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Abstract

Various types of structural information -
e.g., about the type of constructions in
which binding constraints apply, or about
the structure of names - play a central role
in coreference resolution, often in combi-
nation with lexical information (as in ex-
pletive detection). Kernel functions ap-
pear to be a promising candidate to capture
structure-sensitive similarities and com-
plex feature combinations, but care is re-
quired to ensure they are exploited in the
best possible fashion. In this paper we
propose kernel functions for three subtasks
of coreference resolution - binding con-
straint detection, expletive identification,
and aliasing - together with an architec-
ture to integrate them within the standard
framework for coreference resolution.
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full common sense reasoning (Sidner 1979; Hobbs
1978, 1979; Grosz et al. 1995; Vieira and Poesio
2000; Mitkov 2002). Much of this information
won't be available to robust coreference resolvers
until better methods are found to represent and
encode common sense knowledge; but part of
the problem is also the need for better methods
to encode information that is in part structural,
in part lexical. Enforcing binding constraints
—e.g., ruling ouPeteras antecedent dfimin (1a)
requires recognizing that the anaphor occurs in a
particular type of construction (Chomsky 1981;
Lappin and Leass 1994; Yang et al. 2006) whose
exact definition however has not yet been agreed
upon by linguists (indeed, it may only be definable
in a graded sense (Sturt 2003; Yang et al. 2006)),
witness examples like (1b). Parallelism effects are
a good example of structural information inducing
preferences rather than constraints. Recognizing
that It in examples such as (1c,d) are expletives
requires a combination of structural information
and lexical information (Lappin and Leass 1994;
But some sort of structure also

which noun phrases are mentions of the samgnderlies our interpretation of other types of
entity-has been shown to be beneficial in a gregbreference: e.g., knowledge about the structure
number of NLP tasks, including information of names certainly plays a role in recognizing

extraction (McCarthy and Lehnert 1995), texkhat BJ Habibieis a possible antecedent fir.
planning (Barzilay and Lapata 2005) and sumpgpibie

marization (Steinberger et al. 2007).

the performance of coreference resolvers

unrestricted text is still quite low. One reason b.
for this is that coreference resolution requires a

great deal of information, ranging from string C.
matching to syntactic constraints to semantic d.
knowledge to discourse salience information to
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However, ) )
&],p a. John thinks that Peter hatam.

John hopes that Jane is speaking only to
himself

It's lonely here.
It had been raining all day.

The need to capture such information suggests

Licensed under th&reative Commons g role for kernel methods (Vapnik 1995) in coref-

erence resolution. Kernel functions make it pos-
sible to capture the similarity between structures
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without explicitly enumerating all the substruc- P PR NAWRAY
tures, and have therefore been shown to be a vi- Y M —

N D N

able approach to feature engineering for natural o 7 Ty
language processing for any task in which struc- T R T
tural information plays a role, e.g. (Collins and Figure 1:A tree with some of its STFs .
Duffy 2002; Zelenko et al. 2003; Giuglea and Mos-

chitti 2006; Zanzotto and Moschitti 2006; Mos- - P R
chitti et al. 2007). Indeed, they have already been | M — v M R R @ N MO
used in NLP to encode the type of structural in- brown P ¥ v [ G
formation that plays a role in binding constraints °oe ’ TN NS
(Yang et al. 2006); however, the methods used in

this previous work do not make it possible to ex-

ploit the full power of kernel functions. _In this string are skipped. Gaps penalize the weight asso-
work, we extend the use of kernel functions forfiated with the matched substrings. More in detail,
coreference by designing and testing kernels f%‘) longer subsequences receive lower weights.
three subtasks of the coreference task: (b) Valid substrings are sequences of the original
e Binding constraints string with some characters omitted, i.e. gaps. (c)
Gaps are accounted by weighting functions and (d)
symbols of a string can also be whole words, i.e.
e Aliasing the word sequence kernel Cancedda et al. (2003).

and developing distinct classifiers for each ofthesg 5 110 Kernels
tasks. We show that our developed kernels produce o ) ]
high accuracy for both distinct classifiers for thesd & Main idea underlying tree kernels is to com-

subtasks as well as for the complete coreferend&!t® the number of common tree fragments be-
system. tween two trees without explicitly considering the

In the remainder: Section 2, briefly described!N0l€ fragment space. The type of fragments char-

the basic kernel functions that we used: SectioﬁCterize different kernel functions. We consider

3illustrates our new kernels for expletive, bindingSYNtactic tree fragments (STFs) and partial tree
and name alias detection along with a coreferendg2dments (PTFs)

context kernel; Section 4 reports the experiments 2 1 Syntactic Tree Kernels (STK)
on individual classifiers on expletives, binding and An STE is a connected subset of the nodes and

names whereas Section 5 shows the results on tQSges of the original tree, with the constraint that

gomplete corefer'ence task; Finally, Section 6 OIeainy node must have all or none of its children. This
rives the conclusions.

is equivalent to stating that the production rules
2 Kernel for Structured Data contained in the STF cannot be partial. For ex-
ample, Figure 1 shows a tree with its PTR& [v
We used three kernel functions in this work: theyp)j is an STF[vP [v]] or [VP [NP]] are not STFs.
String Kernel (SK) proposed in Shawe-Taylor and .
Cristianini (2004) to evaluate the number of sub2-2-2 Partial Tree Kernel (PTK)
sequences between two sequences, the Syntactidf we relax the production rule constraint over
Tree Kernel (STK; see Collins and Duffy 2002)the STFs, we obtain a more general substructure
which computes the number of syntactic tree fraglype, i.e. PTF, generated by the application of par-
ments and the Partial Tree Kernel (PTK; see Mog#al production rules, e.g. Figure 2 shows théP
chitti 2006) which provides a more general reprefNP[D]]] is indeed a valid fragment. Note that
sentation of trees in terms of tree fragments. WEBTK can be seen as a STK applied to all possible
discuss each in turn. child sequences of the tree nodes, i.e. a string ker-
nel combined with a STK.

D \ N
I
a

brought Mary "

o__
25 z

Figure 2:A tree with some of its PTFs.

e Expletive detection

2.1 String Kernels (SK)

The string kernels that we consider count the nunf-3 Kemel Engineering
ber of substrings shared by two sequences contaiihe Kernels of previous section are basic functions
ing gaps, i.e. some of the characters of the originghat can be applied to feature vectors, strings and
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trees. In order to make them effective for a specifitypes of structures and kernel functions we used
task, e.g. for coreference resolution: (a) we cafor three different kinds of classifiers: expletive,
combine them with additive or multiplicative op- binding and alias classifiers. We then present the
erators and (b) we can design specific data objeatssults of these classifiers, and finally the results
(vectors, sequences and tree structures) for the tavith the coreference resolver as a whole.
get tasks.

It is worth noting that a basic kernel applied to3.1 Expletive Kernels
an innovative view of a structure yields a new ker-I
nel (e.g. Moschitti and Bejan (2004); Moschitti
et al. (2006)), as we show below:

Let K(t1,t2) = o¢(t1) - ¢(t2) be a basic ker-
nel, wheret; andt, are two trees. If we map,
and ¢, into two new structures; and s, with a

n written text, about a third of the occurrences
of the pronounit are not coreferent to a previ-
ous mention, but either refer to a general discourse
topic (it's a shameg or do not refer at all, as in the
case of extraposed subjecisig thought that . .)

: ) or weather verbsit(s raining). It is desirable to
mapping¢a;(-), we obtain: Ksi,sz) = 9?(31) " minimize the impact that these non-anaphoric pro-
¢/(52) :/ ¢(¢M(t1)? ) ¢(¢M(t2_)) = ¢ _(tl) " nouns have on the accuracy of a anaphora resolu-
¢'(t2)=K'(t1,2), which is a noticeably different yi,,. | apnin and Leass (1994), for example, use
kernel induced by the mapping = ¢ o ¢ar. several heuristics to filter out expletive pronouns,
including a check for patterns including modal ad-
jectives (it is good/necessaryl/. .. that...), and cog-

In this paper we follow the standard learning apnitive verbs (it is thought/believed/. .. that...).
proach to coreference developed by Soon et al. Newer approaches to the problem use machine-
(2001) and also used the few variants in Ng antarning on hand-annotated examples: Evans
Cardie (2002). In this framework, training and(2001) compares a shallow approach based on
testing instances consist of a pair (anaphor, agurrounding lemmas, part-of-speech tags, and the
tecedent). During training, a positive instance i®resence of certain elements such as modal adjec-
created for each anaphor encountered by pairirffyes and cognitive verbs, trained on 3171 exam-
the anaphor with its closest antecedent; each of tfées from Susanne and the BNC to a reimplemen-
non-coreferential mentions between anaphor arf@tion of a pattern-based approach due to Paice and
antecedent is used to produce a negative instanédisk (1987) and finds that the shallower machine-
During resolution, every mention to be resolved i¢€@rning approach compares favorably to it. Boyd
paired with each preceding antecedent candidaé al- (2005) use an approach that combines some
to form a testing instance. This instance is predf Evans’ shallow features with hand-crafted pat-
sented to the classifier which then returns a clad§ns in a memory based learning approach and
label with a confidence value indicating the likeli-find that the more informative features are ben-
hood that the candidate is the antecedent. eficial for the system's performance (88% accu-
The nearest candidate with a positive classificd@Cy against 71% for their reimplementation using
tion will be selected as the antecedent of the po&vans’ shallow features).
sible anaphor. The crucial point is that in this ap- Evans’ study also mentions that incorporating
proach, the classifier is trained to identify positivehe expletive classifier as a filter for a pronoun re-
and negative instances of the resolution process. $9lver gives a gain between 2.86% (for manually
previous work on using kernel functions for coref-determined weights) and 1% (for automatically op-
erence (Yang et al. 2006), structural informatiotimized weights).
in the form of tree features was included in the Tree kernels are a good fit for expletive classi-
instances. This approach is appropriate for iderfication since they can naturally represent the lex-
tifying contexts in which the binding constraintsical and structural context around a word. Our fi-
apply, but not, for instance, to recognize explenal classifier uses the combination of an unmodi-
tives. In this work we adopted therefore a mordied tree (UT) (where the embedding clause or verb
general approach, in which separate classifiers gp@irase of the pronoun is used as a tree), and a tree
used to recognize each relevant configuration, aritiat only preserves the most salient structural fea-
their output is then used as an input to the coretures (ST).
erence classifier. In this section we discuss the The reduced representation prunes all nodes that

3 Kernels for Coreference Resolution
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would not be seen as indicative in a pattern ap-
proach, essentially keeping verb argument struc-
ture and important lexical items, such as the gov-
erning verb and, in the case of copula construc-

tions, the predicate. For example, the phrase

(S (NP (PRP It))
(VP (VBZ has)
(NP (NP (DT no) (NN bearing))
(PP (I'N on)
(NP (NP (PRP$ our)
(NN wor k)
(NN force))
(NP (NN today)))))

(. -))
would be reduced to the ST:

(S-1 (NP-1 (PRP-1 1t))
(VP (VBX have)
(NP))
(-))

or, in a similar fashion,

(S (NP (PRP it))
(VP (VBZ 's)
(NP (NP (NN tine))
(PP (IN for)
(NP (PRP$ their)
(JJ biannual)
(NN powwow) )))))

would just be represented as the ST:

(S1 (NP-1 (PRP-1 it))
(VP (BE VBZ)
(NP-PRD (NN tine))))

3.2 Binding Kernels

Ry . VP

NP oo " FP ABS U NP N,
P e L T
PDET NN.CANDI YN ST prP.aNa !
| em TR - Py R
“the- in
s man DET X him

the  room

Figure 3: The structure for binding detection for

the instance inst(“the man”, “him”) in the sentence
‘the man in the room saw him”

man in the room saw him.”, we represent the syn-
tactic relation betweenThe mafi and “him", by

the shortest node path connecting the pronoun and
the candidate, along with the first-level of the node
children in the path.

Figure 3 graphically shows such tree highlighted
with dash lines. More in detail we operate the fol-
lowing tree transformation:

(a) To distinguish from other words, we explic-
ity mark up in the structured feature the pronoun
and the antecedent candidate under consideration,
by appending a string tag “ANA” and “CANDI”

in their respective nodes, i.e. “NN-CANDI” for
“man” and “PRP-ANA’ for “him”.

(b) To reduce the data sparseness, the leaf nodes
representing the words are not incorporated in the

The resolution of pronominal anaphora heavily refeature, except that the word is the word node of
lies on the syntactic information and relationshipghe “DET" type (this is to indicate the lexical prop-
between the anaphor and the antecedent Cangr_ﬁes of an expression, e.g., whether itis adefinite,
dates, including binding and other constraints, bifdefinite or bare NP).
also context-induced preferences in sub-clauses.(C) If the pronoun and the candidate are not in the
Some researchers (Lappin and Leass 1998ame sentence, we do not include the nodes denot-
Kennedy and Boguraev 1996) use manually ddhg the sentences (i.e., “S” nodes) before the can-
signed rules to take into account the grammatdidate or after the pronoun.
cal role of the antecedent candidates as well as The above tree structures will be jointly used
the governing relations between the candidate amith the basic STK which extracts tree fragments
the pronoun, while others use features determineaable to characterize the following information: (a)
over the parse tree in a machine-learning approathe candidate is post-modified by a preposition
(Aone and Bennett 1995; Yang et al. 2004; Lughrase, (the node “PP” for “in the room” is in-
and Zitouni 2005). However, such a solution hasluded), (b) the candidate is a definite noun phrase
limitations, since the syntactic features have to bghe article word “the” is included), (c) the candi-
selected and defined manually, and it is still partlylate is in a subject position (NP-S-VP structure),
an open question which syntactic properties shoul@) the anaphor is an object of a verb (the node
be considered in anaphora resolution. “VB” for “saw” is included) and (e) the candidate
We follow (Yang et al. 2006; lida et al. 2006) inis c-commanding the anaphor (the parent of the
using a tree kernel to represent structural informaNP node for “the main in the room” is dominat-
tion using the subtree that covers a pronoun and iisg the anaphor (“him”), which are important for
antecedent candidate. Given a sentence like “Thieference determination in the pronoun resolution.
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3.3 Encoding Context via Word Sequence
Kernel

The previous structures aim at describing the in

teraction between one referential and one referen Role  Firstname  Middle name  Last name
if such interaction is observed on another mentiol

pair, an automatic algorithm can establish if the :

corefer or not. This kind of information is the mostﬂ Pres'de"t‘ ‘ George ‘ ‘ Walker ‘ ‘ Bush ‘

useful to characterize the target problem, however,

the context in which such interaction takes place i§i9ure 4: A proper name labeled with syntactic in-
also very important. Indeed, natural language prdormation.

poses many exceptions to linguistic rules and these

can only be detect by looking at the context. To beerial positions of tokens in a name, the total num-
able to represent context words or phrases, we uber of tokens, the presence of meaningful punctua-
context word windows around the mentions andion such as periods and dashes, as well as a library
the subsequence kernel function (see section 2.a)common first names which can be arbitrarily ex-

to extract many features from it. tended to any size. The tag set consists of the fol-
For example, in the context ofahd soBill lowing: surnameforenamemiddleg link, role, and
Gates says that a string kernel would ex- suffiX.
tract features including: Bill_Gatessaysthat, Once the structure for a name has been de-
saysthat, Gates Gatessaysthat, Bill_saysthat  rived, we can apply tree kernels to represent it in
sa Gatessaysthat, and sao that and so on. the learning algorithms thus avoiding the manual
, feature design. Such structures are not based on
Name Alias ticul theref t b
B3 Habibie Nir- Habibie any particular grammar, therefore, any tree sub-
Federal Express Fedex part may be relevant. In this case the most suitable
Ju Rong Zhi Ju kernel is PTK, which extracts any tree subpart. It

~is worth to note that the name tree structure can

(aliases) taken from the MUC 6 corpus. name character and exploiting the string matching
approximation carried out by PTK. For example,
3.4 Kernels for Alias Resolution Microsoft Inc. will have a large match wittMi-

crosoft Incorporatedwhereas the standard string
Most methods currently employed by Coreferencﬁ]atching would be null

resolution (CR) systems for identifying coreferent
named entit_ies, ie. _aliases, are fairly simplistic iry Experiments with Coreference Subtask
nature, relying on simple surface features such as |assifiers
the edit distance between two strings representing
names. We investigate the potential of using thin these experiments we test the kernels devised for
structure contained within names. This can be vergxpletive (see Section 3.1), binding (see Section
useful to solve complex cases like those shown i8.2) and alias detection (see Section 3.4), to study
Table 1, taken from the MUC 6 corpus (Chinchotthe level of accuracy reachable by our kernel-based
and Sundheim 2003). For this purpose, we addassifiers. The baseline framework is constituted
syntactic information to the feature set by taggindpy SVMs along with a polynomial kernel over the
the parts of a name (e.first namelast nameetc.) Soon et al.’s features.
as illustrated in Figure 4.

To automatically extract such structure we useft-1 Experiments on Expletive Classification

the High Accuracy Parsing of Name Internal Strucwe used the BBN Pronoun corpuas a source of
ture (HAPNIS) script. HAPNIS takes a name as examples, with the training set consisting of sec-
input and returns a tagged name like what is showtions 00-19, yielding more than 5800 instances of
in Figure 4. It uses a series of heuristics in making—

its classifications based on information such as t% 2Daumeé reports a 99.1% accuracy rate on his test data set.
- e therefore concluded that it was sufficient for our purgose

The script is freely available at 3Ralph Weischedel and Ada Brunstein (2005): BBN Pro-
http://wwmv. cs. utah. edu/ hal / HAPNI S/ . noun Coreference and Entity Type Corpus, LDC2005T33
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it, with the testing set consisting of sections 20 anthentions were proper names, as determined by
21, using the corresponding parses from the Perhe coreference resolver’s named entity recognizer.
Treebank for the parse trees. Additionally, we reThis set of proper nhames contained about 37,000
port on the performance of the classifier learnt opairs of proper names of which about 600 were
only the first 1000 instances to verify that our appositive instances. About 5,500 pairs were ran-
proach also works for small datasets. The resultlomly selected as test instances and the rest were
in Table 2 show that full tree (UT) achieves goodused for training.

results whereas the salient tree (ST) leads to a bet-In the first experiment, we trained a decision
ter ability to generalize, and the combination aptree classifier to detect if two names are aliases.
proach outperforms both individual trees. For this task, we used either the string kernel score
over the sequence of characters or the edit distance.

BBN large BBN small . .

Prec Rec|g Acc | Prec  Recl Acc | The results in Table 4 show that the string kernel
uT 83.87 6154 84.35 78.76 52.66 80.89 Score performs better by 21.6 percentage points in
ST 78.08 67.46 83.94 77.61 61.54 8250 E.measure.

UT+ST | 81.12 68.64 85.27 80.74 64.50 84.1§

In the second experiments we used SVMs
Table 2: Results for kernel-based expletive detedrained with the string kernel over the name-
tion (using STK) character sequences and with PTK, which takes
into account the structure of names. The re-
Note that the accuracy we get by training orsyits in Table 5 show that the structure improves
1000 examples (84% accuracy; see sheallcol-  gjias detection by almost 5 absolute percent points.
umn in Table 2) is better than Boyd's replication ofthis suggests that an effective coreference sys-
Evans (76% accuracy) or their decision tree clagem should embed PTK and name structures in the

sifier (81% accuracy) even though Boyd et al'goreference pair representation.
dataset is three times bigger. On the other hand,

Boyd et al's full system, which uses substantial Recall Precision F-measure
hand-crafted knowledge, gets a still better result | String kernel | 49.5%  60.8% 54.6%
Edit distance| 23.9% 53.1% 33.0%

(88% accuracy), which is also higher than the ac-

curacy of our classifier even when trained on th . L.
y q‘able 4: Decision-tree based classification of name

aliases using string kernels and edit distance.

full 5800 instances.

MUC-6 Recall Precision F-measure
Prec_ Recl F ing kernel| 58.4%  67.5% 62.6%
Soonetal| 51.25 5551 53.29 gtT“}Qg el s oon  eoaon
STK 71.93 5541 62.59 o7 7 27

Table 3: Binding classifier: coreference classificaTable 5: SVM-based classification of name aliases

tion on same-sentence pronouns

using string kernels and tree-based feature.

4.2 Experiments with the Binding Classifier 5 Experiments on Coreference Systems

To assess the effect of the binding classifier on

same-sentence pronoun links, we extracted 1398 this section we evaluate the contribution in the
mention pairs from the MUC-6 training data wherévhole coreference task of the expletive classifier
both mentions were in the same sentence and &td the binding kernel. The predictions of the for-
least one item of the pair included a pronoun, ugner are used as a feature of our basic coreference
ing the first 1000 for training and the remainingSystem whereas the latter is used directly in the
398 examples for testing. The results (see Table gpreference classifier by adding it to the polyno-
show that the syntactic tree kernel (STK) considerial kernel of the basic system.

ably improves the precision of classification of the Our basic system is based on the standard learn-
Soon et al.’s features. ing approach to coreference developed by Soon
et al. (2001). It uses the features from Soon et
al's work, including lexical properties, morpho-
For our preliminary experiments, we extractedogic type, distance, salience, parallelism, gram-
only pairs in the MUC 6 testing set in which bothmatical role and so on. The main difference with

4.3 Experiments on Alias Classification
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Soon et al. (2001) is the use of SVMs along with a Table 7 lists the results for the pronoun resolu-
polynomial kernel. tion. We usedP K on the Soon et al’s features as
the baseline. On MUC-6, the system achieves a

Prec Mgg('f F recall of 64.3% and precision 63.1% and an over-
plain 652 669 660 all F-measure of 63.7%. On ACE02-BNews, the
plain+expletive| 66.1 66.9 66.5 recall is lower 58.9% but the precision is higher,
upper limit 700 669 684 i.e. 68.1%, for a resulting F-measure of 63.1%.

Table 6: Expletive classification: influence on prol" contrast, adding the binding kernel (PK+STK)
noun resolution leads to a significant improvement in 17% preci-

sion for MUC-6 with a small gain (1%) in recall,

whereas on the ACE data set, it also helps to in-
crease the recall by 7%. Overall, we can see an
To see how useful a classifier for expletives cathcrease in F-measure of around 8% for MUC and
be, we conducted experiments using the expletivg5% for ACEO2-BNews. These results suggest

classifier learned on the BBN pronoun corpus ofhat the structured feature is very effective for pro-
the MUC-6 corpus. Preliminary experiments indi-noun resolution.

cated that perfect detection of expletives (i.e. using

5.1 Influence of Expletive classification

gold standard annotation) could raise the precision MUC-6 ACE02-BNews
of pronoun resolution from 65.2% to 70.0%, yield- R P F R P F
orp _ '1199.270 70, Y PK 615 672 642 548 661 599
ing a 2.4% improvement in the F-score for pronoun pk+STK 634 675 654 56.6 66.0 60.9

resolution alone, or 0.6% improvement in the over- PK*STK+WSK 64.4 678 66.0 571 654 61.0
all coreference F-score (see Table 6).
For a more realistic assessment, we used the

classifier learned on the BEN pronoun corpus ex- Table 8 lists the results on the coreference res-

amples as ar:n addltllgnbal fe?]t_ure ;0 gauge theh'_r&ution. We note that adding the structured fea-
provement that could be achieved using it. W "Sure to the polynomial kernel, i.e. using the model

the gain in precision is small even in comparisorbK+STK’ improves the recall of 1.9% for MUC-
to the achievable error reduction, we need to keep . .4 1 g4 for ACE-02-BNews and keeps invari-
in mind that our baseline is in fact a well-tuned, . .precision Compared to pronoun resolu-

Table 8: Results of the coreference resolution

system. tion, the improvement of the overall F-measure is
MUC-6 ACEO2-BNews §maller (about 1%). This occurs since the resolu-
R P F R P F tion of non-pronouns case does not require a mas-
sive use of syntactic knowledge as in the pronoun
PK 643 63.1 63.7 589 681 63.1

PK+TK 652 801 719 656 697 67.6 resolution problem. WSK further improves the

system’s F1 suggesting that adding structured fea-

Table 7: Results of the pronoun resolution  tyres of different types helps in solving the coref-
erece task.

5.2 Binding and Context Kernels .
_ 6 Conclusions
In these experiments, we compared our corefer-

ence system based on Polynomial Kernel (PK)Ve presented four examples of using kernel-based
against its combinations with Syntactic Tree Kermethods to take advantage of a structured repre-
nels (STK) over the binding structures (Sec. 3.23entation for learning problems that arise in coref-
and Word Sequence Kernel (WSK) on contexerence systems, presenting high-accuracy classi-
windows (Sec. 3.3). We experimented withfiers for expletive detection, binding constraints
both the only pronoun and the complete coreferand same-sentence pronoun resolution, and name
ence resolution tasks on the standard MUC-6 armlias matching. We have shown the accuracy
ACEO03-BNews data sets. of the individual classifiers for the above tasks
On the validation set, the best kernel combinaand the impact of expletives and binding classi-
tion between PK and STK waST K (T'1,72) - fiers/kernels in the complete coreference resolu-
PK(#1,%Z2)+ PK(Z1,%2). Then animprovement tion system. The improvement over the individual
arises when simply summing WSK. and complete tasks suggests that kernel methods
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are a promising research direction to achieve statéda, R., Inui, K., and Matsumoto, Y. (2006). Exploiting syn
of-the-art coreference resolution systems. tactic patterns as clues in zero-anaphora resolution. In
. . y Proc. Coling/ACL 2006pages 625—-632.

Future work is devoted on making the use of ker-

Is f f fficient si the si I?ennedy, C. and Boguraev, B. (1996). Anaphora for every-
nels for coreierence more etficient since the SIz€ O gne: pronominal anaphora resolution without a parser. In
the ACE-2 corpora prevented us to directly use the Proc. Coling 1996
combination of all kernels that we designed. In thisappin, S. and Leass, H. (1994). An algorithm for pronominal
paper, we have also studied a solution which re- anaphora resolutiorCL, 20(4):525-561.
lates to factoring out decisions into separate clagto: X. and Zitouni, I. (2005). Multi-lingual coreferences:

- . .. . olution with syntactic features. IRroc. HLT/EMNLP 05
sifiers and using the decisions as binary features. , o
H this solution shows some loss in terms OI\fIcCarthy, J. and Lehnert, W. (1995). Using decision trees fo
owever, thi utl W i - 2 ! coreference resolution. Rroc. IJCAI 1995
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