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Abstract

This paper proposes a simple yet effective framework of softcross-lingual syntax projection to
transfer syntactic structures from source language to target language using monolingual treebanks
and large-scale bilingual parallel text. Here,softmeans that we only project reliable dependencies
to compose high-quality target structures. The projected instances are then used as additional
training data to improve the performance of supervised parsers. The major issues for this
idea are 1) errors from the source-language parser and unsupervised word aligner; 2) intrinsic
syntactic non-isomorphism between languages; 3) incomplete parse trees after projection. To
handle the first two issues, we propose to use a probabilisticdependency parser trained on the
target-language treebank, and prune out unlikely projected dependencies that have low marginal
probabilities. To make use of the incomplete projected syntactic structures, we adopt a new
learning technique based onambiguous labelings. For a word that has no head words after
projection, we enrich the projected structure with all other words as its candidate heads as long
as the newly-added dependency does not cross any projected dependencies. In this way, the
syntactic structure of a sentence becomes a parse forest (ambiguous labels) instead of a single
parse tree. During training, the objective is to maximize the mixed likelihood of manually labeled
instances and projected instances with ambiguous labelings. Experimental results on benchmark
data show that our method significantly outperforms a strongbaseline supervised parser and
previous syntax projection methods.

1 Introduction

During the past decade, supervised dependency parsing has made great progress. However, due to
the limitation of scale and genre coverage of labeled data, it is very difficult to further improve the
performance of supervised parsers. On the other hand, it is very time-consuming and labor-intensive to
manually construct treebanks. Therefore, lots of recent work has been devoted to get help from bilingual
constraints. The motivation behind are two-fold. First, a difficult syntactic ambiguity in one language
may be very easy to resolve in another language. Second, a more accurate parser on one language may
help an inferior parser on another language, where the performance difference may be due to the intrinsic
complexity of languages or the scale of accessible labeled resources.

Following the above research line, much effort has been donerecently to explore bilingual constraints
for parsing. Burkett and Klein (2008) propose a reranking based method for joint constituent parsing
of bitext, which can make use of structural correspondence features in both languages. Their method
needs bilingual treebanks with manually labeled syntactictrees on both sides for training. Huang et
al. (2009) compose useful parsing features based on word reordering information in source-language
sentences. Chen et al. (2010a) derive bilingual subtree constraints with auto-parsed source-language
sentences. During training, both Huang et al. (2009) and Chen et al. (2010a) require bilingual text with
target-language gold-standard dependency trees. All above work shows significant performance gain
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over monolingual counterparts. However, one potential disadvantage is that bilingual treebanks and
bitext with one-side annotation are difficult to obtain. Therefore, They usually conduct experiments on
treebanks with a few thousand sentences. To break this constraint, Chen et al. (2011) extend their work
in Chen et al. (2010a) and translate text of monolingual treebanks to obtain bilingual treebanks with a
statistical machine translation system.

This paper explores another line of research and aims to boost the state-of-the-art parsing accuracy
via syntax projection. Syntax projection typically works as follows. First, we train a parser on source-
language treebank, called a source parser. Then, we use the source parser to produce automatic syntactic
structures on the source side of bitext. Next, with the help of automatic word alignments, we project the
source-side syntactic structures into the target side. Finally, the target-side structures are used as gold-
standard to train new parsing models of target language. Previous work on syntax projection mostly
focuses on unsupervised grammar induction where no labeleddata exists for target language (Hwa et al.,
2005; Spreyer and Kuhn, 2009; Ganchev et al., 2009; Liu et al., 2013). Smith and Eisner (2009) propose
quasi-synchronous grammar for cross-lingual parser projection and assume the existence of hundreds
of target language annotated sentences. Similar to our workin this paper, Jiang et al. (2010) try to
explore projected structures to further improve the performance of statistical parsers trained on full-scale
monolingual treebanks (see Section 4.4 for performance comparison).

The major issues for syntax projection are 1) errors from thesource-language parser and unsupervised
word aligner; 2) intrinsic syntactic non-isomorphism between languages; 3) incomplete parse trees after
projection. Hwa et al. (2005) propose a simple projection algorithm based on thedirect correspondence
assumption(DCA). They apply post-editing to the projected structureswith a set of hand-crafted heuristic
rules, in order to handle some typical cross-lingual syntactic divergences. Similarly, Ganchev et al.
(2009) manually design several language-specific constrains during projection, and use projected partial
structures as soft supervision during training based on posterior regularization (Ganchev et al., 2010).
To make use of projected instances with incomplete trees, Spreyer and Kuhn (2009) propose a heuristic
method to adapt training procedures of dependency parsing.Instead of directly using incomplete trees
to train dependency parsers, Jiang et al. (2010) train a local dependency/non-dependency classifier on
projected syntactic structures, and use outputs of the classifier as auxiliary features to help supervised
parsers. One potential common drawback of above work is the lack of a systematic way to handle
projection errors and incomplete trees.

Different from previous work, this paper proposes a simple yet effective framework of soft syntax
projection for dependency parsing, and provides a more elegant and systematic way to handle the
above issues. First, we propose to use a probabilistic parser trained on target-language treebank, and
prune unlikely projected dependencies which have very low marginal probabilities. Second, we adopt
a new learning technique based on ambiguous labelings to make use of projected incomplete trees
for training. For a word that has no head words after projection, we enrich the projected structure
by adding all possible words as its heads as long as the newly-added dependency does not cross any
projected dependencies. In this way, the syntactic structure of a sentence becomes a parse forest
(ambiguous labelings) instead of a single parse tree. During training, the objective is to maximize
the mixed likelihood of manually labeled instances and projected instances with ambiguous labelings.
Experimental results on benchmark data show that our methodsignificantly outperforms a strong baseline
supervised parser and previous syntactic projection methods.

2 Syntax Projection

Given an input sentencex = w0w1...wn, a dependency tree isd = {(h,m) : 0 ≤ h ≤ n, 0 < m ≤ n},
where(h,m) indicates a directed arc from theheadword wh to themodifierwm, andw0 is an artificial
node linking to the root of the sentence.

Syntax projection aims to project the dependency treeds of a source-language sentencexs into the
dependency structure of its target-language translationx via word alignmentsa, where a word alignment
ai = z means the target-side wordwi is aligned into the source-side wordws

z, as depicted in Figure
1(a) and Figure 1(b). For simplicity, we avoid one-to-many alignments by keeping the one with highest
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w0 things1 I2 did3

w0 �1 Z2 Ç3 �4 �5

(a) Source tree and word alignments

w0 �1 Z2 Ç3 �4 �5

(b) Projected incomplete tree

w0 �1 Z2 Ç3 �4 �5

(c) Forest (ambiguous labelings)

Figure 1: Illustration of syntax projection from English toChinese with a sentence fragment. The two
Chinese auxiliary words, “Ç3” (past tense marker) and “�4” (relative clause marker), are not aligned to
any English words.

marginal probability when the target word is aligned to multiple source words. We first introduce a
simple syntax projection approach based on DCA (Hwa et al., 2005), and then propose two extensions
to handle parsing and aligning errors and cross-lingual syntactic divergences.

Projection with DCA. If two target wordswi andwj are aligned to two different source wordsws
ai

and
ws

aj
, and the two words compose a dependency in the source tree(ai, aj) ∈ ds, then add a dependency

(i, j) into the projected syntactic structure. For example, as shown in Figure 1(a), the two Chinese
words “Z2” and “�5” are aligned to the two English words “did3” and “things1”, and the dependency
“things1ydid3” is included in the source tree. Therefore, we project the dependency into the target side
and add a dependency “Z2x�5” into the projected structure, as shown in Figure 1(b). An obvious
drawback of DCA is that it may produce many wrong dependencies due to the errors in the automatic
source-language parse trees and word alignments. Even withmanual parse trees and word alignments,
syntactic divergences between languages can also lead to projection errors.

Pruned with target-side marginals. To overcome the weakness of DCA, we propose to use target-
side marginal probabilities to constrain the projection process and prune obviously bad projections. We
train a probabilistic parser on an existing target-side treebank. For each projected dependency, we
compute its marginal probability with the target parser, and prune it off the projected structure if the
probability is below apruning thresholdλp. Our study shows that dependencies with very low marginal
probabilities are mostly wrong (Figure 2).

Supplemented with target-side marginals. To further improve the quality of projected structures, we
add dependencies with high marginal probabilities according to the target parser. Specifically, if a target
wordwj obtain a head wordwi after projection, and if another wordwk has higher marginal probability
than asupplement thresholdλs to be the head word ofwj, then we also add the dependency(k, j) into
the projected structure. In other words, we allow one word tohave multiple heads so that the projected
structure can cover more correct dependencies.

From incomplete tree to forest. Some words in the target sentence may not obtain any head words
after projection due to incomplete word alignments or the pruning process, which leads to incomplete
parse trees after projection. Also, some words may have multiple head words resulting from the
supplement process. To handle these issues, we first convertthe projected structures into parse forests,
and then propose a generalized training technique based on ambiguous labelings to make use of the
projected instances. Specifically, if a word does not have head words after projection, we simply
add into the projected structure all possible words as its candidate heads as long as the newly-added
dependency does not cross any projected dependencies, as illustrated in Figure 1(c). We introduce three
new dependencies to compose candidate heads for the unattached word “Ç3”. Note that it is illegal to
add the dependency “�1yÇ3” since it would cross the projected dependency “Z2x�5”.
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3 Dependency Parsing with Ambiguous Labelings

In parsing community, two mainstream methods tackle the dependency parsing problem from different
perspectives but achieve comparable accuracy on a variety of languages. Graph-based methods view
the problem as finding an optimal tree from a fully-connecteddirected graph (McDonald et al., 2005;
McDonald and Pereira, 2006; Carreras, 2007; Koo and Collins, 2010), while transition-based methods
try to find a highest-scoring transition sequence that leadsto a legal dependency tree (Yamada and
Matsumoto, 2003; Nivre, 2003; Zhang and Nivre, 2011).

3.1 Graph-based Dependency Parser (GParser)

We adopt the graph-based paradigm because it allows us to elegantly derive our CRF-based probabilistic
parser, which is required to compute the marginal probabilities of dependencies and likelihood of both
manually labeled data and unannotated bitext with ambiguous labelings. The graph-based method factors
the score of a dependency tree into scores of small subtreesp.

Score(x,d;w) = w · f(x,d) =
∑
p⊆d

Score(x,p;w) (1)

We adopt the second-order model of McDonald and Pereira (2006) as our core parsing algorithm,1

which defines the score of a dependency tree as:

Score(x,d;w) =
∑

{(h,m)}⊆d

wdep · fdep(x, h,m) +
∑

{(h,s),(h,m)}⊆d

wsib · fsib(x, h, s,m) (2)

where fdep(x, h,m) and fsib(x, h, s,m) are feature vectors corresponding to two kinds of subtree;
wdep/sib are the feature weight vectors; the dot product gives the scores contributed by the corresponding
subtrees. We adopt the state-of-the-art syntactic features proposed in Bohnet (2010).

3.2 Probabilistic CRF-based GParser

Previous work on dependency parsing mostly adopts linear models and online perceptron training, which
lack probabilistic explanations of dependency trees and likelihood of the training data. Instead, we build
a log-linear CRF-based probabilistic dependency parser, which defines the probability of a dependency
tree as:

p(d|x;w) =
exp{Score(x,d;w)}

Z(x;w)
; Z(x;w) =

∑
d′∈Y(x)

exp{Score(x,d′;w)} (3)

whereZ(x) is the normalization factor andY(x) is the set of all legal dependency trees forx.

3.3 Likelihood and Gradient of Training Data with Ambiguous Labelings

Traditional CRF models assume one gold-standard label for each training instance, which means each
sentence is labeled with a single parse tree in the case of parsing. To make use of projected instances
with ambiguous labelings, we propose to use a generalized training framework which allows a sentence
to have multiple parse trees (forest) as its gold-standard reference (Täckström et al., 2013). The goal
of the training procedure is to maximize the likelihood of the training data, and the model is updated to
improve the probabilities of parse forests, instead of single parse trees. In other words, the model has
the flexibility to distribute the probability mass among theparse trees inside the forest, as long as the
probability of the forest improves. In this generalized framework, a traditional instance labeled with a
single parse tree can be regarded as a special case that the forest contains only one parse tree.

The probability of a sentencex with ambiguous labelingsF is defined as the sum of probabilities of
all parse treed contained in the forestF :

p(F|x;w) =
∑
d∈F

p(d|x;w) (4)

1Higher-order models of Carreras (2007) and Koo and Collins (2010) can achieve a little bit higher accuracy, but suffer from
higher time cost ofO(n4) and system complexity. Our method is applicable to the third-order model.
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Train Dev Test
PTB 39,832 1,346 2416

CTB5 16,091 803 1,910
CTB5X 18,104 352 348
Bitext 0.9M – –

Table 1: Data sets (in sentence number).

Suppose the training data set isD = {(xi,Fi)}N
i=1. Then the log likelihood ofD is:

L(D;w) =
N∑

i=1

log p(Fi|xi;w) (5)

Then we can derive the partial derivative of the log likelihood with respect tow:

∂L(D;w)
∂w

=
N∑

i=1

( ∑
d∈Fi

p̃(d|xi,Fi;w)f(xi,d)−
∑

d∈Y(xi)

p(d|xi;w)f(xi,d)
)

(6)

wherep̃(d|xi,Fi;w) is the probability ofd under the space constrained by the parse forestFi:

p̃(d|xi,Fi;w) =
exp{Score(xi,d;w)}

Z(xi,Fi;w)
; Z(xi,Fi;w) =

∑
d∈Fi

exp{Score(xi,d;w)} (7)

The first term in Eq. (6) is the model expectations in the search space constrained byFi, and the second
term is the model expectations in the complete search spaceY(xi). SinceY(xi) contains exponentially
many legal dependency trees, direct calculation of the second term is prohibitive. Instead, we can use the
classic Inside-Outside algorithm to efficiently compute the second term withinO(n3) time complexity,
wheren is the length of the input sentence. Similarly, the first termcan be solved by running the Inside-
Outside algorithm in the constrained search spaceFi.

3.4 Stochastic Gradient Descent (SGD) Training

With the likelihood gradients, we apply L2-norm regularized SGD training to iteratively learn the feature
weightsw for our CRF-based baseline and bitext-enhanced parsers. Wefollow the implementation
in CRFsuite.2 At each step, the algorithm approximates a gradient with a small subset of training
examples, and then updates the feature weights. Finkel et al. (2008) show that SGD achieves optimal
test performance with far fewer iterations than other optimization routines such as L-BFGS. Moreover,
it is very convenient to parallel SGD since computation among examples in the same batch is mutually
independent.

Once the feature weightsw are learnt, we can parse the test data and try to find the optimal parse tree
with the Viterbi decoding algorithm inO(n3) parsing time (Eisner, 2000; McDonald and Pereira, 2006).

d∗ = arg max
d∈Y(x)

p(d|x;w) (8)

4 Experiments and Analysis

To verify the effectiveness of our proposed method, we carryout experiments on English-to-Chinese
syntax projection, and aim to enhance our baseline Chinese parser with additional training instances
projected from automatic English parse trees on bitext. Formonolingual treebanks, we use Penn
English Treebank (PTB) and Penn Chinese Treebank 5.1 (CTB5). For English, we follow the standard
practice to split the data into training (sec 02-21), development (sec 22), and test (sec 23). For CTB5, we
adopt the data split of (Duan et al., 2007). We convert the original bracketed structures into dependency

2
http://www.chokkan.org/software/crfsuite/
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Figure 2: Distribution (Percent) and accuracy (UAS) of dependencies under different marginal
probability interval for Chinese baseline parser on CTB5 development set. For example,0.8 at x-axis
means the interval[0.8, 0.9).

structures using Penn2Malt with its default head-finding rules. We build a CRF-based bigram part-
of-speech (POS) tagger with the features described in (Li etal., 2012b), and produce POS tags for
all train/development/test datasets and bitext (10-way jackknifing for training datasets). The tagging
accuracy on test sets is97.3% on English and94.0% on Chinese.

To compare with the recent work on syntax projection of Jianget al. (2010) who use a smaller test
dataset, we follow their data split of CTB5 and use gold-standard POS tags during training and test. We
refer to this setting as CTB5X.

For bitext, we collect a parallel corpus from FBIS news (LDC03E14, 0.25M sentence pairs), United
Nations (LDC04E12, 0.62M), IWSLT2008 (0.04M), and PKU-863(0.2M). After corpus cleaning, we
obtain a large-scale bilingual parallel corpus containing0.9M sentence pairs. We run the unsupervised
BerkeleyAligner3 (Liang et al., 2006) for 4 iterations to obtain word alignments. Besides hard
alignments, we also make use of posterior probabilities to simplify one-to-many alignments to one-to-one
as discussed in Section 2. Table 1 shows the data statistics.

For training both the baseline and bitext-enhanced parsers, we set the batch size to100 and run SGD
until a maximum iteration number of50 is met or the change on likelihood of training data becomes too
small. Since the number of projected sentences is much more than that of manually labeled instances
(0.9M vs. 16K), it is likely that the projected data may overwhelm manually labeled data during training.
Therefore, we adopt a simple corpus-weighting strategy. Before each iteration, we randomly sample 50K
projected sentences and 15K manually labeled sentences from all training data, and run SGD to train
feature weights using the sampled data. To speed up training, we adopt multi-thread implementation of
gradient computations in the same batch. It takes about 1 dayto train our bitext-enhanced parser for one
iteration using a single CPU core, while using 24 CPU cores only needs about 2 hours.

We measure parsing performance using unlabeled attachmentscore (UAS, percent of words with
correct heads), excluding punctuation marks. For significance test, we adopt Dan Bikel’s randomized
parsing evaluation comparator (Noreen, 1989).4

4.1 Analysis on Marginal Probabilities

In order to gain insights for parameter settings of syntax projection, we analyse the distribution and
accuracy of dependencies under different marginal probability interval. We train the baseline Chinese
parser on CTB5 train set, and use the parser to produce the marginal probabilities of all dependencies
for sentences in CTB5 development set. We discard all dependencies that have a marginal probability
less than0.0001 for better illustration. Figure 2 shows the results, where we can see that UAS is roughly
proportional to marginal probabilities. In other word, dependencies with higher marginal probabilities
are more accurate. For example, dependencies with probabilities under interval[0.8, 0.9) has a80%
chance to be correct. From another aspect, we can see that50% of dependencies fall in probability

3
http://code.google.com/p/berkeleyaligner/

4
http://www.cis.upenn.edu/ ˜ dbikel/software.html
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Figure 3: Performance with different parameter settings of(λp λs) on CTB5 development set.

interval[0, 0.1), and such dependencies have very low accuracy (4%). These observations are helpful for
our parameter selection and methodology study during syntax projection.

4.2 Results of Syntax Projection on Development Dataset

We apply the syntax projection methods described in Section2 to the bilingual text, and use the projected
sentences with ambiguous labelings as additional traininginstances to train new Chinese parsers based on
the framework described in Section 3. Figure 3 shows the UAS curves on development set with different
parameters settings. Thepruning thresholdλp (see Section 2) balances the quality and coverage of
projection. Largerλp leads to more accurate but fewer projections. Thesupplement thresholdλs (see
Section 2) balances the size and oracle score of the projected forest. Smallerλs can increase the oracle
score of the forest by adding more dependencies with lower marginal probabilities, but takes the risk of
making the resulted forest too ambiguous and weak to properly supervise the model during training.5

The DCA method corresponds to the results withλp = 0.0 andλs = 1.0. We can see that DCA
largely decreases UAS compared with the baseline CRF-basedparser. The reason is that although DCA
projects many source-language dependencies to the target side (44% of target-language words obtain
head words), it also introduces a lot of noise during projection.

DCA prunedwith target-side marginals corresponds to the results withλp > 0.0 and λs = 1.0.
Pruning with target-side marginals can clearly improve theprojection quality by pruning out bad
projections. Whenλp = 0.1, 31% of target-language words obtain head words, and the model
outperforms the baseline parser by0.6% at peak UAS. Whenλp = 0.5, the projection ratio decreases to
26% and the improvement is0.3%. Based on the results, we chooseλp = 0.1 in later experiments.

Figure 3(b) presents the results ofDCA pruned & supplementedwith different λs. The supplement
process adds a small amount of dependencies of high probabilities into the projected forest and therefore
increases the oracle score, which provides the model with flexibility to distribute the probability mass to
more preferable parse trees. We can see that although the peak UAS does not increase much, the training
curve is more smooth and stable than that without supplement. Based on the results, we chooseλs = 0.6
in later experiments.

4.3 Final Results and Comparisons on Test Dataset

Table 2 presents the final results on CTB5 test set. For each parser, we choose the parameters
corresponding to the iteration number with highest UAS on development set. To further verify the
usefulness of syntax projection, we also conduct experiments with self-training, which is known as a
typical semi-supervised method. For the standard self-training, we use Chinese-side bitext with self-
predicted parse trees produced by the baseline parser as additional training instances, which turns out
to be hurtful to parsing performance. This is consistent with earlier results (Spreyer and Kuhn, 2009).

5Please note whenλp +λs >= 1, λs becomes useless. The reason is that if the probability of a projected dependency(i, j)
is largerλp, then no other word besidewi can have a probability larger thanλs of being the head word ofwj .
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UAS
Baseline Supervised Parser 81.04
Standard Self-training 80.51 (-0.53)
Self-training with Ambiguous Labelings 81.09 (+0.05)
DCA 78.70 (-2.34)
DCA Pruned 81.46 (+0.42†)
DCA Pruned & Supplemented 81.71 (+0.67†)

Table 2: UAS on CTB5 test set.† indicate statistical significance at confidence level ofp < 0.01.

Supervised Bitext-enhanced
Jiang et al. (2010) 87.15 87.65 (+0.50)
This work 89.62 90.50 (+0.88†)

Table 3: UAS on CTB5X test set.† indicate statistical significance at confidence level ofp < 0.01.

Then, we try a variant of self-training with ambiguous labelings following the practice in Täckström
et al. (2013), and use a parse forest composed of dependencies of high probabilities as the syntactic
structure of an instance. We can see that ambiguous labelings help traditional self-training, but still have
no significant improvement over the baseline parser. Results in Table 2 indicate that our syntax projection
method is able to project useful knowledge from source-language parse trees to the target-side forest, and
then helps the target parser to learn effective features.

4.4 Comparisons with Previous Results on Syntax Projection on CTB5X

To make comparison with the recent work of Jiang et al. (2010), We rerun the process of syntax projection
with CTB5X as the target treebank with theDCA pruned & supplementedmethod (λp = 0.1 andλs =
0.6).6 Table 3 shows the results. Jiang et al. (2010) employ the second-order MSTParser of McDonald
and Pereira (2006) with a basic feature set as their base parser. We can see that our baseline parser is
much stronger than theirs. Even though, our approach leads to larger UAS improvement.

This work is different from theirs in a few aspects. First, the purpose of syntax projection in their
work is to produce dependency/non-dependency instances which are used to train local classifiers to
produce auxiliary features for MSTParser. In contrast, theoutputs of syntax projection in our work
are partial trees/forests where only reliable dependencies are kept and some words may receive more
than one candidate heads. We directly use these partial structures as extra training data to learn model
parameters. Second, their work measures the reliability ofa projected dependencies only from the
perspective of alignment probability, while we adopt a probabilistic parsing model and use target-side
marginal probabilities to throw away bad projections, which turns out effective in handling syntactic
non-isomorphism and errors in word alignments and source-side parses.

5 Related work

Cross-lingual annotation projection has been applied to many different NLP tasks to help processing
resource-poor languages, such as POS tagging (Yarowsky andNgai, 2001; Naseem et al., 2009; Das and
Petrov, 2011) and named entity recognition (NER) (Fu et al.,2011). In another direction, much previous
work explores bitext to improve monolingual NER performance based on bilingual constraints (Chen et
al., 2010b; Burkett et al., 2010; Li et al., 2012a; Che et al.,2013; Wang et al., 2013).

Based on a universal POS tag set (Petrov et al., 2011), McDonald et al. (2011) propose to train
delexicalized parsers on resource-rich language for parsing resource-poor language without use of bitext
(Zeman and Resnik, 2008; Cohen et al., 2011; Søgaard, 2011).Täckström et al. (2012) derive cross-
lingual clusters from bitext to help delexicalized parser transfer. Naseem et al. (2012) propose selectively
sharing to better explore multi-source transfer information.

6In the previous draft of this paper, we directly use the projected data with in previous subsection for simplicity, and find
that UAS can reach 91.39% (+1.77). The reason is that the CTB5X test is overlapped with CTB5 train. We correct this mistake
in this version.
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Our idea of training with ambiguous labelings is originallyinspired by the work of Täckström et al.
(2013) on multilingual parser transfer for unsupervised dependency parsing. They use a delexicalized
parser trained on source-language treebank to obtain parseforests for target-language sentences, and re-
train a lexicalized target parser using the sentences with ambiguous labelings. Similar ideas of learning
with ambiguous labelings are previously explored for classification (Jin and Ghahramani, 2002) and
sequence labeling problems (Dredze et al., 2009).

6 Conclusions

This paper proposes a simple yet effective framework of softcross-lingual syntax projection. We
make use of large-scale projected structures as additionaltraining instances to boost performance of
supervised parsing models trained on full-set manually labeled treebank. Compared with previous work,
we make two innovative contributions: 1) using the marginalprobabilities of a target-side supervised
parser to control the projection quality with the existenceof parsing and aligning errors and cross-lingual
syntax divergences; 2) adopting a new learning technique based ambiguous labelings to make use of
projected incomplete dependency trees for model training.Experimental results on two Chinese datasets
demonstrate the effectiveness of the proposed framework, and show that the bitext-enhanced parser
significantly outperforms all baselines, including supervised parsers, semi-supervised parsers based on
self-training, and previous syntax projection methods.

Our anonymous reviewers present many great comments, especially on the experimental section. We
will improve this work accordingly and release an extended version of this paper at the homepage of
the first author. Such extensions include: 1) further exploring source-language parsing probabilities and
alignment probabilities to help syntax projection; 2) studying the effect of the scale of source/target
treebank and bilingual text.
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