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ABSTRACT

As a critical language, there is huge potential for the usefulness of an Arabic Semantic
Role Labeling (SRL) system. This task involves two subtasks: predicate argument
boundary detection and argument classification. Based on the innovations of Diab,
Moschitti, and Pighin (2007) in the field of Arabic Natural Language Processing (NLP),
SRL in particular, we are currently developing a system for automatic SRL in Arabic.
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1 Introduction

The automatic detection and identification of semantic roles in a sentence—a process known
as Semantic Role Labeling (SRL)—has many potential applications within computational
linguistics. Imagine the uses for improving machine translation, information extraction, and
document analysis, among other innovations. As the computational linguistics field has
expanded, so has the amount of research into SRL. However, as with much language
technology research, the main focus has been on English. Because of this, Arabic-language
! technologies and methods are often adapted from tools that have succeeded for English,
rather than developed on their own. Recent years have produced powerful development
resources, such as an Arabic Treebank and Propbank, in both pilot and revised forms. The
number of resources available for automatic parsing, POS -tagging, chunking, of Arabic still
lags behind that of English, but has grown noticeably. As a critical language, there is huge
potential for an Arabic SRL system to revolutionize Arabic-language tools.

Based on the innovations of Diab, Moschitti, and Pighin (2007) in Arabic SRL, we are
currently developing a system for automatic SRL in Arabic. We are looking for feedback
from the conference before fully implementing and reporting the performance of this
system.

2 Arabic NLP

Arabic has a number of challenges which aren't present for other languages. It is unlike English in
many ways, which suggests that directly applying English- language technology many not be the
absolute optimal approach for an effective system. On the other hand, there is no reason not to
utilize the work that has been done on SRL if it can be used in a cross- linguistic way. The best
approach will be to build upon previous work and customize it to Arabic linguistic features, thus
using the differences between English and Arabic to advantage.

One such feature is Arabic's rich morphology. In Arabic, nouns and adjectives encode
information about number, gender, case, and definiteness. Verbs are even richer,
encoding tense, voice, mood, gender, number, and person. These features are often
expressed via diacritics, short vowels marked above or below letters 2

A word in Arabic is typically formed by selecting one of approximately 5,000, 3-to-5-
consonant roots, and adding affixes. ® Diacritics are sometimes the only thing that
specifies semantic differences between words, and for certain genres, especially online
communication, they are often left out. In this case, it is a special challenge for an
automated system to determine the difference.

Another feature is word order. While not completely free, Arabic allows for subject-verb- object
(SVO, as in English), verb- subject-object (VSO), and more occasionally OSV and OVS. In the
Arabic Treebank, SVO and VSO each equally account for 35% of the sentences 4

"I this paper, the term “Arabic” is used to refer to Modern Standard Arabic. Other dialects will be specifically
goted as such.
3Diab et al., 2007.
Abbasi and Chen, 2005.
“Palmer et al., 2008.
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Arabic allows for noun phrases which are more complex than those in English,
particularly the possessive construction called idafa, which relies on the definiteness of
the nouns to convey precise meaning.

Another feature worth mentioning, but not currently handled by this system, is pro-drop.
Because nouns, adjectives, and verbs encode so much information, it is fairly common
to completely drop the subject of a sentence because it is implied. An example of this
given in (Palmer et al., 2008) is: Akl AlbrtqAl ‘ate-[he] the-oranges.’ In this context, the
verb Akl, 'ate,' expresses the subject 'he,' which is not directly said. (Palmer et al., 2008)
notes that 30% of the sentences in the Arabic Treebank are pro-dropped.

3 Related Work

One of the things that challenges Arabic NLP is that much progress in computational
linguistics is focused on English. As a result, many Arabic language technologies are based
on research done on English, and then revised to better fit the characteristics of Arabic. This
is not necessarily detrimental, but it does affect the development process. This is the route
taken in (Diab et al., 2007) : adapting techniques which have proven successful for English
SRL for use in an Arabic system. Specifically, Moschitti's SVM-light-TK is trained and tested
on Arabic data, using features which have proven effective for English and some other
languages, which are referred to as the “standard set”. The features were grouped into:

a) Phrase Type, Predicate Word, Head Word, Position and Voice, based on (Gildea and

Jurafsky 2002);
b) Partial Path, No Direction Path, Head Word POS, First and Last Word/POS in
Constituent and SubCategorization based on (Pradhan et al., 2003);

c) Syntactic Frame, based on (Xue and Palmer, 2004)
(Diab et al., 2008) extends the first, rudimentary system by tailoring it to Arabic- specific
features. This tailoring manifests in the form of feature selection for the SVM. The new,
Arabic-specific features consist of inflectional morphology, including number, gender,
definiteness, mood, case, person; derivational morphology including lemma form of the
words with explicitly-marked diacritics; the English gloss; vocalized form with full
diacritics (much like lemma but including inflections); and unvowelized word as it
appears in the sentence. Tree kernels were specifically chosen for the initial set of
experiments in order to be able to deal with the immense set of possible features.
Adding the Arabic-specific features was shown to significantly improve performance.

4 Experiment Design

4.1 Machine Learning Algorithm

As in (Diab et al., 2007) and (Diab et al., 2008), this system will be using SVM-light-TK.
The SVM algorithm has been shown in numerous studies to handle noisy data and large
feature sets well. Using Moschitti's Tree Kernel SVM will allow for an extensible system,
better suited to the addition of Arabic features. For the present, however, mostly the
standard SVM-light capability will be utilized with a polynomial kernel.
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4.2 Data

The SVM will be trained on annotated data collected from news-oriented, Arabic-language
blogs. For initial testing, the corpus is relatively small, with just over 100 sentences. These
were run through Benajiba and Diab's AMIRA 2.0 POS tagger and BP chunk parser. They
were then annotated with ARGO and ARG1 in PropBank-like style, with adverbial and
prepositional (ARGM) phrases annotated for later use. For this implementation, only ARGO
and ARG1 will be labeled. All of the sentences in this corpus included explicit subjects rather
than pro-drop. Additionally, most of the sentences were of SVO form, with very little variation.
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Some attack militant resistance which demands the legitimate rights using terrorism as an excuse.
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FIGURE 1 — A syntactic parse tree created using the Stanford Parser (factored Arabic
grammar), then marked up to show semantic roles. “S” denotes the subject (ARGO),
“V” denotes the predicate, “O” denotes the object (ARG1).
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4.3 Predicate Argument Extraction and Argument Classification

Any SRL system involves extracting and labeling predicate structures. At the sentence
level, this is constituted of two tasks: detecting the word span of arguments within the
sentence, and classifying the arguments found by type (ARGO, ARG1, ARGM). (Diab,
2007 et al.) describes the general algorithm for doing so by the steps:

1. given a sentence from the training-set, generate a full syntactic parse-tree;
2.let P and A be the set of predicates and the set of parse-tree nodes (i.e. the
potential arguments), respectively;

3. for each pair <p, a> € P x A:

« Extract the feature representation set,;

« If the subtree rooted in a covers exactly the words of one argument of p, put Fpa in

T (positive examples), otherwise put itin T~ (negative examples).

The T" and T sets then serve to train the boundary classifier. With some restructuring,
T" and T can also be used to train the argument classifier.

4.4 Features

The aspect that most distinguishes a system built for Arabic from one built for English is
the selection of features. As mentioned above, (Diab et al., 2007)'s SRL system initially
used the set of standard features before later adding Arabic-specific ones. Similarly, this
system will first be developed using the standard set before experimenting with Arabic
features. Following are brief descriptions of the feature types to be included.

Phrase Type: The syntactic category of the phrase expressing the semantic roles.
(Gildea and Jurafsky 2002)

Predicate Word: Lemma form of the predicate word.

Head Word: Syntactic head of phrase. (Pradhan et al., 2003)

Position: Position of constituent relative to predicate (before or after).

Voice : Active or passive classification of a sentence. This is included due to
correspondence between active voice and subject, passive voice and object.

Path: Syntactic path linking the argument and its predicate. For example, the path
of ARGO in Figure 1 is NQTNP1S|VP|VBP.

Partial Path: Section of the path that connects argument to the common parent of
the predicate.

No Direction Path: Path without directions.

Head Word POS: Syntactic part of speech of the head word.

First and Last Word/POS in Constituent: First and last words and part of speech of phrase.

SubCategorization: Production rule expanding the predicate parent node. (Diab et al.,

2008)

Syntactic Frame: Noun phrase positions relative to the predicate.

5 Expected Results

Using the official CoNLL evaluator, (Diab et al., 2007)'s initial system was able to achieve overall
F1 scores of 77.85 and 81.43 on classifying the arguments of the development and testing sets,
respectively. Boundary detection results were also quite impressive, with F1 scores of 93.68 and
94.06. These results were yielded by use of only the standard features listed above. By adding in
Arabic-specific features, utilizing tree kernels, and testing across a variety of models, (Diab,
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2008 et al.) were able to increase the F1 score for automated boundary detection and
argument classification to 82.17.

By drawing on previous work such as that of (Diab et al., 2007; Diab et al., 2008), we
hope to achieve similar measures, possibly even improving upon them by applying
research performed after the publication of (Diab et al., 2008).

Conclusion and future work

Many of the next steps for expanding the system are quite clear, as the system has not
been fully implemented yet.

In the future, more types of arguments will be labeled. This will be done by comparing

the results of multiple 1-vs-ALL passes through the SVM trained for different argument
types and selecting the highest score.

The system will also be tested on a larger, more representative corpus that possesses
sentences exhibiting pro-dropping and more word-order variation. For our purposes, the
SRL system should be able to detect these patterns.

During the development of the Arabic SRL system, we will continue to tailor it
specifically to Arabic, and make more use of its unique linguistic features.

Constructive feedback on the design of this SRL system is welcomed.
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