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Abstract

In recent years, error mining approaches have been proposddntify the most likely sources
of errors in symbolic parsers and generators. However ttlentques used generate a flat list
of suspicious forms ranked by decreasing order of suspiddmintroduce a novel algorithm that
structures the output of error mining into a tree (callegdpstion tree) highlighting the relationships
between suspicious forms. We illustrate the impact of oyragch by applying it to detect and
analyse the most likely sources of failure in surface rastis); and we show how the suspicion
tree built by our algorithm helps presenting the errorsfified by error mining in a linguistically
meaningful way thus providing better support for error gasl The right frontier of the tree
highlights the relative importance of the main error cask#axhe subtrees of a node indicate how
a given error case divides into smaller more specific cases.
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1 Introduction

In recent years, error mining approaches have been proposaéehtify the most likely sources of
errors (calledSuspicious Formsn symbolic parsers and generators. (van Noord, 2004aiad
error mining on parsing results with a very simple approachputing the parsability rate of each n-
grams in a very large corpus. The parsability rate of an magra. .. w,, is the ratioP(w; ... w,) =
M whereC(w; ...w,) is the number of sentences in which the n-grgm. . w,, occurs and

(wi..wy)
C(w;...w, | OK), the number of sentences containing .. w, which could be parsed. In other
words, the parsability rate of an n-gram is the proportiosasftences in which this n-gram occurs
and for which parsing succeeds. An n-gram then, is a sugggdimrm if it has a low parsability
rate.

(van Noord, 2004)’s approach was extended and refined inof®agl de la Clergerie, 2006),
(de Kok et al.,, 2009) and (Gardent and Narayan, 2012) aswsllo (Sagot and de la Clergerie,
2006) defines a suspicion rate for n-grams which takes irdowat the number of occurrences of a
given word form and iteratively defines the suspicion rateasth word form in a sentence based or
the suspicion rate of this word form in the corpus. Furth#e, Kok et al., 2009) extends this itera-
tive error mining to n-grams of words and POS tags of arhjtiemgth. And (Gardent and Narayan,
2012) extends (van Noord, 2004)’s approach to mine for sicas subtrees rather than n-grams.

An important limitation shared by all these error mining egaxhes is that their output is a flat
list of suspicious forms ranked by decreasing order of sispi There is no clear overview of
how the various suspicious forms interact and as a reseltjnuist must “hop” from one error
case to another instead of focusing on improving sets ofa@larror cases. In short, the output
of these error mining approaches lacks structure therebynmat difficult to handle errors in a
linguistically meaningful way.

To overcome this shortcoming, we propose an algorithm wétickctures the output of error mining
into a suspicion treemaking explicit both the ranking of the main distinct errases and their
subcases. The suspicion tree is a binary tree structureenintsrnal nodes are labelled with
suspicious forms and whose leaf nodes represent the dudterror mined data grouped according
to the suspicious forms characterizing their elementse liika decision tree, each cluster in the
suspicion tree is characterized by the set of attributespfsious forms) labelling its ancestors; and
the tree itself represents a disjunction of mutually exgkisrror cases.

We illustrate the impact of our error mining algorithm onagranalysis by applying it to detect
and analyse the most likely sources of failure in a surfaaéser developed to participate in the
Surface Realisation Shared Task (Belz et al., 2011); anchew 8ow this error mining algorithm

permits improving the surface realiser.

The paper is structured as follows. We start (Section 2) tpdtucing our error mining algorithm.
In essence, this algorithm adapts (Quinlan, 1986)’s ID8wdtlgm to build a suspicion tree such that
the clusters obtained group together sets of input datestteate similar sources of failure (called
suspicious forms and the attributes labelling these clusters are the siogfs forms indicating
which are these most likely causes of failure. In Sectioneshow how this error mining algorithm
helps improving a surface realiser executed on the inputmiggncy trees provided by the Surface
Realisation (SR) Task challenge. Section 4 concludes waithters for further research.

2 Building Suspicion Trees

In this section, we introduce treispicion tree algorithrand discuss its complexity.
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2.1 The Suspicion Tree Algorithm

As mentioned above, our error mining algorithm resemblasr{@n, 1986)'s ID3 decision tree
learning algorithm, in that it recursively partitions thatd by first, selecting the attribute (here, ¢
suspicious form) that best divides the data into more homeges subsetsitribute selectiopand
second, using this attribute to split the data into two stiysesubset containing that attribute anc
a subset excluding that attributgataset divisioh

In what follows, we define the metric used to recursively sedesuspicious form and partition the
data, namely th&uspicion Scorenetric. We specify the termination conditions. We illustray
means of examples how suspicion trees help structure tipeioatterror mining. And we contrast
the suspicion tree algorithm with (Quinlan, 1986)’s ID3 idemn tree learning algorithm.

The Suspicion ScoreMetrics. LetD be the dataset to be error mined @hde the set of attributes
used to partition the data. Hei|s a set of dependency trees provided for the Surface Reafisa
Task by the Generation Challenge; dnds the set of subtrees @ whose frequency is above a
given threshold. Following (Gardent and Narayan, 2012)use&a complete and efficient Hybrid
Tree Miner algorithm (Chi et al., 2004), to compute the sedudftrees that are presentn

Let D be divided into two disjoint sets: PAS®)(is the set of instanceg” € D for which the
processing system (e.g., a parser or a generator) succsti§AIL (F) is the set of instances
tf € D for which the system fails. Given these two sets,dhspicion score S,,.(f) of a form f

€ F is then defined as follows:

Siore(f) = %(Fail(f) xIncount(f)+ Pas§—f) *Incount(—f))

Intuitively, this metric captures the degree to which a fasnassociated with failure: it is high
whenever a fornf is often present in data associated with failure (Higil)-Suspicion Fail(f))
and/or when it is often absent in data associated with sa¢béshP(ass)-SuspicigrPasé—f)).

TheF-Suspicion rateof f is defined as the proportion of cases whe@curs in an instancefor
which the processing system fails:

count(f|FAIL)
count(f)

count(f) is the number of instances containifigndcount(f |FAIL) is the number of instances
containingf for which processing failed.

Fail(f) =

Conversely, thé-Suspicion rate of aform f is defined as the proportion of cases not containin
f and for which processing succeedsi(nt(—f) is the number of instances whefrés absent and
count(—f|PASS is the number of instances not containjfifpr which processing succeeds):

count(~f|PASS

Pas¢~f) = count(—f)

Attribute Selection, Dataset Division and Termination. The suspicion tree algorithm selects at
each step of the tree building process, the fgravith highest suspicion score i.e. the form suck
that, in the current dataset, most instances that corfitéail to be processed; and most instance:
that excludeg lead to successful processing.
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Based on this selected the current dataset is divided into two subsets: the setsthnces which
containf and the set of instances which exclyde

The form selection and dataset division process are cadledarsively on the new subsets until (i)
the obtained set of instances is fully homogeneous (akirests in that set lead to either successft
or unsuccessful processing); (ii) all forms have been @wed; or (iii) the depth upper bound is
reached (see below).

fi
S1:(ny,,np) fa
f3 fa
Syt (np,,nyp,) fs S5t (npg,ngg) St (g, 1)

yes no
Sz :(np,,ng) Sq:(np,,ng)

Figure 1: An exampl&uspicion Treelnternal nodes are labeled with suspicious forms and &av
indicate the number of instances in the current dat&;sferr which processing succeeds,(); and
for which processing fails; ). When the sources of errors are clearly identifiabjewill be low,

ng will be high and the rightmost leaf) will have a lown; .

Example. Figure 1 shows an abstract suspicion tree which illustriates suspicion trees help
structuring the output of error mining. The right frontieghlights the relative importance of the
main distinct error cases while subtrees indicate how angéreor case divides into smaller more
specific cases. The branches of the tree also indicate thbications of forms that frequently
cooccur in failure cases.

More specifically, the roof; of this suspicion treds the most suspicious form present in the
corpusD. Starting from the root, following the edges with label “réfieright-frontier of the tree
i.e., f1, fo andf,) yields the ranked list of suspicious forms presenbiby decreasing order of
suspicion. Following branches yields datasets labelell sets (conjunctions) of suspicious forms
For example, the se&, with n,, of pass instances ang, of failed instances hag andf; as their
top ranked suspicious forms. Thespicion trealso displays the relative ranking of the suspiciou:
forms. For example, the sef,(U S; U S,) hasf, as its most suspicious form, arfg, fs as its
next two most suspicious forms. Moreover, most of the instannS,, S, andS; fail because of a
single form namelyf;, f, andf, respectively.

Suspicion treealgorithm vs. ID3 algorithm. There are two main differences between (Quinlar
1986)’s ID3 decision tree learning algorithm and the suepitree construction algorithm.

First, the suspicion tree construction algorithm allowssibonger pruning and termination condi-
tions — in this way, only the most relevant suspicious fornestisplayed thereby facilitating error
analysis.

Second, attribute selection is determined not by the in&tion gain (1G) but by the suspicion score
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(SS) metrics. Recall that the information ghinetrics aims to identify the attributes which lead to
more homogeneous classes. In the present case, the clesséher PASS (the inputs for which
generation succeeds) or FAIL (the inputs for which generafails). Thus the IG metrics will
indifferently seek to identify attributes which predomitlg associate either with a FAIL or with
a PASS. There is no preference for either the FAIL or the PA&Ssc For error mining however,
what is needed is to identify attributes which predominaagisociate with the FAIL class. That is,
we need a metric which permits identifying attributes wHigdds to classes that are homogeneot
in terms of FAIL instances rather than homogeneous in terfestioer FAIL or PASS instances.
The example shown in Figure 2 illustrates the difference.

S:(P:7,F:1714) S:(P:7,F:1714)

fi f2

Sf 1 (P:4,F:76) S.f :(P:3,F:1638) Sy, 1 (P :5,F:1422) S, +(P:2,F:292)

Figure 2: Attribute Selection using Information Gain (Defhd Suspicion Score (Right). While IG
selectsf;, an attribute which associate 76 times with generationifajlSS selects,, an attribute
which associates 1422 times with generation failure.

In this example, we apply the IG and the SS metrics to the saimet idata, a set containing
7 inputs associated with generation success and 1714 iagatziated with generation failure.
While SS selectg,, an attribute which associates 1422 times with generatiduré, 1G selects
f1, an attribute which associate only 76 times with generdtdare. In this case, the information
gain metrics incorrectly seleg because its absence from the input, yields a numerically ve
homogeneous class in terms of generation failure. Indbednformation gain of; is close to but
higher than the information gain ¢f because the resultant subsgtsands.;. are treated equally
while computing the information gain.

2.2 Complexity Analysisand Extensions

Let n andm be the size of the datasetand of the form sef respectively. Then, in the worst case.
the suspicion tree will be of depth(log n) with O(n) nodes. Each node chooses a suspiciot
form out of O(m) forms. Thus the worst computational complexity for builglthe suspicion tree
isO(mn log n). But on average, the algorithm described in Section 2.Jopa$ much faster than
this. The worst case happens when the forms used to clalsifyorpus into PASS and FAIL are
not very discriminanti.e., when all suspicious forms areadly probable.

The algorithm for building the suspicion tree is directlpportional to the size of the sBt Since
|F| can be very large, this can be problematic. Indeed, in the emming on sentences for pars-
ing systems proposed in (Sagot and de la Clergerie, 2008)authors indicate that, in order to
remain computationally tractable, the approach must keicte=sd to n-grams of smaller size (un-
igrams and bigrams). The problem is accrued of course whesiadering tree shaped suspicious
forms (Gardent and Narayan, 2012). To abate this issue wgpeotwo extensions to prune the
suspicion tree.

Linformation gain (IG) is defined ds; = H(S)—((IS5, 1/1SN*H(S £, )+ (IS-, 1/1SD*H(S-,)) whereH(X) is the entropy
of setX. (Quinlan, 1986)
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First, we reduce the form spa&e Following a suggestion from (de Kok et al., 2009), inste&d ¢
considering all possible forms, we only consider those fowhose frequency is above a given
threshold. We also account fsuspicion sharindi.e., the sharing of suspicion by several over
lapping forms) by only considering a larger suspicious fafrits suspicion rate is larger than the
suspicion rate of all smaller forms it contains. These twizesions reduce the form space signifi
cantly and allow for an efficient building of the suspicioedr To enumerate with these extensions
we use a complete and efficient algorithm described in (Garaled Narayan, 2012).

Second, we constrain the depth of the suspicion tree. Beaausr mining is a cyclic process,
building the complete suspicion tree is usually unnecgs3dre quantity of information processed
in each cycle depends on the user but in general, the lingilisocus on the top suspicious forms,
use these to improve the generator and rerun error miningemtproved results. The faster the
error mining step is, the better this is for this developnmmie. Considering this, we added an
extra constraint over the depth of the suspicion tree. Téydtdlimit permits pruning the suspicion
tree and a faster improvement cycle. In our experiments,sed a depth limit of 10.

With these extensions, the enumeration process of susgié@rms takes 10-15 minutes for a
dataset consisting of 123,523 trees. Building a suspicamfor the same dataset takes about on
minute.

3 Applying the Suspicion Tree Algorithm to Generation Data

We now report on an experiment we did using the suspicioretigrithm described in the preced-
ing section to detect and classify the most likely causesibire when running a surface realiser
on the Surface Realisation (SR) Task data. We first desdrdexperimental setup (Section 3.1)
We then illustrate by means of examples, how suspicion tbe&ter support error analysis than
ranked lists proposed by previous error mining approacBestion 3.2). Finally (Section 3.3), we
discuss the improvements in surface realisation obtaigdiking the errors identified using error
mining.

3.1 Experimental Setup

Dataset The dataset to be error mined is the set of shallow dependezey (Figure 3) provided
by the SR Task organisers and used as input for surfaceatatis These trees are unordered syr
tactic dependency trees whose edges are labelled with depeyrelations and whose nodes are
labelled with lemmas and part of speech (POS) categorighidrpaper, we represent these tree:
by an n-tuple with the root node of the tree as its first elem@fdwed by (n — 1) elements rep-
resenting its dependent subtrees. Dependency relatierisveered to the corresponding daughte
node.

word (play, (john), (football))
POS (VB, (NNP), (NN
oy (VB (NNP), (NN)
shj obj dep (sroot (sb), (obj))
wordPOS (play/VB, (john/NNP), (football/NN))
dep-POS (srootVB, (sbfNNP), (0bj-NN))

SI’OOT‘

john/NNP football/NN

Figure 3: An example shallow dependency tree from the SR &askthe corresponding repre-
sentations used in this paper. Our error mining algorithmsiters as suspicious forms, subtree:
labelled with arbitrary conjunctions of lemmas (word), tpaf-speech tags (POS), dependency re
lations @ep.
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To facilitate error mining, we proceed in an incremental \aag examine dependency trees in the
SR data that correspond to NP and Sentences of increasigtéeze we report on error mining
performed on NP-type dependency trees of sizes 4 (NP-4)Pég)\and all (NP-ALL), and S-type
dependency trees of sizes 6 (S-6), 8 (S-8) and all (S-ALL)efwlihe size refer to the number of
nodes/lemmas in the tree). The data used for generatiorsgressed whereby named entitie:
and hyphenated words are grouped into a single word and yatian is removed so as to first
focus on lexical and grammatical issues.

Attributes The attributes used to partition the SR data are suspicieas t.e., subtrees of the SR
dependency trees whose frequency is above a given thresholidwing (Gardent and Narayan,
2012), we allow for various views on errors by mining for fartabelled with lemmas only (word);

with parts of speech (POS); with dependency relatiateg){ with lemmas and parts of speech
(word/POS); and with dependency relations and parts ofcsp@lepPOS) (cf. Figure 3).

Generation System The system to be tested is the symbolic Surface Realiseridedcin
(Narayan and Gardent, 2012). We ran this surface realiseh@/SR input data and separately
stored the input dependency trees for which generationesaisd (PASS) and the input depen
dency trees for which generation failed (FAIL). We then reewfrom the failed data, those cases
where generation failed either because a word was missititgifexicon or because a grammar
rule was missing but required by the lexicon and the inpua.dBlhese cases can easily be detecte
using the generation system and thus do not need to be hamdésdor mining.

Error Mining We iterate several times between error mining and perfooemanprovement and
applied the suspicion tree algorithm to both the NP and that$.d

3.2 Error Analysisusing Suspicion Trees

We now show by means of examples how the suspicion tree #igotielps support error analysis.
We start by showing how the overall structure of the suspitiee (right frontier and subtrees)
improves upon ranked lists when analysing the data. We tbesngo show how subtrees in the
suspicion tree permit differentiating between forms thratsuspicious in all contexts and require
a single correction; forms that are suspicious in all cotstéxt require several corrections; and
forms that are suspicious in some but not all contexts.

3.21 Suspicion Treesvs. Ranked Lists

Figure 4 shows a top fragment of the suspicion tree obtaigegttor mining on NP-4. The node
labels in this tree describe suspicious forms with parsfdech information only.

In that tree, the right frontier indicates that the mainidigtsuspicious forms are, in that order:

1. Possessive NPs (POSS is the part of speech tag assignedéssiods®)

The suspicious form (POSS) points to a mismatch betweeregiresentation of genitive NPs (e.g.,
Oakland's thiefin the SR Task data and in the grammar. While our generafieas the represen-
tation of ‘Oakland’s thiefto be (thief/NN, ('s/POSS, (oakland/NNP))), the struetyrovided by
the SR Task is (thief/NN, (oakland/NNP, ('s/POSS))). Hewbenever a possessive appears in th
input data, generation fails. This is in line with (Rajkuneaal., 2011)'s finding that the logical

2Jteration stops either when the results are perfect (pectaerage and perfect BLEU score) or when the trees fail to b
discriminative enough (low number of FAIL instances asatea with the suspicion tree leaves). So far, the latteaitn
did not occur and we are still using the suspicion tree totiflethe main sources of errors for the remaining error cases
3In fact, the part of speech tag assigned to possessirethe SR data is POS not POSS. We renamed it to avoir
confusion with POS as an abbreviation for part-of-speech.
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(POSS)

yes no
(NN) (CC)
yes no yes no
(0, 2818 (NNP, (POSS)) (NN) (DT, (IN))
yes no yes no yes no
(0,537 (1,9 (NN, (CC)) (DT) (0, 140 (TO, (VB))
yes no yes no yes no
(NN, (NN)) J) (1,104 (NNP, (NNP)) (1,649 (NN, (RB))
YWO YWO yemo yeWo
(1,40 (1, 679 (1, 199 (2, 143 (0,70 (1,118 (204, 79 (cont)

Figure 4: Suspicion Tree for Generation from the NP-4 datadds are labelled with dependency
subtrees with POS information. The lea@sf ) represent the cluster with PASS)(and FAIL
(f) instances.

forms expected by their system for possessives differed fitee shared task inputs. To correct
these cases, we implemented a rewrite rule that converSRhepresentation of possessive NP:
to conform with the format expected by our realiser.

2. NPs with coordination (CC with daughter node NN)

The second top right frontier node unveils a bug (conflicteafure values) in the grammar trees
associated with NP conjunction (e.&urope and the U.$which made all sentences containing
an NP conjunction fail.

3. Determiners (DT) dominating a preposition (IN)

As we shall see below, this points to a discrepancy betwez®kpart of speech tag assigned tc
words like ‘somein ‘ some of the audientand the part of speech tag expected by our generat
While in the SR data, such occurrences are labelled as detnsn(DT), our generator expects
these to be tagged as pronouns (PRP).

4. The complementizeo (TO) dominating a verb (VB)

As discussed below, this points to cases where the infihite is a noun modifier and the input
structure provided by the SR Task differs from that expebtedur realiser.

5. Nouns (NN) dominating an adverb (RB)

This points to a discrepancy between the SR part of speechstigned to words like 'alone’ in
‘real estate aloneand the part of speech tag expected by our generator. Whileei SR data, such
occurrences are labelled as adverbs (RB), our generatecexfhese to be tagged as adjective
(39).

In addition, for each node on the right frontier, the subtree dominated by the yes-dtranf n
gives further information about the more specific forms &t subcases of the suspicious formr
labellingn.

The suspicion tree gives a structured view of how the varsuspicious forms relate. In compar-
ison, the ranked lists produced by previous work are flacttnes which may fail to adequately
display these information. For instance, applying (Gat@ead Narayan, 2012)’s error mining al-
gorithm to the data used to produce the tree shown in Figuiieldsythe list shown in Figure 5.
Contrary to the suspicion tree shown in Figure 4, this ligsfo highlight the main culprits and
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1. (POSS) 11. (CC, (39)) 21. (NN, (NNP))

2. (NNP, (POSS)) 12. (33, (CC)) 22. (NNP, (NNP))

3. (CC) 13. (NNP, (NNP, (POSS))) 23. (NN, (NN))

4. (NN, (POSS)) 14. (NN, (NN), (POSS)) 24. (NNP)

5. (NN, (NNP, (POSS))) 15. (DT, (IN)) 25. (NN)

6. (NN, (NN, (POSS))) 16. (33, (CC, (33))) 26. (NN, (NNP), (NNP))
7. (NN, (CC)) 17. (NN, (CC), (NN)) 27. (VB)

8. (NNP, (NNP), (POSS)) 18. (NN, (NNP), (POSS)) 28. (NN, (RB))

9. (NN,(NNP,(NNP),(POSS))) 19. (TO, (VB)) 29. (PRP)

10. (NN, (NNP, (NNP))) 20. (NN,(NNP,(POSS)),(NNP)) 30. (DT)

Figure 5: Ranked list of suspicious forms for Generatiomftbe NP-4 data.

the relations between the various suspicious forms. Thai5 thain distinct suspects identified by
the right frontier of the suspicion tree appears as 1st, Bsth, 19th and 28th in the ranked list.
Furthermore, while subcases of the main suspects are gidnpiee yes-branch of these suspect:
in the suspicion tree, in the ranked list, they appear fregbrspersed throughout. For example
suspicious forms involving the two main suspects in the isimp tree approach (POSS and CC
part-of-speech tags) are scattered throughout the liseérdbhan grouped under the first two right
frontier nodes respectively.

Also the stronger pruning conditions used for building thegcion tree restrict the branch explo-
ration as soon as homogeneous clusters are achieved. Regradiitaset, it only explores those
suspicious forms which are good enough to identify the pnmisicausing the failure in that dataset
For example the data containing the suspicious form (POS&jplored with 3 suspicious forms
(POSS), (NN) and (NNP, (POSS)) in the suspicion tree showigare 4 whereas in the ranked list
shown in Figure 5, there are 11 suspicious forms associatedROSS). In general, the number
of forms displayed by the suspicion tree algorithm is muds lhan that of the ranked list ones
thereby giving a clearer picture of the main culprits anchefit subcases at each stage in the errc
mining/grammar debugging cycle.

3.2.2 Readingerror typesoff thetreestructure

For each node labelled with suspicious form, in a suspicion tree, the subtree dominateciby
gives detailed information about the possible contextsea forf,,. In what follows, we show how
the suspicion tree algorithm permits distinguishing befwthree main types of suspicious forms
namely, forms that are suspicious in all contexts and recmisingle correction; forms that are
suspicious in all contexts but require several correctiand forms that are suspicious in some bu
not all contexts.

Formsthat are suspicious independently of context and requireasingle correction. When a
suspicious form always leads to failure, the node labellgld that suspicious form has no subtree
thereby indicating that all configurations including thasgicious form lead to generation failure
independent of context.

Such cases are illustrated in Figure 6 which show two viewe (eith part of speech tag only,
the other with words and parts of speech tags) of the suspioé® obtained after addressing the
two main causes of errors identified in the previous sectibmat is, a rewrite rule was applied
to convert the SR representation of possessive NPs to eonfdth the format expected by our
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(days/NN) (DT, (IN))

yes no yes no
(0, 155 @PoT) (0, 140 (33,(0T))
yes yes no
(month/NN,
(the/DT) (six/CD), (IN) (RB, (IN))
yes no yetheDDho yes A no yes A no
(0,23 (those/DT) (0, 27) gfs‘/‘;”odggj)f POONNP, 4 75 (POSS) (0,38 (IN, (DT))
yes no yes no yes no yes no
/N A /\ /N
0,3 (2,6 (0,22 (con) (0, (2, 27) (0, 30)(cond)

Figure 6: Suspicion Tree for (word/POS) (left) and (POSJH(t) for Generation from the NP-4
data (after fixing genitive and coordination cases).

realiser ((POSS) suspicious form); and the grammar wagciaud to generate for NP coordination
((CC) suspicious form).

In each of these two trees, the yes-branch of the root nodadasbtree indicating that all input
trees containing either the word formidys with part of speech tag NN (days/NN); or a determinel
dominating a preposition ((DT,(IN))) lead to generatioiifie.

The root node (days/NN) of the suspicion tree shown on thefdfigure 6 points to a problem in
the lexicon. Although days/NN is present in the lexiconsihot associated with the correct TAG
family. We modified the entries corresponding to (days/NiNhie lexicon to solve this problem.

As mentioned above, the root node (DT, (IN)) of the suspitier shown on the right in Figure 6
points to a part-of-speech tagging problem in the SR Datadgvike ‘soméor ‘ all’ followed by a
preposition (e.gsome of the audiencall of fiscal 1990those in other industrigare assigned the
determiner part of speech tag (DT) where our generator ¢éxepronoun (PRP) part-of-speech
tag. To correct these cases, we implemented a rewrite ratentips DT to PRP in the above
specified context.

As these two examples illustrate, using different viewsr(felabelled with part of speech tags only
vs.forms labelled with words and parts of speech) on the sangenday help identifying problems
at different levels. Both suspicion trees in Figure 6 arét lboii generation from same NP-4 dataset
The leftmost tree (suspicious forms labelled with both learand part of speech information) helps
identifying problems in the lexicon whereas the rightmose t(suspicious forms labelled with parts
of speech only) points to problems in the input data.

Forms that are suspicious independent of context but require several corrections. It may
be that a given form is almost always suspicious but thatéuogin different linguistic contexts
requiring different corrections. In such cases, the sumpicee will highlight these contexts. The
root of the tree shown in Figure 7 is a case in point. The simmsdorm {m-VB) describes subtrees
whose head is related to a verb by thedependency relation i.@nfinitival verbs The subtrees
(of the yes-branch) of that root further describe sevenatastic configurations which are suspect
and contain an infinitival verb. The node labelled witp(d-TO) points to subcases where the
infinitival verb is the complement of a control (1a[i]) or dsiag verb (1a[ii]). The node labelled
with (im-VB, (prd-JJ)) points to a subcase of that case namely that of an infiiterb which is
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the complement of a control or a raising verb and subcategdor an adjectival complemente.g.,
(1b). Finally, the node labelled witm(hod TO, (im-VB)) points to cases where the infinitival verb
is a noun modifier (1c).

(im-VB)
no
d-TO £
yes(opr )no (cony
im-VB, (prd-JJ d-TO, (im-VB
(m)]/es (prn0 ) (nm§;es (Irrr]l0 ))
(0,11) (1,264 (0,14 (13,1898

Figure 7: Suspicion TreelepPOS) for Generation from the S-6 data.

(1) a. Eprd-TO) @ a (N, (CD)

i He will try to assuage the fears about fi- the end of 1991
nances. (end/NN, (the/DT), (of/IN, (1991/CD)))
(try/VB, (oprd-to/TO, (m-assuage/VB)) b. (CD, (IN))

ii Many of the morning session winners turned one of the authors
out to be losers. (one/CD, (of/IN, (author/NN, (the/DT))))
(turn/VB, (oprd-to/TO, (m-be/VB, (prd- c. (CD, (CD))
loser/NN))) Nov. 1, 1997

b (M-VB, (prd-33)) (1/CD, (1997/CD), (Nov./NNP), (,/SYS))

Amex expects to be fully operational by tomor- d. (CD, (DT))
row. A seasonally adjusted 332.000
(expect/VB, fprd-to/TO, (m-be/VB, (ord- (332.000/CD, (a/DT), (adjusted/dJ, (sea-
operational/JJ))) sonally/RB)))
c. (hmodTO, (im-VB)) e. (CD, (RB))
The ability to trade without too much difficulty 1987 and early 1988
has steadily deteriorated. (1987/CD, (and/CC, (1988/CD,
(ability/NN, (nmodto/TO, (m-trade/VB)) (early/RB))))

Although all of these cases are due to a mismatch betweenRh&Sk dependency trees and
the input expected by our realiser, they point to differepuit configurations requiring different
modifications (rewritings) to ensure compatibility withetihealiser. The structured information
given by the suspicion tree provides a clear descriptioh@ftain tree configurations that need tc
be rewritten to correct generation failures induced by itifial verbs. We used these information
to implement the rewrite rules required to resolve the ifiedtmismatches.

Formsthat are suspicious in some but not all contexts. The suspicion tree can also highlight
forms that are suspicious in some but not all contexts. Fatairce, the right frontier of the sus-
picion tree in Figure 8 shows that the CD (cardinals) partpafesh occurs in several suspicious
forms namely, (IN, (CD)) (a preposition dominating a caedjn(CD, (IN)) (a cardinal dominating
a preposition), (CD, (CD)) (a cardinal dominating a car§in&D, (DT)) (a cardinal dominating a
determiner) and (CD, (RB)) (a cardinal dominating an aduefxamples for these configurations
and their subcases are given in (2).

Noticeably, the suspicious form (CD) does not appear in tigpision tree. In other words, the
tree highlights the fact that cardinals lead to generatdore in the contexts shown but not in all
contexts. Indeed, in this case, all suspicious forms paingssingle cause of failure namely, a mis-

2021



IN, (CD
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ye
(0,164 yes (CD:(IN)
(0,79 s Q2O
yos M yes (CDCON
(0.2)  (POSS) (D, (CD). (NNP)) 400D

(0,7 (cont (0,18 (1,10 §/%SD, (NNrfg) )gt(e:s;m\?})g

(1,12 (11,29 (4,22 (conp

Figure 8: Suspicion Tree (POS) for Generation from the NR#& ¢after fixing genitive, coordina-
tion and determiner cases).

match between grammar and lexicon. In the TAG grammar used,dnstructions illustrated in (2)

all expect cardinals to be categorised as nouns. In thedexiowever, cardinals are categorised a
determiners. We modified the lexicon to categorise cardiasldeterminers, nouns and adjective
and rerun the generator on the input. In the newly built stispitrees, cardinals no longer induce
high generation failure rates. The fact that cardinals ateatways associated with failure can be
traced back to the fact that they are often used as detersranerthat for this context, the lexicon
contains the appropriate information.

3.3 Using Error Mining to Improve Generation Results

We now briefly report on how the suspicion tree algorithm celp improve a generation system
by showing the impact of corrections on undergeneration.

Generating NPs.  Table 1 summarises a run with 6 iterations between erromgiand error cor-
rection on the NP data. The corrections involve rewriting 8R data to the format expected by
our realiser, grammar corrections and lexicon enrichmEath time a correction is applied, the
suspicion tree is recomputed thereby highlighting the neost likely sources of errors. G(Coord)
indicates a fix in the grammar for coordination (discusseskation 3.2.1). R(Gen) involves rewrit-
ing dependency trees for genitive NPs (e@gkland s thiej (Section 3.2.1) and R(Dt) rewriting
dependency trees with determiners to map its part-of sp&eah determiner (DT) to pronoun
(PRP) (Section 3.2.2) and to noun (NN) (nominal positiong,,@hat’s good. L(days) involves
updating the lexicon with correct days/NN to TAG familiesppang (Section 3.2.2). R(Adv) in-
volves rewriting dependency trees with adverbs to map itsgfaspeech from adverb (RB) to
adjective (JJ) (e.greal estate along(Section 3.2.1).

As the table shows, error mining permits decreasing undergdion by 22.6, 25.6 and 8.7 points
for NPs of size 4, 6 and ALL respectively. This suggests tlmpke NPs can be generated but thai
bigger NPs still cause undergeneration (8.2% and 13% ofdakescrespectively for NP-6 and NP-
ALL) presumably because of more complex modifiers such adivelclauses, PPs and multiple
determiners. Since in particular, relative clauses algeapin sentences, we proceeded to errc
mine the sentence data so as to provide more data for theneimorg algorithm and therefore get
a more global picture of the most important causes of failure
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Input Data Init Fail G(Coord) R(Gen) R(Dt) L(days) R(AdV)
NP-4 23468 593925.3 4246(@18.1) 999@.3 833@3.6) 678@Q9 649 2.7
NP-6 10520 356033.89 2166 Q0.6 9560.1) 881@8.4 876@.3 865 @.2
NP-ALL 123523  2676931.7) 21525 16702 16263 16094  160283|

Table 1: Diminishing the number of errors using informatiosm error mining on NP data. The
first column indicates the type of NP chunks to be proceskedd@condliput Datg) the number of
NP chunks to be processed, the thikait(Fail) the number of input on which generation initially
fails and the last 5 ones the decrease in errors (the numbfeiled cases with th@ercentage
failure) after fixing error cases identified by the suspicion tree)R{dicates that the correction is
obtained by rewriting the input for phenomena X, G(X) indésacorrections in the grammar and
L(X) indicates corrections in the lexicon.

Generating Sentences. Tables 2 show the impact of corrections on generation faesees. For
this data, we start with all the improvements made duringremining on the NP data. Table 2
represents this step &-Final summarizing generation results after all improvementsifii@-
ble 1. During error mining on the S datafinitival verbs(discussed in Section 3.2.2) aadxiliary
verbsappear as prominent mismatches between the SR dependeesyatrd the input expected
by our generator. R(Inf) in Table 2 involves 3 different réimg rules corresponding to depen-
dency relationdm, oprd and prd for rewriting dependency trees with infinitival verbs. R¢du
indicates rewriting for dependency trees with Verb/Awadji nuclei (e.g.the whole process might
be reversejl

Input Data NP-Final R(Inf) R(Aux)|
56 3877 1707440  753(19.4 39803
s-8 3583  174948.9 936 26.) 576 (16.])
S-ALL 26725 1928072.) 17862 66.§ 16445 pL.5

Table 2: Diminishing the number of errors using informatfoam error mining on S data. The
first column indicates the type of sentences to be procesisedecondlGput Datg the number
of sentences to be processed, the tHiB-Final) the number of input (processed with all improve
ments from Table 1) on which generation fails and, the foaniththe fifth error rates after rewriting
dependency trees for infinitival cases and auxiliary vedesaespectively.

Finally, Table 3 summarises results from Table 1 and Tabldding an extra final improvement
step Final) consisting of minor grammar improvement (trees for preedainer PDT added, e.g.,
all these million, lexicon enrichment (mapping to TAG families correctedylaewriting rule
(mapping part-of-speech from conjunction CC to determBiEre.g.,neither/CC the Bush admin-
istration nor arms-control experts The “Final” row in this Table shows the impact of S error
reduction on NP error reduction. As can be seen reducing@sepositively impact NP errors
throughout.

In total we defined 11 rewrite rules (Gen-1, Dt-4, Adv-1, §fAux-1 and Final-1), made 2 gram-
mar corrections and performed a few lexicon updates.

Coverageand accuracy. As the tables show, the corrections carried out after a feeayf error
mining and error correction helps achieve a large improveinecoverage for smaller dependency
trees; we notice a large drop of 23.2 points (from 25.3% t&@).Ih error rates for NP-4, 28.3
points for NP-6, 34.5 points for S-4 and 33.6 points for S-@r I[erger dependency trees however
improvementis more limited and other error cases beconsédei Thus, the failure rate is reduced

2023



by 10.4 points for NP-ALL (NPs from minimum size 1 to maximuizes91 with the average size
4); and by 10.9 points for S-ALL (sentences from minimum siz& maximum size 134 with
the average size 22). The suspicion tree built afterfinal step shows that coordination cases
appear as most suspicious forms. Although the correctiaderfor coordination in the grammar
G(Coord) permit generating simple coordinations (elghn and Mary likes beand/iVe played on
the roof and in the gardenl cooked beans and she até ithe grammar still fails to generate for
more complex coordination phenomenon (e.g., verb cootidimbcooked and ate beangiapping
phenomenorohn eat fish and Harry chipsl liked beans that Harry cooked and which Mary
ate) (Sarkar and Joshi, 1996). Other top suspicious forms attwoud expressions (e.gat least
so far) and foreign words (part-of-speech FW) (ethe naczelnikperestroikaproduct de jouy.

NP-4 NP-6 NP-ALL 56 S8 S-ALL
Input Data 23468 10520 123523 3877 3583 26725
Init Fail 5939 5.9 3560 33.9 26769 @1.7) - - -
NP-Final 649 2.7  865@.2 16028(3.0 1707@4.0 1749@8.9 19280 72.)
S-Final - - - 398(10.3 576(6.1) 1644561.5
Final 503@.) 58465 13967(1.3 37105 5450152 16374610

Table 3: Overall impact of error mining on generation frorffedient types of dependency trees
The first row indicates the type of dependency data to be pseckand the seconthput Datg
the number of data to be processed. The rows narmédRail), (NP-Final), (S-Fina) and i-
nal) are initial error rates, errors after applying improvetsdrom Table 1, errors after applying
improvements from Table 2 and errors after final improvemesgpectively.

To assess the precision of the surface realiser after efrongy we computed the BLEU score for
the covered sentence data and obtained a score of 0.83%{d).80 for S-8 and 0.675 for S-Al‘L

4 Conclusion

We introduced an error mining algorithm that takes inspratrom (Quinlan, 1986)’s ID3 algo-
rithm to structure the output of error mining in a way that pots a linguistically meaningful
error analysis. We demonstrated its workings by applyirig the analysis of undergeneration in
a grammar based surface realisation algorithm. And we shawitt permits quickly identifying
the main sources of errors while providing a detailed desion of the various subcases of these
sources if any.

The approach is generic in that permits mining trees andgstor suspicious forms of arbitrary
size and arbitrary conjunctions of labelling. It could beddor instance to detect and structure
the n-grams that frequently induce parsing errors; or tatifiesubtrees that frequently occur in
agrammatical output produced by a generator.

We are currently working on further improving the generatsing the suspicion tree algorithm.
In future work, we plan to use our error mining algorithm taede the most likely sources

of over-generation based on the output of a surface realiset to investigate whether the ap-
proach can be useful in automatically detecting treebank arse errors (Boyd et al., 2008;
Dickinson and Smith, 2011).

Acknowledgments The research presented in this paper was partially suppoytthe European
Fund for Regional Development within the framework of th& BRREG IV A Allegro Project.

4The BLEU score before error mining and correction is not rgabhere since it has low coverage due to the mismatche
between the structures provided by the SR task and thosetexipey the realiser.
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