrix connecting the previous state ht−1 with the current state, and b is a bias term, and f is a
non-linear function (e.g., tanh).

However, RNNs with the above form may suffer from gradient exploding or vanishing problem (Ben-
gio et al., 1994; Hochreiter, 1997) during training when it is trained with the backpropagation through
time algorithm (Rumelhart et al., 1986; Werbos, 1990; Williams and Zipser, 1995). To address this prob-
lem, long short-term memory network (LSTM) was proposed in (Hochreiter and Schmidhuber, 1997)
where the architecture of a standard RNN was modified to avoid vanishing or exploding gradients. Many
LSTM variants have been proposed, and here we adopt the version of Zaremba and Sutskever (2014a).

The LSTM model comprises a memory cell that can store information over a long period of time, and
three gates that allow it to control the flow of information into and out of the cell: input gate, forget gate,
and output gate. Concretely, the LSTM unit at time step t encompasses a collection of vectors: an input
gate it, a forget gate ft, an output gate ot, a memory cell ct, and a hidden state ht. The unit accepts an
input vector xt, the previous hidden state ht−1, and the memory cell ct−1 and computes the new vectors
using the following equations:

it = σ(W (i)xt + U (i)ht−1 + b(i))

ft = σ(W (f)xt + U (f)ht−1 + b(f))

ot = σ(W (o)xt + U (o)ht−1 + b(o)) (2)

ut = tanh(W (u)xt + U (u)ht−1 + b(u))
ct = it � ut + ft � ct−1

ht = ot � tanh(ct)

where σ denotes the element-wise application of the logistic function, � denotes the element-wise mul-
tiplication of two vectors, W and U are weight matrices, and b are bias vectors.

1255



 [xk] [xj]

...

xj-1x2x1

...

xk-1xj+2xj+1

...

xLxk+2xk+1

Classifier

r1 r2 r3

rs

Bi-LSTM

Neural 

attention

Bi-RNNs

Neural 

attention

Figure 1: The architecture of our model. Given a sentence consisting of L words, it is divided into the
left context subsequence [x1, . . . , xj−1], the middle context subsequence [xj+1, . . . , xk−1] and the right
context subsequence [xk+1, . . . , xL]. [xj] and [xk] represent the marked nominals e1 and e2 respectively.

3 Model

In this section, we introduce the proposed neural model that learns distributed representations from raw
sentences. These representations serving as features are further used for relation classification. An
overview of our model is shown in Figure 1.

Given a sentence with two annotated nominals, the sentence is firstly divided into five parts (three con-
text subsequences and two annotated nominals) based on the two marked nominals (Section 3.1). Next,
the model computes the distributed representations for the context subsequences using a bidirectional
LSTM that works on word vectors (Section 3.2). Lastly, these distributed context representations are
further encoded into a sentence representation via a bidirectional RNN (Section 3.3). Furthermore, we
extend this model with a neural attention that encourages the model to focus on important information.

3.1 Context Subsequences

In most cases different contexts have different functions for the meaning of sentences. Some recent work
fell into the idea that the middle context contains the most relevant information for relation classification,
combining the middle context with the left and right context respectively (Zhang et al., 2015; Thang Vu
et al., 2016). We instead model each context part independently, which allows the model to automatically
identify contexts that contain useful information.

Given a sentence s and its annotated nominals e1 and e2, the sentence first is split into five parts
according to the two annotated nominals: the left context subsequence, entity e1, the middle context
subsequence, entity e2 and the right context subsequence. Preprocessing the sentence in such a way
allows the model to encode each context subsequence independently.

3.2 Context Subsequence Composition

3.2.1 Word Encoder
A bidirectional LSTM (Bi-LSTM) (Graves and Schmidhuber, 2005; Graves et al., 2013) is applied to
independently encoding each of the three context subsequences. A bidirectional LSTM consists of two
LSTMs: the forward and backward LSTMs. They are run in parallel: the forward LSTM inputs the
words from x1 to xT , and the backward LSTM inputs in an reverse order from xT back to x1. At time
step t, we obtain the hidden state (denoted as ht) of the bidirectional LSTM by concatenating the forward
hidden state (denoted as

−→
ht) and the backward one (denoted as

←−
ht), i.e., ht = [

−→
ht ,
←−
ht]. Bi-LSTM can

summarize the information from the whole context subsequence centered around words, which let the
model understand the meaning of words comprehensively.

1256



Given a sentence s divided into the left context subsequence c1, the middle context subsequence c2
and the right context subsequence c3, we assume that the sentence s contains L words and the context
subsequence ci has Ti words, where i ∈ [1, 3]. The input to Bi-LSTM is a context subsequence ci: [xi1,
. . . , xiTi] where xit is the word vector for word wit. At time step t, the encoder produces a hidden
state hit which gathers the information of the whole context subsequence ci centered around wit. The
equations are following:

−→
hit =

−−−−→
LSTM(xit) (3)

←−
hit =

←−−−−
LSTM(xit) (4)

hit = concat(
−→
hit,
←−
hit) (5)

where concat is concatenation function, i.e., hit = [
−→
hit;
←−
hit].

Note that our model encodes the left, middle and right context subsequence independently but with
one Bi-LSTM. 1

3.2.2 Word-level Attention
Due to the fact that raw sentences contain more information than the shortest dependency paths, there
may be some irrelevant information in raw sentences. For concentrating on these words that are important
to predict the relationship of entities, it can be a good strategy to pay more attention on these words.
To encourage such behavior, this paper introduces a word-level attention mechanism. The attention
mechanism enables the model to differently attend over the hidden vectors of Bi-LSTM along a context
subsequence, and produces a weighted representation mi of them as follows:

zit = tanh(W (w)hit +W (c)ri + b)

αit =
exp(v>z zit)∑Ti

j=1 exp(v>z zij)
(6)

mi =
Ti∑

t=1

αithit

where W (w) and W (c) are weight matrices, b is a bias vector, vz is a weight vector and v>z is its trans-
formation, and ri is an external context vector that is randomly initialized and jointly optimized during
training.

The attention representation zit corresponding to the t-th word wit in the context subsequence ci
is computed via a non-linear combination of the hidden state hit and the external context vector ri.
The attention weight αit for the t-th word wit in the context subsequence ci is a probability that is the
normalized weight of zit (parameterized by vz) through a softmax layer, reflecting the importance of the
t-th word wit with respect to the meaning of the context subsequence ci in classifying the relationship
of two entities. The external context vector ri not only represents the high-level meaning of the context
subsequence ci, but also allows the model to identify that the word wit is in the context subsequence ci.

3.3 Sentence Composition

After establishing an attention-based Bi-LSTM (Section 3.2) to capture the meaning of three context
subsequences, resulting in three context representations, there is one difficulty that how to further obtain
the semantic composition of these context representations plus two representations of marked nominals.
Note that there are five semantic representations. The most common approach is that a multilayer per-
ceptron (MLP) is adopted to take these representations as input and compute semantic compositionality

1We adopt Bi-LSTM to encode each context subsequence separately even if it contains few words, such as one word.

1257



for them. In this work, we adopt a Bi-RNN to integrate syntactics and semantics of three context subse-
quences and two annotated nominals into sentence representation s, which is further fed into a classifier
for relation classification. We propose to learn sentence representations via Bi-RNNs for two reasons:
(1) a sentence containing two annotated nominals divided into three context subsequences that are or-
dered as in the sentence, can be treated as a short sequence that consists of five tokens; (2) recurrent
neural networks are competent enough to model the semantics of these context subsequences and their
inherent relations, which is important to obtain the semantic meaning of the sentence. The experimental
results demonstrate that Bi-RNNs significantly outperform MLP.

Let Y be a matrix containing five column vectors [m1, me1 , m2, me2 , m3], where mi (i ∈ [1, 3]) is
the representation of the context subsequence ci, and me1 and me2 are the representations of annotated
nominals e1 and e2. 2 To obtain compositional vector representations for sentences, we iterate the
following sequence of equations:

−→
hj =

−−−→
RNN(yj) (7)

←−
hj =

←−−−
RNN(yj) (8)

hj = concat(
−→
hj ,
←−
hj) (9)

where yj ∈ Y (j ∈ [1, 5]) is the j-th column vector in Y.
Note that the sentence only contains five elements, our model do not make any assumptions about the

type of RNNs used in this subsection. But as far as comparison goes, LSTMs performs better than the
standard RNNs.

To selectively focus on the important context subsequences, it is an alternative solution to applying
neural attention to the hidden vectors of the above Bi-RNNs, similar to Subsection 3.2.2. We also make
further extensions such as average pooling and max pooling.

3.4 Training

A fully connected softmax layer is used as classifier for classification. It produces the probability distri-
bution p over relation types conditioned on the sentence representation s:

p = softmax(W (s)s+ b(s)) (10)

The training objective is to minimize the cross-entropy error between the ground truth and predicted
label. The parameters of our model are optimized using AdaGrad (Duchi et al., 2011) with a learning
rate of 0.01, a mini-batch size of 5 and a L2 regularization coefficient of 10−6. The details are described
further in Section 4.2.

4 Experiments and Evaluation

4.1 Dataset

In our experiments, we evaluate our model on the SemEval-2010 Task 8 dataset (Hendrickx et al.,
2010), which is one of the most widely used benchmarks for relation classification. The dataset con-
tains 10,717 annotated sentences divided into 8,000 sentences for training and 2717 for testing. Each
sentence is annotated with each of nine different relationship and an artificial relation Other, and
each relationship has two direction except for the undirected relation Other. The nine directed rela-
tions are Cause-Effect, Instrument-Agency, Product-Producer, Content-Container, Entity-Origin, Entity-
Destination, Component-Whole, Member-Collection, and Message-Topic.

The official evaluation metric is the macro-averaged F1-score (excluding Other), and takes into con-
sideration the directionality. We use the official scorer to test the model performance.

2We use an additional tanh layer to map the word vectors of annotated nominals e1 and e2 to the dimensionality of the
hidden size of the Bi-LSTM.

1258



4.2 Implementation
We tune the hyperparameters for our model using 5-fold cross-validation. We pretrain 200-dimensional
word embeddings using word2vec (Mikolov et al., 2013) on the English Wikipedia corpus, and randomly
initialize other hyperparameters. We set the LSTM dimension to be 200. We apply dropout only on the
word embeddings and outputs of LSTM as in (Zaremba et al., 2014b), and the dropout rate is 0.2.

To enable a direct comparison with the previous work, we use the same features: position features,
WordNet hypernyms and NER. WordNet hypernyms and NER were obtained using the tool of Ciaramita
and Al-tun (2006). 3

4.3 Results

Model features F1

Bi-LSTM + MLP
- 82.43
+ all features 83.30

Bi-LSTM + Bi-RNN
- 82.67
+ all features 82.92

Bi-LSTM + Bi-LSTM
- 83.90
+ all features 84.27

(a) The effect of neural network architectures.

Method features F1

Concatenation
- 79.66
+ all features 80.56

Average
- 79.91
+ all features 81.39

Max-Pooling
- 81.67
+ all features 82.48

Attention
- 83.90
+ all features 84.27

(b) Comparison of different methods

Table 1: (a) F1-scores on the test data for various neural network architectures. We also test these models
with three features of position features, WordNet and NER. (b) The comparison of different methods on
SemEval-2010 Task 8 test set. Here the neural network architecture is the combination of two Bi-LSTMs.

4.3.1 The Effect of Different Components
The effect of neural network architectures We first analyze the effect of different neural network
architectures of the combinations of Bi-LSTM with MLP, a standard Bi-RNN and Bi-LSTM separately.
Here we apply neural attention to the hidden states of RNNs (Bi-LSTM and Bi-RNN). To ensure the
number of parameters comparable, we adopt a two-layer full-connected neural network with the hidden
size of 600 dimension and a non-linear function of tanh to serve as MLP. And the hidden size of the
standard RNN is 350-dimensional. From Table 1a, we find that both the combinations of Bi-LSTM
with Bi-RNN and Bi-LSTM outperform the combination of Bi-LSTM and MLP without any features.
In particular, the combination of Bi-LSTM and Bi-LSTM achieves the best result 83.90% without any
feature, and its F1-score is about 1.5% higher than the model of Bi-LSTM+MLP. The results indicate
that the neural architecture of two Bi-LSTMs effectively captures semantic meanings of these context
subsequences and their inherent relations, and obtains more robust sentence representations for relation
classification. In this paper, we tackle the relation classification task using the combination of two Bi-
LSTMs.

The comparison of different methods Table 1b shows experiments for our model with various meth-
ods for the hidden vectors of Bi-LSTMs. We begin with the model using the concatenation of the final
state of forward and backward LSTMs. And then we replace concatenation operation with average pool-
ing, max-pooling and neural attention respectively. Not surprisingly, processing the hidden vectors of
Bi-LSTMs via neural attention achieves the best result, which gives an improvement of 2.23 percentage
points in F1-score over max-pooling. We suspect that this is due to the attention model being run in a
more focused way that makes it easier to capture large important information from contexts. We also
consider the impact of features for these methods. Results in Table 1b show that by adding features the
F1-scores of all methods improve, which hints that three features are useful for relation classification.

3sourceforge.net/projects/supersensetag/

1259



Model Feature Set F1

SVM
+POS, WordNet, prefixes and other morphological features,

82.2dependency parse, Levin classes, PropBank, FanmeNet,
NomLex-Plus, Google n-gram, paraphrases, TextRunner

MV-RNN
- 79.1
+POS, NER, WordNet 82.4

FCM
- 80.6
+dependency parsing, NER 83.0

CNN
- 69.7
+position features, words around nominals, WordNet 82.7

BLSTM
- 82.7
+POS, NER, WordNet, position features, dependency feature,

84.3
relative-dependency feature

DepNN
+WordNet 83.0
+NER 83.6

SDP-LSTM
- 82.4
+POS embeddings, WordNet embeddings, grammar relation embeddings 83.7

depLCNN + NS
- 84.0
+WordNet, words around nominals 85.6

Our model
- 83.9
+position features, WordNet, NER 84.3

Table 2: Experimental results of our model against other models.

4.3.2 Comparison with State-of-the-art Models
Table 2 compares our model with several start-of-art models. The SVM model (Rink and Harabagiu,
2010) is used for relation classification by combining lexical and semantic features. It extracts these
hand-crafted features from sentences with the use of many external resources. Socher et al. (2012) ex-
tend the recursive neural networks with matrix-vector spaces (MV-RNN), and use MV-RNN to learn
representations along the constituency tree for relation classification. Yu et al. (2014) propose factor-
based compositional embedding models (FCM) for relation classification. It learns representations for
the substructures of an annotated sentence, which are further used for classification. Zeng et al. (2014)
exploit a convolutional neural network (CNN) to extract lexical and sentence level features for relation
classification. And they design position features to specify the target nouns in the sentence, which leads
to better performance for their model. CR-CNN outperforms the state-of-art by using a new ranking loss
function and omitting the representation of the Other class for diminishing its effect, as proposed by (Dos
Santos et al., 2015). Zhang et al. (2015) utilized bidirectional LSTMs (BLSTM) to capture the sentence
level features and concatenated them and lexical level features to form the finally feature vector for rela-
tion classification. Liu et al. (2015) design a dependency-based framework (DepNN) to learn semantic
representations of the augmented dependency paths that are the combination of the shortest dependency
paths and their dependency subtrees. Xu et al. (2015a) build multiple LSTMs to model the different chan-
nels of word vectors, POS, grammatical relations, and WordNet along the shortest dependency paths and
achieves an F1-score of 83.7 (SDP-LSTM). Xu et al. (2015b) propose to learn a robust representation us-
ing a convolutional neural network that works on the dependency path between subjects and objects, and
propose a negative sampling strategy (NS) to address the relation directionality (DepLCNN). Thang Vu
et al. (2016) design extended middle context and present a new context representation for convolutional
neural networks for relation classification (ER-CNN). And they also propose connectionist bi-directional
recurrent neural networks (R-RNN) that adds a connection to the hidden states of bi-directional recurrent
neural networks.

We observe in Table 2 that our model is comparable to the state-of-the-art (previous best result is 84.0%
obtained by depLCNN + NS) without any features, whereas depLCNN works on the shortest dependency

1260



Model Feature Set F1

CR-CNN
- 82.8
+position features 84.1

R-RNN +position features, position indicators, entity flag 83.4
ER-CNN +position features, extended middle context 84.2
ER-CNN + R-RNN +all features, voting scheme 84.9

Our model
- 84.1
+position features 84.5

Table 3: Comparison of ranking models (no lexical features).

paths, which consist of most relevant information and avoid negative effect from irrelevant parts in the
sentences. This result suggests that our model automatically focuses on important information related to
determining the relationship of two entities. The F1-score is improved by adding three features but not
as obvious as in (Zeng et al., 2014; Xu et al., 2015b) (CNN, depLCNN). We argue that this is due to Bi-
LSTMs being able to learn position information on sequences and lexical features leading to overfitting
as in (Yu et al., 2014; Liu et al., 2015).

4.3.3 Comparison of ranking models
For fair comparison, we also replace the softmax layer with a ranking layer to train our model, as pro-
posed in (Dos Santos et al., 2015). We use training settings following Thang Vu et al. (2016). More
details about ranking layer are described in (Dos Santos et al., 2015; Thang Vu et al., 2016).

From Table 3, we observe that our model outperform the state-of-the-art without any feature, whereas
previous work’s best reported performance is 83.9% in ER-CNN using word embeddings of size 400.
Combining ER-CNN and R-RNN using a voting scheme achieves a state-of-the-art result of 84.9 in F1-
score, which is presented by (Thang Vu et al., 2016). But our model reaches a new state-of-the-art result
with a single model when position features are added, and outperforms the model of ER-CNN that learns
context representations for two contexts of the combinations of the middle context with the left and right
context respectively.

5 Conclusion

In this work, we introduce a hierarchical recurrent neural network model that learns useful features
from raw sentences for relation classification. We further extend the model with neural attention at
two different levels that provides significant improvements over the concatenation, average pooling and
max-pooling. Our model shows comparable performance to the state-of-the-art on the SemEval-2010
Task 8 dataset without using any costly hand-crafted features. In addition, the models presented here are
general hierarchical models, and are therefore suitable for hierarchical structures, such as paragraphs and
documents.

Acknowledgements

This work was partially supported by National Science Foundation of China (grant 61472459). We thank
the anonymous reviewers for their insightful comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks 5(2):157–166.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159.

1261



Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science, 14(2):179–211.

Alex Graves, Navdeep Jaitly, and A-R Mohamed. 2013. Hybrid speech recognition with deep bidirectional LSTM.
In IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). pages 273–278.

A. Graves and J. Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural
network architectures. Neural Net- works, 18(5):602–610.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, PreslavNakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco
Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. 2010. Semeval-2010 task 8: Multi-way classification
of semantic relations between pairs of nominals. In Proceedings of the 5th International Workshop on Semantic
Evaluation, pages 33–38. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735–
1780, November.

Sepp Hochreiter. 1998. The vanishing gradient problem during learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(02):107–116.

Nanda Kambhatla. 2004. Combining lexical, syntactic, and semantic features with maximum entropy models for
extracting relations. In Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions, page
22. Association for Computational Linguistics.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, Houfeng Wang. 2015. A Dependency-Based Neural Network
for Relation Classification. InProceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages
285–290. Association for Computational Linguistics.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan “Honza” Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceedings of the 11th Annual Conference of the International
Speech Communication Association (INTERSPEECH 2010), pages 1045–1048.

Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. In Proceedings of the Workshop at ICLR.

Cı́cero Nogueira Dos Santos, Bing Xiang, and Bowen Zhou. 2015. Classifying relations by ranking with con-
volutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing, pages 626–634. Asso-
ciation for Computational Linguistics.

Wenzhe Pei; Tao Ge; Baobao Chang. 2015. An Effective Neural Network Model for Graph-based Dependency
Parsing. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing, pages 313–322. Association for Compu-
tational Linguistics.

Bryan Rink and Sanda Harabagiu. 2010. Utd: Classifying semantic relations by combining lexical and semantic
resources. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 256–259. Associa-
tion for Computational Linguistics.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, Phil Blunsom. 2016. Reasoning
about Entailment with Neural Attention. In Proceedings of ICLR2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Internal Representations by Error Propagation.
In: J. L. McClelland, D. E. Rumelhart, and The PDP Research Group: “Parallel Distributed Processing, Volume
1: Foundations”. The MIT Press.

Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence
summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 379–389. Association for Computational Linguistics.

M. Schuster and K. K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Transactions on Sig- nal
Processing, 45(11):2673–2681.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012. Semantic Compositionality
through Recursive Matrix-Vector Spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages 1201–1211. Association
for Computational Linguistics.

1262



Ngoc Thang Vu, and Heike Adel and Pankaj Gupta and Hinrich Schütze. 2016. Combining Recurrent and Con-
volutional Neural Networks for Relation Classification. In Proceedings of the 15th Annual Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Stephen Tratz and Eduard Hovy. 2010. Isi: automatic classification of relations between nominals using a max-
imum entropy classifier. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages
222–225. Association for Computational Linguistics.

Paul J. Werbos. 1990. Backpropagation through time: what it does and how to do it. In Proceedings of the IEEE,
78(10):1550–1560.

R. J. Williams and D. Zipser. 1995. Gradient-Based Learning Algorithms for Recurrent Networks and Their Com-
putational Complexity. In: Yves Chauvain and David E. Rumelhart: “Back-Propagation: Theory, Architectures
and Applications”. Lawrence Erlbaum Publishers.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, Zhi Jin. 2015a. Classifying Relations via Long Short Term
Memory Networks along Shortest Dependency Paths. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1785–1794. Association for Computational Linguistics.

Kun Xu, Yansong Feng, Songfang Huang and Dongyan Zhao. 2015b. Semantic Relation Classification via Convo-
lutional Neural Networks with Simple Negative Sampling. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 536–540. Association for Computational Linguistics.

Mo Yu, Matthew Gormley, and Mark Dredze. 2014. Factor-based compositional embedding models. In Proceed-
ings of the NIPS Workshop on Learning Semantics.

Wojciech Zaremba and Ilya Sutskever. 2014a. Learning to execute. arXiv preprint arXiv:1410.4615.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014b. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of COLING 2014, the 25th International Conference on Computa-
tional Linguistics: Technical Papers, pages 2335–2344.

Shu Zhang, Dequan Zheng, Xinchen Hu, Ming Yang. 2015. Bidirectional Long Short-Term Memory Networks
for Relation Classification. In Proceedings of the 15th Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies.

1263


