
Proceedings of COLING 2012: Technical Papers, pages 2011–2026,
COLING 2012, Mumbai, December 2012.

Error Mining with Suspicion Trees: Seeing the Forest for the
Trees

Shashi Narayan1 Claire Gardent2
(1) Université de Lorraine/LORIA, Nancy, France

(2) CNRS/LORIA, Nancy, France

shashi.narayan@loria.fr, claire.gardent@loria.fr

Abstract
In recent years, error mining approaches have been proposedto identify the most likely sources
of errors in symbolic parsers and generators. However the techniques used generate a flat list
of suspicious forms ranked by decreasing order of suspicion. We introduce a novel algorithm that
structures the output of error mining into a tree (called, suspicion tree) highlighting the relationships
between suspicious forms. We illustrate the impact of our approach by applying it to detect and
analyse the most likely sources of failure in surface realisation; and we show how the suspicion
tree built by our algorithm helps presenting the errors identified by error mining in a linguistically
meaningful way thus providing better support for error analysis. The right frontier of the tree
highlights the relative importance of the main error cases while the subtrees of a node indicate how
a given error case divides into smaller more specific cases.

Title and Abstract in Hindi

s\d�h v� "o\ к� sAT /� EV хnn, v� "o\ кF хoj j\gl m�\

hAl к� vqo� m� , þtFкA(mк pd - &yAхк tTA pd -u(pAdк кF glEtyo\ к� s\BAEvt
�oto\ кF phcAn к� Ely� ки /� EV хnn tкnFк�\ þ-tAEvt кF gyF h{\। hAlA\Eк þ-tAEvt
tкnFк�\ s\d�hA(mк udAhrZo\ кo eк sADArZ s� cF m�\ unк� GVt� s\d�h к� �m m�\ þ-t� t
кrt� h{\। hm yhA eк nyF tкnFк þ-t� t кr rh� h{\ jo /� EV хnn к� pErZAmo\ кo eк v� "
(s\d�h v� ") к� !p m�\ gEWt кr s\d�hA(mк udAhrZo\ к� bFc к� s\b\Do\ кo EdхlAtA h{। hm
apn� tкnFк кF upyoEgtA pd -u(pAdк кF s\BAEvt asPltAao\ к� �oto\ кo Y� Yn� tTA
Ev��qZ кrк� þ-t� t кrt� h{\। hm yh EdхAt� h{\ Eк к{s� hmAr� tкnFк �ArA EnEm
t s\d�h
v� " /� EV хnn �ArA phcAnFt glEtyo\ кo BAqAшA-/ к� d� E	tкoZ s� кAPF aT
p� Z
 trFк�
s� þ-t� t кr /� EV - Ev��qZ m�\ кAPF mddgAr sAEbt hotA h{। s\d�h v� " кA dAEhnA sFmA\t
m� Hy /� EVp� Z
 udAhrZo\ кo unк� t� lnA(mк mh�A к� sAT þ-t� t кrtA h{ jbEк s\d�h v� "
кF шAхAy�\ EdхAtF\ h{\ Eк к{s� eк /� EVp� Z
 udAhrZ CoV� -CoV� /� EVp� Z
 EvEш£ udAhrZo\ m�\
b VtA h{।

Keywords:Error Mining, Generation.

Keywords in Hindi:/� EV хnn , pd -u(pAdк.

2011

1 Introduction

In recent years, error mining approaches have been proposedto identify the most likely sources of
errors (called,Suspicious Forms) in symbolic parsers and generators. (van Noord, 2004) initiated
error mining on parsing results with a very simple approach computing the parsability rate of each n-
grams in a very large corpus. The parsability rate of an n-gram wi . . . wn is the ratioP(wi . . . wn) =
C(wi ...wn |OK)

C(wi ...wn)
whereC(wi . . . wn) is the number of sentences in which the n-gramwi . . . wn occurs and

C(wi . . . wn | OK), the number of sentences containingwi . . . wn which could be parsed. In other
words, the parsability rate of an n-gram is the proportion ofsentences in which this n-gram occurs
and for which parsing succeeds. An n-gram then, is a suspicious form if it has a low parsability
rate.

(van Noord, 2004)’s approach was extended and refined in (Sagot and de la Clergerie, 2006),
(de Kok et al., 2009) and (Gardent and Narayan, 2012) as follows. (Sagot and de la Clergerie,
2006) defines a suspicion rate for n-grams which takes into account the number of occurrences of a
given word form and iteratively defines the suspicion rate ofeach word form in a sentence based on
the suspicion rate of this word form in the corpus. Further, (de Kok et al., 2009) extends this itera-
tive error mining to n-grams of words and POS tags of arbitrary length. And (Gardent and Narayan,
2012) extends (van Noord, 2004)’s approach to mine for suspicious subtrees rather than n-grams.

An important limitation shared by all these error mining approaches is that their output is a flat
list of suspicious forms ranked by decreasing order of suspicion. There is no clear overview of
how the various suspicious forms interact and as a result, the linguist must “hop” from one error
case to another instead of focusing on improving sets of related error cases. In short, the output
of these error mining approaches lacks structure thereby making it difficult to handle errors in a
linguistically meaningful way.

To overcome this shortcoming, we propose an algorithm whichstructures the output of error mining
into a suspicion treemaking explicit both the ranking of the main distinct error cases and their
subcases. The suspicion tree is a binary tree structure whose internal nodes are labelled with
suspicious forms and whose leaf nodes represent the clusters of error mined data grouped according
to the suspicious forms characterizing their elements. Like in a decision tree, each cluster in the
suspicion tree is characterized by the set of attributes (suspicious forms) labelling its ancestors; and
the tree itself represents a disjunction of mutually exclusive error cases.

We illustrate the impact of our error mining algorithm on error analysis by applying it to detect
and analyse the most likely sources of failure in a surface realiser developed to participate in the
Surface Realisation Shared Task (Belz et al., 2011); and we show how this error mining algorithm
permits improving the surface realiser.

The paper is structured as follows. We start (Section 2) by introducing our error mining algorithm.
In essence, this algorithm adapts (Quinlan, 1986)’s ID3 algorithm to build a suspicion tree such that
the clusters obtained group together sets of input data thatshare similar sources of failure (called
suspicious forms); and the attributes labelling these clusters are the suspicious forms indicating
which are these most likely causes of failure. In Section 3, we show how this error mining algorithm
helps improving a surface realiser executed on the input dependency trees provided by the Surface
Realisation (SR) Task challenge. Section 4 concludes with pointers for further research.

2 Building Suspicion Trees

In this section, we introduce thesuspicion tree algorithmand discuss its complexity.

2012

2.1 The Suspicion Tree Algorithm

As mentioned above, our error mining algorithm resembles (Quinlan, 1986)’s ID3 decision tree
learning algorithm, in that it recursively partitions the data by first, selecting the attribute (here, a
suspicious form) that best divides the data into more homogeneous subsets (attribute selection) and
second, using this attribute to split the data into two subsets, a subset containing that attribute and
a subset excluding that attribute (dataset division).

In what follows, we define the metric used to recursively select a suspicious form and partition the
data, namely theSuspicion Scoremetric. We specify the termination conditions. We illustrate by
means of examples how suspicion trees help structure the output of error mining. And we contrast
the suspicion tree algorithm with (Quinlan, 1986)’s ID3 decision tree learning algorithm.

The Suspicion Score Metrics. LetD be the dataset to be error mined andF be the set of attributes
used to partition the data. Here,D is a set of dependency trees provided for the Surface Realisation
Task by the Generation Challenge; andF is the set of subtrees ofD whose frequency is above a
given threshold. Following (Gardent and Narayan, 2012), weuse a complete and efficient Hybrid
Tree Miner algorithm (Chi et al., 2004), to compute the set ofsubtrees that are present inD.

Let D be divided into two disjoint sets: PASS (P) is the set of instancest P ∈ D for which the
processing system (e.g., a parser or a generator) succeeds;and FAIL (F) is the set of instances
t F ∈ D for which the system fails. Given these two sets, thesuspicion score Sscore(f) of a form f
∈ F is then defined as follows:

Sscore(f) =
1

2
(Fail(f) ∗ ln count(f) +Pass(¬ f) ∗ ln count(¬ f))

Intuitively, this metric captures the degree to which a formis associated with failure: it is high
whenever a formf is often present in data associated with failure (highF(ail)-Suspicion, Fail(f))
and/or when it is often absent in data associated with success (highP(ass)-Suspicion, Pass(¬ f)).

TheF-Suspicion rate of f is defined as the proportion of cases wheref occurs in an instancet for
which the processing system fails:

Fail(f) =
count(f |FAIL)

count(f)

count(f) is the number of instances containingf andcount(f |FAIL) is the number of instances
containingf for which processing failed.

Conversely, theP-Suspicion rate of a form f is defined as the proportion of cases not containing
f and for which processing succeeds (count(¬ f) is the number of instances wheref is absent and
count(¬ f |PASS) is the number of instances not containingf for which processing succeeds):

Pass(¬ f) =
count(¬ f |PASS)

count(¬ f)

Attribute Selection, Dataset Division and Termination. The suspicion tree algorithm selects at
each step of the tree building process, the formf with highest suspicion score i.e. the form such
that, in the current dataset, most instances that containf fail to be processed; and most instances
that excludesf lead to successful processing.

2013

Based on this selectedf , the current dataset is divided into two subsets: the set of instances which
containf and the set of instances which excludef .

The form selection and dataset division process are called recursively on the new subsets until (i)
the obtained set of instances is fully homogeneous (all instances in that set lead to either successful
or unsuccessful processing); (ii) all forms have been processed; or (iii) the depth upper bound is
reached (see below).

f1

f2

f4

S6 : (np6
, n f6)S5 : (np5

, n f5)

yes no
f3

f5

S4 : (np4
, n f4)S3 : (np3

, n f3)

yes no
S2 : (np2

, n f2)

yes no

yes no
S1 : (np1

, n f1)

yes no

Figure 1: An exampleSuspicion Tree. Internal nodes are labeled with suspicious forms and leaves
indicate the number of instances in the current data setSi for which processing succeeds (npi

); and
for which processing fails (n fi

). When the sources of errors are clearly identifiable,npi
will be low,

n fi
will be high and the rightmost leaf (f4) will have a lown fi

.

Example. Figure 1 shows an abstract suspicion tree which illustrateshow suspicion trees help
structuring the output of error mining. The right frontier highlights the relative importance of the
main distinct error cases while subtrees indicate how a given error case divides into smaller more
specific cases. The branches of the tree also indicate the combinations of forms that frequently
cooccur in failure cases.

More specifically, the rootf1 of this suspicion treeis the most suspicious form present in the
corpusD. Starting from the root, following the edges with label “no”(theright-frontier of the tree
i.e., f1, f2 and f4) yields the ranked list of suspicious forms present inD by decreasing order of
suspicion. Following branches yields datasets labeled with sets (conjunctions) of suspicious forms.
For example, the setS2 with np2

of pass instances andn f2 of failed instances hasf2 and f3 as their
top ranked suspicious forms. Thesuspicion treealso displays the relative ranking of the suspicious
forms. For example, the set (S2 ∪ S3 ∪ S4) has f2 as its most suspicious form, andf3, f5 as its
next two most suspicious forms. Moreover, most of the instances inS1, S4 andS5 fail because of a
single form namely,f1, f2 and f4 respectively.

Suspicion tree algorithm vs. ID3 algorithm. There are two main differences between (Quinlan,
1986)’s ID3 decision tree learning algorithm and the suspicion tree construction algorithm.

First, the suspicion tree construction algorithm allows for stronger pruning and termination condi-
tions – in this way, only the most relevant suspicious forms are displayed thereby facilitating error
analysis.

Second, attribute selection is determined not by the information gain (IG) but by the suspicion score

2014

(SS) metrics. Recall that the information gain1 metrics aims to identify the attributes which lead to
more homogeneous classes. In the present case, the classes are either PASS (the inputs for which
generation succeeds) or FAIL (the inputs for which generation fails). Thus the IG metrics will
indifferently seek to identify attributes which predominantly associate either with a FAIL or with
a PASS. There is no preference for either the FAIL or the PASS class. For error mining however,
what is needed is to identify attributes which predominantly associate with the FAIL class. That is,
we need a metric which permits identifying attributes whichleads to classes that are homogeneous
in terms of FAIL instances rather than homogeneous in terms of either FAIL or PASS instances.
The example shown in Figure 2 illustrates the difference.

S : (P : 7, F : 1714)

f1

S¬ f1 : (P : 3, F : 1638)S f1 : (P : 4, F : 76)

yes no

S : (P : 7, F : 1714)

f2

S¬ f2 : (P : 2, F : 292)S f2 : (P : 5, F : 1422)

yes no

Figure 2: Attribute Selection using Information Gain (Left) and Suspicion Score (Right). While IG
selectsf1, an attribute which associate 76 times with generation failure, SS selectsf2, an attribute
which associates 1422 times with generation failure.

In this example, we apply the IG and the SS metrics to the same input data, a set containing
7 inputs associated with generation success and 1714 inputsassociated with generation failure.
While SS selectsf2, an attribute which associates 1422 times with generation failure, IG selects
f1, an attribute which associate only 76 times with generationfailure. In this case, the information
gain metrics incorrectly selectf1 because its absence from the input, yields a numerically very
homogeneous class in terms of generation failure. Indeed, the information gain off1 is close to but
higher than the information gain off2 because the resultant subsetsS fi

andS¬ fi
are treated equally

while computing the information gain.

2.2 Complexity Analysis and Extensions

Let n andm be the size of the datasetD and of the form setF respectively. Then, in the worst case,
the suspicion tree will be of depthO(log n) with O(n) nodes. Each node chooses a suspicious
form out ofO(m) forms. Thus the worst computational complexity for building the suspicion tree
is O(m n log n). But on average, the algorithm described in Section 2.1 performs much faster than
this. The worst case happens when the forms used to classify the corpus into PASS and FAIL are
not very discriminant i.e., when all suspicious forms are equally probable.

The algorithm for building the suspicion tree is directly proportional to the size of the setF. Since
|F| can be very large, this can be problematic. Indeed, in the error mining on sentences for pars-
ing systems proposed in (Sagot and de la Clergerie, 2006), the authors indicate that, in order to
remain computationally tractable, the approach must be restricted to n-grams of smaller size (un-
igrams and bigrams). The problem is accrued of course when considering tree shaped suspicious
forms (Gardent and Narayan, 2012). To abate this issue we propose two extensions to prune the
suspicion tree.

1Information gain (IG) is defined asI G = H(S)−((|S fi |/|S|)∗H(S fi)+(|S¬ fi |/|S|)∗H(S¬ fi))whereH(X) is the entropy
of setX . (Quinlan, 1986)

2015

First, we reduce the form spaceF. Following a suggestion from (de Kok et al., 2009), instead of
considering all possible forms, we only consider those forms whose frequency is above a given
threshold. We also account forsuspicion sharing(i.e., the sharing of suspicion by several over-
lapping forms) by only considering a larger suspicious formif its suspicion rate is larger than the
suspicion rate of all smaller forms it contains. These two extensions reduce the form space signifi-
cantly and allow for an efficient building of the suspicion tree. To enumerate with these extensions,
we use a complete and efficient algorithm described in (Gardent and Narayan, 2012).

Second, we constrain the depth of the suspicion tree. Because error mining is a cyclic process,
building the complete suspicion tree is usually unnecessary. The quantity of information processed
in each cycle depends on the user but in general, the linguistwill focus on the top suspicious forms,
use these to improve the generator and rerun error mining on the improved results. The faster the
error mining step is, the better this is for this developmentcycle. Considering this, we added an
extra constraint over the depth of the suspicion tree. This depth limit permits pruning the suspicion
tree and a faster improvement cycle. In our experiments, we used a depth limit of 10.

With these extensions, the enumeration process of suspicious forms takes 10-15 minutes for a
dataset consisting of 123,523 trees. Building a suspicion tree for the same dataset takes about one
minute.

3 Applying the Suspicion Tree Algorithm to Generation Data

We now report on an experiment we did using the suspicion treealgorithm described in the preced-
ing section to detect and classify the most likely causes of failure when running a surface realiser
on the Surface Realisation (SR) Task data. We first describe the experimental setup (Section 3.1).
We then illustrate by means of examples, how suspicion treesbetter support error analysis than
ranked lists proposed by previous error mining approaches (Section 3.2). Finally (Section 3.3), we
discuss the improvements in surface realisation obtained by fixing the errors identified using error
mining.

3.1 Experimental Setup

Dataset The dataset to be error mined is the set of shallow dependencytrees (Figure 3) provided
by the SR Task organisers and used as input for surface realisation. These trees are unordered syn-
tactic dependency trees whose edges are labelled with dependency relations and whose nodes are
labelled with lemmas and part of speech (POS) categories. Inthis paper, we represent these trees
by an n-tuple with the root node of the tree as its first elementfollowed by (n− 1) elements rep-
resenting its dependent subtrees. Dependency relations are lowered to the corresponding daughter
node.

play/VB

football/NNjohn/NNP

sbj obj

sroot word (play, (john), (football))

POS (VB, (NNP), (NN))

dep (sroot, (sbj), (obj))

word/POS (play/VB, (john/NNP), (football/NN))

dep-POS (sroot-VB, (sbj-NNP), (obj-NN))

Figure 3: An example shallow dependency tree from the SR Taskand the corresponding repre-
sentations used in this paper. Our error mining algorithm considers as suspicious forms, subtrees
labelled with arbitrary conjunctions of lemmas (word), part-of-speech tags (POS), dependency re-
lations (dep).

2016

To facilitate error mining, we proceed in an incremental wayand examine dependency trees in the
SR data that correspond to NP and Sentences of increasing size. Here we report on error mining
performed on NP-type dependency trees of sizes 4 (NP-4), 6 (NP-6) and all (NP-ALL), and S-type
dependency trees of sizes 6 (S-6), 8 (S-8) and all (S-ALL) (where the size refer to the number of
nodes/lemmas in the tree). The data used for generation is preprocessed whereby named entities
and hyphenated words are grouped into a single word and punctuation is removed so as to first
focus on lexical and grammatical issues.

Attributes The attributes used to partition the SR data are suspicious trees i.e., subtrees of the SR
dependency trees whose frequency is above a given threshold. Following (Gardent and Narayan,
2012), we allow for various views on errors by mining for forms labelled with lemmas only (word);
with parts of speech (POS); with dependency relations (dep); with lemmas and parts of speech
(word/POS); and with dependency relations and parts of speech (dep-POS) (cf. Figure 3).

Generation System The system to be tested is the symbolic Surface Realiser described in
(Narayan and Gardent, 2012). We ran this surface realiser onthe SR input data and separately
stored the input dependency trees for which generation succeeded (PASS) and the input depen-
dency trees for which generation failed (FAIL). We then removed from the failed data, those cases
where generation failed either because a word was missing inthe lexicon or because a grammar
rule was missing but required by the lexicon and the input data. These cases can easily be detected
using the generation system and thus do not need to be handledby error mining.

Error Mining We iterate several times between error mining and performance improvement and
applied the suspicion tree algorithm to both the NP and the S data2.

3.2 Error Analysis using Suspicion Trees

We now show by means of examples how the suspicion tree algorithm helps support error analysis.
We start by showing how the overall structure of the suspicion tree (right frontier and subtrees)
improves upon ranked lists when analysing the data. We then go on to show how subtrees in the
suspicion tree permit differentiating between forms that are suspicious in all contexts and require
a single correction; forms that are suspicious in all contexts but require several corrections; and
forms that are suspicious in some but not all contexts.

3.2.1 Suspicion Trees vs. Ranked Lists

Figure 4 shows a top fragment of the suspicion tree obtained by error mining on NP-4. The node
labels in this tree describe suspicious forms with part-of-speech information only.

In that tree, the right frontier indicates that the main distinct suspicious forms are, in that order:

1. Possessive NPs (POSS is the part of speech tag assigned to possessive’s3)
The suspicious form (POSS) points to a mismatch between the representation of genitive NPs (e.g.,
Oakland’s thief) in the SR Task data and in the grammar. While our generator expects the represen-
tation of ‘Oakland’s thief’ to be (thief/NN, (’s/POSS, (oakland/NNP))), the structure provided by
the SR Task is (thief/NN, (oakland/NNP, (’s/POSS))). Hencewhenever a possessive appears in the
input data, generation fails. This is in line with (Rajkumaret al., 2011)’s finding that the logical

2Iteration stops either when the results are perfect (perfect coverage and perfect BLEU score) or when the trees fail to be
discriminative enough (low number of FAIL instances associated with the suspicion tree leaves). So far, the latter situation
did not occur and we are still using the suspicion tree to identify the main sources of errors for the remaining error cases.

3In fact, the part of speech tag assigned to possessive’s in the SR data is POS not POSS. We renamed it to avoid
confusion with POS as an abbreviation for part-of-speech.

2017

(POSS)

(CC)

(DT, (IN))

(TO, (VB))

(NN, (RB))

(cont)(204, 79)

yes no
(1, 64)

yes no
(0, 140)

yes no
(NN)

(DT)

(NNP, (NNP))

(1, 118)(0, 70)

yes no
(1, 104)

yes no
(NN, (CC))

(JJ)

(2, 143)(1, 199)

yes no
(NN, (NN))

(1, 679)(1, 401)

yes no

yes no

yes no

yes no
(NN)

(NNP, (POSS))

(1, 4)(0, 537)

yes no
(0, 2818)

yes no

yes no

Figure 4: Suspicion Tree for Generation from the NP-4 data. Nodes are labelled with dependency
subtrees with POS information. The leaves(p, f) represent the cluster with PASS (p) and FAIL
(f) instances.

forms expected by their system for possessives differed from the shared task inputs. To correct
these cases, we implemented a rewrite rule that converts theSR representation of possessive NPs
to conform with the format expected by our realiser.
2. NPs with coordination (CC with daughter node NN)
The second top right frontier node unveils a bug (conflictingfeature values) in the grammar trees
associated with NP conjunction (e.g.,Europe and the U.S.) which made all sentences containing
an NP conjunction fail.
3. Determiners (DT) dominating a preposition (IN)
As we shall see below, this points to a discrepancy between the SR part of speech tag assigned to
words like ‘some’ in ‘ some of the audience’ and the part of speech tag expected by our generator.
While in the SR data, such occurrences are labelled as determiners (DT), our generator expects
these to be tagged as pronouns (PRP).
4. The complementizerto (TO) dominating a verb (VB)
As discussed below, this points to cases where the infinitival verb is a noun modifier and the input
structure provided by the SR Task differs from that expectedby our realiser.
5. Nouns (NN) dominating an adverb (RB)
This points to a discrepancy between the SR part of speech tagassigned to words like ’alone’ in
‘ real estate alone’ and the part of speech tag expected by our generator. While in the SR data, such
occurrences are labelled as adverbs (RB), our generator expects these to be tagged as adjectives
(JJ).

In addition, for each noden on the right frontier, the subtree dominated by the yes-branch of n
gives further information about the more specific forms thatare subcases of the suspicious form
labellingn.

The suspicion tree gives a structured view of how the varioussuspicious forms relate. In compar-
ison, the ranked lists produced by previous work are flat structures which may fail to adequately
display these information. For instance, applying (Gardent and Narayan, 2012)’s error mining al-
gorithm to the data used to produce the tree shown in Figure 4 yields the list shown in Figure 5.
Contrary to the suspicion tree shown in Figure 4, this list fails to highlight the main culprits and

2018

1. (POSS)
2. (NNP, (POSS))
3. (CC)
4. (NN, (POSS))
5. (NN, (NNP, (POSS)))
6. (NN, (NN, (POSS)))
7. (NN, (CC))
8. (NNP, (NNP), (POSS))
9. (NN,(NNP,(NNP),(POSS)))

10. (NN, (NNP, (NNP)))

11. (CC, (JJ))
12. (JJ, (CC))
13. (NNP, (NNP, (POSS)))
14. (NN, (NN), (POSS))
15. (DT, (IN))
16. (JJ, (CC, (JJ)))
17. (NN, (CC), (NN))
18. (NN, (NNP), (POSS))
19. (TO, (VB))
20. (NN,(NNP,(POSS)),(NNP))

21. (NN, (NNP))
22. (NNP, (NNP))
23. (NN, (NN))
24. (NNP)
25. (NN)
26. (NN, (NNP), (NNP))
27. (VB)
28. (NN, (RB))
29. (PRP)
30. (DT)

Figure 5: Ranked list of suspicious forms for Generation from the NP-4 data.

the relations between the various suspicious forms. Thus the 5 main distinct suspects identified by
the right frontier of the suspicion tree appears as 1st, 3rd,15th, 19th and 28th in the ranked list.
Furthermore, while subcases of the main suspects are grouped in the yes-branch of these suspects
in the suspicion tree, in the ranked list, they appear freelyinterspersed throughout. For example,
suspicious forms involving the two main suspects in the suspicion tree approach (POSS and CC
part-of-speech tags) are scattered throughout the list rather than grouped under the first two right
frontier nodes respectively.

Also the stronger pruning conditions used for building the suspicion tree restrict the branch explo-
ration as soon as homogeneous clusters are achieved. For a given dataset, it only explores those
suspicious forms which are good enough to identify the problems causing the failure in that dataset.
For example the data containing the suspicious form (POSS) is explored with 3 suspicious forms
(POSS), (NN) and (NNP, (POSS)) in the suspicion tree shown inFigure 4 whereas in the ranked list
shown in Figure 5, there are 11 suspicious forms associated with (POSS). In general, the number
of forms displayed by the suspicion tree algorithm is much less than that of the ranked list ones
thereby giving a clearer picture of the main culprits and of their subcases at each stage in the error
mining/grammar debugging cycle.

3.2.2 Reading error types off the tree structure

For each noden labelled with suspicious formfn in a suspicion tree, the subtree dominated byn
gives detailed information about the possible contexts/causes forfn. In what follows, we show how
the suspicion tree algorithm permits distinguishing between three main types of suspicious forms
namely, forms that are suspicious in all contexts and require a single correction; forms that are
suspicious in all contexts but require several corrections; and forms that are suspicious in some but
not all contexts.

Forms that are suspicious independently of context and require a single correction. When a
suspicious form always leads to failure, the node labelled with that suspicious form has no subtree
thereby indicating that all configurations including that suspicious form lead to generation failure
independent of context.

Such cases are illustrated in Figure 6 which show two views (one with part of speech tag only,
the other with words and parts of speech tags) of the suspicion tree obtained after addressing the
two main causes of errors identified in the previous section.That is, a rewrite rule was applied
to convert the SR representation of possessive NPs to conform with the format expected by our

2019

(days/NN)

(all/PDT)

(month/NN,
(six/CD),
(the/DT))

(standard & poor/NNP,
(’s/POSS))

(cont)(0, 22)

yes no

(0, 27)

yes no

(the/DT)

(those/DT)

(2, 6)(0, 3)

yes no
(0, 23)

yes no

yes no
(0, 155)

yes no
(DT, (IN))

(JJ, (DT))

(RB, (IN))

(IN, (DT))

(cont)(0, 30)

yes no
(0, 38)

yes no
(IN)

(POSS)

(2, 27)(0, 7)

yes no
(0, 15)

yes no

yes no
(0, 140)

yes no

Figure 6: Suspicion Tree for (word/POS) (left) and (POS) (right) for Generation from the NP-4
data (after fixing genitive and coordination cases).

realiser ((POSS) suspicious form); and the grammar was corrected to generate for NP coordination
((CC) suspicious form).

In each of these two trees, the yes-branch of the root node hasno subtree indicating that all input
trees containing either the word form ‘days’ with part of speech tag NN (days/NN); or a determiner
dominating a preposition ((DT,(IN))) lead to generation failure.

The root node (days/NN) of the suspicion tree shown on the left of Figure 6 points to a problem in
the lexicon. Although days/NN is present in the lexicon, it is not associated with the correct TAG
family. We modified the entries corresponding to (days/NN) in the lexicon to solve this problem.

As mentioned above, the root node (DT, (IN)) of the suspiciontree shown on the right in Figure 6
points to a part-of-speech tagging problem in the SR Data. Words like ‘some’ or ‘ all’ followed by a
preposition (e.g.,some of the audience, all of fiscal 1990, those in other industries) are assigned the
determiner part of speech tag (DT) where our generator expects a pronoun (PRP) part-of-speech
tag. To correct these cases, we implemented a rewrite rule that maps DT to PRP in the above
specified context.

As these two examples illustrate, using different views (forms labelled with part of speech tags only
vs. forms labelled with words and parts of speech) on the same data may help identifying problems
at different levels. Both suspicion trees in Figure 6 are built for generation from same NP-4 dataset.
The leftmost tree (suspicious forms labelled with both lemma and part of speech information) helps
identifying problems in the lexicon whereas the rightmost tree (suspicious forms labelled with parts
of speech only) points to problems in the input data.

Forms that are suspicious independent of context but require several corrections. It may
be that a given form is almost always suspicious but that it occurs in different linguistic contexts
requiring different corrections. In such cases, the suspicion tree will highlight these contexts. The
root of the tree shown in Figure 7 is a case in point. The suspicious form (im-VB) describes subtrees
whose head is related to a verb by theim dependency relation i.e.,infinitival verbs. The subtrees
(of the yes-branch) of that root further describe several syntactic configurations which are suspect
and contain an infinitival verb. The node labelled with (oprd-TO) points to subcases where the
infinitival verb is the complement of a control (1a[i]) or a raising verb (1a[ii]). The node labelled
with (im-VB, (prd-JJ)) points to a subcase of that case namely that of an infinitival verb which is

2020

the complement of a control or a raising verb and subcategories for an adjectival complement e.g.,
(1b). Finally, the node labelled with (nmod-TO, (im-VB)) points to cases where the infinitival verb
is a noun modifier (1c).

(im-VB)

(cont)(oprd-TO)

(nmod-TO, (im-VB))

(13, 188)(0, 14)

yes no
(im-VB, (prd-JJ))

(1, 264)(0, 11)

yes no

yes no

yes no

Figure 7: Suspicion Tree (dep-POS) for Generation from the S-6 data.

(1) a. (oprd-TO)

i He will try to assuage the fears about fi-
nances.
(try/VB, (oprd-to/TO, (im-assuage/VB))

ii Many of the morning session winners turned
out to be losers.
(turn/VB, (oprd-to/TO, (im-be/VB, (prd-
loser/NN)))

b. (im-VB, (prd-JJ))
Amex expects to be fully operational by tomor-
row.
(expect/VB, (oprd-to/TO, (im-be/VB, (prd-
operational/JJ)))

c. (nmod-TO, (im-VB))
The ability to trade without too much difficulty
has steadily deteriorated.
(ability/NN, (nmod-to/TO, (im-trade/VB))

(2) a. (IN, (CD))
the end of 1991
(end/NN, (the/DT), (of/IN, (1991/CD)))

b. (CD, (IN))
one of the authors
(one/CD, (of/IN, (author/NN, (the/DT))))

c. (CD, (CD))
Nov. 1 , 1997
(1/CD, (1997/CD), (Nov./NNP), (,/SYS))

d. (CD, (DT))
A seasonally adjusted 332.000
(332.000/CD, (a/DT), (adjusted/JJ, (sea-
sonally/RB)))

e. (CD, (RB))
1987 and early 1988
(1987/CD, (and/CC, (1988/CD,
(early/RB))))

Although all of these cases are due to a mismatch between the SR Task dependency trees and
the input expected by our realiser, they point to different input configurations requiring different
modifications (rewritings) to ensure compatibility with the realiser. The structured information
given by the suspicion tree provides a clear description of the main tree configurations that need to
be rewritten to correct generation failures induced by infinitival verbs. We used these information
to implement the rewrite rules required to resolve the identified mismatches.

Forms that are suspicious in some but not all contexts. The suspicion tree can also highlight
forms that are suspicious in some but not all contexts. For instance, the right frontier of the sus-
picion tree in Figure 8 shows that the CD (cardinals) part of speech occurs in several suspicious
forms namely, (IN, (CD)) (a preposition dominating a cardinal), (CD, (IN)) (a cardinal dominating
a preposition), (CD, (CD)) (a cardinal dominating a cardinal), (CD, (DT)) (a cardinal dominating a
determiner) and (CD, (RB)) (a cardinal dominating an adverb). Examples for these configurations
and their subcases are given in (2).

Noticeably, the suspicious form (CD) does not appear in the suspicion tree. In other words, the
tree highlights the fact that cardinals lead to generation failure in the contexts shown but not in all
contexts. Indeed, in this case, all suspicious forms pointsto a single cause of failure namely, a mis-

2021

(IN, (CD))

(CD, (IN))

(JJ, (DT))

(CD, (CD))

(CD, (DT))

(CD, (RB))

(cont)(4, 22)

yes no
(CD, (NNP))

(11, 28)(1, 12)

yes no

yes no
(CD, (CD), (NNP))

(1, 10)(0, 18)

yes no

yes no
(IN)

(POSS)

(cont)(0, 7)

yes no
(0, 21)

yes no

yes no
(0, 79)

yes no
(0, 164)

yes no

Figure 8: Suspicion Tree (POS) for Generation from the NP-6 data (after fixing genitive, coordina-
tion and determiner cases).

match between grammar and lexicon. In the TAG grammar used, the constructions illustrated in (2)
all expect cardinals to be categorised as nouns. In the lexicon however, cardinals are categorised as
determiners. We modified the lexicon to categorise cardinals as determiners, nouns and adjectives
and rerun the generator on the input. In the newly built suspicion trees, cardinals no longer induce
high generation failure rates. The fact that cardinals are not always associated with failure can be
traced back to the fact that they are often used as determiners and that for this context, the lexicon
contains the appropriate information.

3.3 Using Error Mining to Improve Generation Results

We now briefly report on how the suspicion tree algorithm can help improve a generation system
by showing the impact of corrections on undergeneration.

Generating NPs. Table 1 summarises a run with 6 iterations between error mining and error cor-
rection on the NP data. The corrections involve rewriting the SR data to the format expected by
our realiser, grammar corrections and lexicon enrichment.Each time a correction is applied, the
suspicion tree is recomputed thereby highlighting the nextmost likely sources of errors. G(Coord)
indicates a fix in the grammar for coordination (discussed inSection 3.2.1). R(Gen) involves rewrit-
ing dependency trees for genitive NPs (e.g.,Oakland ’s thief) (Section 3.2.1) and R(Dt) rewriting
dependency trees with determiners to map its part-of speechfrom determiner (DT) to pronoun
(PRP) (Section 3.2.2) and to noun (NN) (nominal positions, e.g., That’s good). L(days) involves
updating the lexicon with correct days/NN to TAG families mapping (Section 3.2.2). R(Adv) in-
volves rewriting dependency trees with adverbs to map its part-of speech from adverb (RB) to
adjective (JJ) (e.g.,real estate alone) (Section 3.2.1).

As the table shows, error mining permits decreasing undergeneration by 22.6, 25.6 and 8.7 points
for NPs of size 4, 6 and ALL respectively. This suggests that simple NPs can be generated but that
bigger NPs still cause undergeneration (8.2% and 13% of the cases respectively for NP-6 and NP-
ALL) presumably because of more complex modifiers such as relative clauses, PPs and multiple
determiners. Since in particular, relative clauses also appear in sentences, we proceeded to error
mine the sentence data so as to provide more data for the errormining algorithm and therefore get
a more global picture of the most important causes of failure.

2022

Input Data Init Fail G(Coord) R(Gen) R(Dt) L(days) R(Adv)
NP-4 23468 5939 (25.3) 4246 (18.1) 999 (4.3) 833 (3.6) 678 (2.9) 649 (2.7)
NP-6 10520 3560 (33.8) 2166 (20.6) 956 (9.1) 881 (8.4) 876 (8.3) 865 (8.2)
NP-ALL 123523 26769 (21.7) 21525 16702 16263 16094 16028 (13)

Table 1: Diminishing the number of errors using informationfrom error mining on NP data. The
first column indicates the type of NP chunks to be processed, the second (Input Data) the number of
NP chunks to be processed, the third (Init Fail) the number of input on which generation initially
fails and the last 5 ones the decrease in errors (the number offailed cases with thepercentage
failure) after fixing error cases identified by the suspicion tree. R(X) indicates that the correction is
obtained by rewriting the input for phenomena X, G(X) indicates corrections in the grammar and
L(X) indicates corrections in the lexicon.

Generating Sentences. Tables 2 show the impact of corrections on generation for sentences. For
this data, we start with all the improvements made during error mining on the NP data. Table 2
represents this step asNP-Final summarizing generation results after all improvements from Ta-
ble 1. During error mining on the S data,infinitival verbs(discussed in Section 3.2.2) andauxiliary
verbsappear as prominent mismatches between the SR dependency trees and the input expected
by our generator. R(Inf) in Table 2 involves 3 different rewriting rules corresponding to depen-
dency relationsim, oprd andprd for rewriting dependency trees with infinitival verbs. R(Aux)
indicates rewriting for dependency trees with Verb/Auxiliary nuclei (e.g.,the whole process might
be reversed).

Input Data NP-Final R(Inf) R(Aux)
S-6 3877 1707 (44.0) 753 (19.4) 398 (10.3)
S-8 3583 1749 (48.8) 936 (26.1) 576 (16.1)
S-ALL 26725 19280 (72.1) 17862 (66.8) 16445 (61.5)

Table 2: Diminishing the number of errors using informationfrom error mining on S data. The
first column indicates the type of sentences to be processed,the second (Input Data) the number
of sentences to be processed, the third (NP-Final) the number of input (processed with all improve-
ments from Table 1) on which generation fails and, the fourthand the fifth error rates after rewriting
dependency trees for infinitival cases and auxiliary verb cases respectively.

Finally, Table 3 summarises results from Table 1 and Table 2 adding an extra final improvement
step (Final) consisting of minor grammar improvement (trees for pre-determiner PDT added, e.g.,
all these millions), lexicon enrichment (mapping to TAG families corrected) and rewriting rule
(mapping part-of-speech from conjunction CC to determinerDT, e.g.,neither/CC the Bush admin-
istration nor arms-control experts). The “Final” row in this Table shows the impact of S error
reduction on NP error reduction. As can be seen reducing S-errors positively impact NP errors
throughout.

In total we defined 11 rewrite rules (Gen-1, Dt-4, Adv-1, Inf-3, Aux-1 and Final-1), made 2 gram-
mar corrections and performed a few lexicon updates.

Coverage and accuracy. As the tables show, the corrections carried out after a few cycle of error
mining and error correction helps achieve a large improvement in coverage for smaller dependency
trees; we notice a large drop of 23.2 points (from 25.3% to 2.1%) in error rates for NP-4, 28.3
points for NP-6, 34.5 points for S-4 and 33.6 points for S-6. For larger dependency trees however,
improvement is more limited and other error cases becomes visible. Thus, the failure rate is reduced

2023

by 10.4 points for NP-ALL (NPs from minimum size 1 to maximum size 91 with the average size
4); and by 10.9 points for S-ALL (sentences from minimum size1 to maximum size 134 with
the average size 22). The suspicion tree built after theFinal step shows that coordination cases
appear as most suspicious forms. Although the corrections made for coordination in the grammar
G(Coord) permit generating simple coordinations (e.g.,John and Mary likes beans., We played on
the roof and in the garden., I cooked beans and she ate it.), the grammar still fails to generate for
more complex coordination phenomenon (e.g., verb coordination I cooked and ate beans., gapping
phenomenonJohn eat fish and Harry chips., I liked beans that Harry cooked and which Mary
ate.) (Sarkar and Joshi, 1996). Other top suspicious forms are multiword expressions (e.g.,at least,
so far) and foreign words (part-of-speech FW) (e.g.,the naczelnik, perestroika, product de jour).

NP-4 NP-6 NP-ALL S-6 S-8 S-ALL
Input Data 23468 10520 123523 3877 3583 26725
Init Fail 5939 (25.3) 3560 (33.8) 26769 (21.7) - - -
NP-Final 649 (2.7) 865 (8.2) 16028 (13.0) 1707 (44.0) 1749 (48.8) 19280 (72.1)
S-Final - - - 398 (10.3) 576 (16.1) 16445 (61.5)
Final 503 (2.1) 584 (5.5) 13967 (11.3) 371 (9.5) 545 (15.2) 16374 (61.2)

Table 3: Overall impact of error mining on generation from different types of dependency trees.
The first row indicates the type of dependency data to be processed and the second (Input Data)
the number of data to be processed. The rows named (Init Fail), (NP-Final), (S-Final) and (Fi-
nal) are initial error rates, errors after applying improvements from Table 1, errors after applying
improvements from Table 2 and errors after final improvements respectively.

To assess the precision of the surface realiser after error mining, we computed the BLEU score for
the covered sentence data and obtained a score of 0.835 for S-6, 0.80 for S-8 and 0.675 for S-ALL4.

4 Conclusion

We introduced an error mining algorithm that takes inspiration from (Quinlan, 1986)’s ID3 algo-
rithm to structure the output of error mining in a way that supports a linguistically meaningful
error analysis. We demonstrated its workings by applying itto the analysis of undergeneration in
a grammar based surface realisation algorithm. And we show that it permits quickly identifying
the main sources of errors while providing a detailed description of the various subcases of these
sources if any.

The approach is generic in that permits mining trees and strings for suspicious forms of arbitrary
size and arbitrary conjunctions of labelling. It could be used for instance to detect and structure
the n-grams that frequently induce parsing errors; or to identify subtrees that frequently occur in
agrammatical output produced by a generator.

We are currently working on further improving the generatorusing the suspicion tree algorithm.
In future work, we plan to use our error mining algorithm to detect the most likely sources
of over-generation based on the output of a surface realiser; and to investigate whether the ap-
proach can be useful in automatically detecting treebank and parse errors (Boyd et al., 2008;
Dickinson and Smith, 2011).

Acknowledgments The research presented in this paper was partially supported by the European
Fund for Regional Development within the framework of the INTERREG IV A Allegro Project.

4The BLEU score before error mining and correction is not reported here since it has low coverage due to the mismatches
between the structures provided by the SR task and those expected by the realiser.

2024

References

Belz, A., White, M., Espinosa, D., Kow, E., Hogan, D., and Stent, A. (2011). The first surface
realisation shared task: Overview and evaluation results.In Proceedings of the 13th European
Workshop on Natural Language Generation (ENLG), Nancy, France.

Boyd, A., Dickinson, M., and Meurers, D. (2008). On detecting errors in dependency treebanks.
Research on Language and Computation, 6(2):113–137.

Chi, Y., Yang, Y., and Muntz, R. R. (2004). Hybridtreeminer:An efficient algorithm for mining
frequent rooted trees and free trees using canonical form. In Proceedings of the 16th International
Conference on and Statistical Database Management (SSDBM), pages 11–20, Santorini Island,
Greece. IEEE Computer Society.

de Kok, D., Ma, J., and van Noord, G. (2009). A generalized method for iterative error mining in
parsing results. InProceedings of the 2009 Workshop on Grammar Engineering Across Frame-
works (GEAF 2009), pages 71–79, Suntec, Singapore. Association for Computational Linguistics.

Dickinson, M. and Smith, A. (2011). Detecting dependency parse errors with minimal resources.
In Proceedings of the 12th International Conference on Parsing Technologies (IWPT 2011),
Dublin, Ireland.

Gardent, C. and Narayan, S. (2012). Error mining on dependency trees. InProceedings of the 50th
Meeting of the Association for Computational Linguistics (ACL), pages 592–600, Jeju, Korea.

Narayan, S. and Gardent, C. (2012). Structure-driven lexicalist generation. InProceedings of the
24th International Conference on Computational Linguistics (COLING), Mumbai, India.

Quinlan, J. R. (1986). Induction of decision trees.Machine Learning, pages 81–106.

Rajkumar, R., Espinosa, D., and White, M. (2011). The osu system for surface realization at
generation challenges 2011. InProceedings of the 13th European Workshop on Natural Language
Generation (ENLG), pages 236–238, Nancy, France.

Sagot, B. and de la Clergerie, E. (2006). Error mining in parsing results. InProceedings of
the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 329–336, Sydney, Australia.

Sarkar, A. and Joshi, A. K. (1996). Coordination in tree adjoining grammars: Formalization
and implementation. InProceedings of the 16th International Conference on Computational
Linguistics (COLING), pages 610–615.

van Noord, G. (2004). Error mining for wide-coverage grammar engineering. InProceedings
of the 42nd Meeting of the Association for Computational Linguistics (ACL), pages 446–453,
Barcelona, Spain.

2025

