Text Analysis Meets Computational Lexicography

Hannah Kermes
Institut fiir Maschinelle Sprachverarbeitung,
Azenbergstr. 12,
70174 Stuttgart,
Germany
kermes@ims.uni-stuttgart.de

Abstract

More and more text corpora are available
electronically. They contain information
about linguistic and lexicographic proper-
ties of words, and word combinations. The
amount of data is too large to extract the in-
formation manually. Thus, we need means
for a (semi-)automatic processing, i.e., we
need to analyse the text to be able to ex-
tract the relevant information.

The question is what are the requirements
for a text analysing tool, and do existing
systems meet the needs of lexicographic ac-
quisition. The hypothesis is that the better
and more detailed the off-line annotation,
the better and faster the on-line extraction.
However, the more detailed the off-line an-
notation, the more complex the grammar,
the more time consuming and difficult the
grammar development, and the slower the
parsing process.

For the application as an analyzing tool
in computational lexicography a symbolic
chunker with a hand-written grammar
seems to be a good choice. The avail-
able chunkers for German, however, do not
consider all of the additional information
needed for this task such as head lemma,
morpho-syntactic information, and lexical
or semantic properties, which are useful
if not necessary for extraction processes.
Thus, we decided to build a recursive chun-
ker for unrestricted German text within the
framework of the IMS Corpus Workbench
(CWB).

1 A corpus linguistic approach to
lexicography

In order to meet the needs of the maintenance

of consistency and completeness within a lex-

icon, lexicography is moving away from solely

manually constructed dictionaries to computer-

assisted methods. Lexical engineering aims to-

wards a scalable lexicographic work process for
large lexica. It ensures that the processes are
reproducible on large amounts of data. Besides,
quality standards that are valid for large lex-
ica assure the quality of the product. Thus,
automatic acquisition of linguistic and lexico-
graphic knowledge can make lexicographic work
easier, and faster, and it can help to maintain
consistency and completeness within the lexicon
(cf. (Underwood, 1998; Kilgarriff and Tugwell,
2001a; Kilgarriff and Tugwell, 2001b)).

The question is which depth of analysis fits
best the needs for the application of extrac-
tion queries. We understand the crucial require-
ments for a useful tool for corpus linguistic ap-
plications to be the following: (i) It has to work
on unrestricted text. (ii) Lacks in the gram-
mar should not lead to a complete failure to
parse. (iii) No manual checking should be re-
quired as it is not feasible for large quantities
of text. (iv) The system should provide clearly
defined and documented interfaces, where the
extraction processes can attach.

What kind of information should a corpus
annotation providing a useful basis for extrac-
tions include, beside of the information on token
level: (i) the head lemma of annotated struc-
tures to determine the lemma of the lexical en-
try, (ii) morpho-syntactic information, to deter-
mine the grammatical function of the structure
and to extract additional aspects about poten-
tial lexical entries, e.g., singular plural alterna-
tions for nouns, (iii) lexical or semantic infor-
mation, e.g., temporal aspect, (iv) information
about certain embeddings, text markers, or con-
struction types, (v) hierarchical representations.

The best, richest and most complex, and usu-
ally most reliable (especially if manual check-
ing is involved) basis is provided by a full
parse. However, full parsers often lack robust-

ness and/or provide ambiguous output except
for (unreliable) statistical disambiguation. Be-
sides, they often have a slow parsing speed,
which makes working with large corpora tedious.
A chunk analysis, being robust, fast and con-
siderably reliable seems a good alternative for
large scale corpus linguistic work. At the mo-
ment, chunking is the only technically feasible
approach. Yet, the question remains: can a
chunker provide the relevant information listed
above.

As Kiibler and Hinrichs (Kiibler and Hin-
richs, 2001) have pointed out, while chunking
approaches have “ focused on the recognition of
partial constituent structures at the level of in-
dividual chunks |...], little or no attention has
been paid to the question of how such partial
analyses can be combined into larger structures
for complete utterances.”

In other words, combining chunk structures
provided by most available chunkers often need
complex rules or rules that are neither secure
nor theoretically motivated. For German, this
is even more so than for English, for which most
chunkers are designed. This is due to the fact
that German has a tendency for phrase struc-
tures including pre-head embedding of complex
structures.

2 YAC - A recursive chunker for
unrestricted German text

Thus, we decided that we need a chunker which
is especially designed to meet the needs of ex-
traction of lexicographic information. YAC is
a fully automatic recursive chunker for unre-
stricted German text. It is based on a symbolic
regular expression grammar written in the CQP
query language (Christ et al., 1999) which is
part of the IMS Corpus Workbench!. The chun-
ker works on a corpus which is tokenized and
part-of-speech tagged using the STTS-tagset
(Schiller et al., 1999). For tokenization and PoS-
tagging the TreeTagger? (Schmid, 1994; Schmid,
1995) is used. The German grammar addition-
ally requires lemma and agreement information
on token level, which is annotated using the IM-
SLex morphology (Lezius et al., 2000).

Yhttp://www.ims.uni-stuttgart.de/projekte/Corpus
Workbench

*http://www.ims.uni-stuttgart.de/projekte/corplex/
TreeTagger/DecisionTreeTagger.html

In order to meet the needs of an ensuing ex-
traction process, the classic chunk definition (cf.
(Abney, 1996; Abney, 1991)) is extended to in-
clude recursion in pre-head as well as in post-
head positions excluding PP-attachement and
sentential elements.

The structures annotated by YAC comprise
the following lexical phrase categories:(i) ad-
verbial phrases (AdvP), (ii) adjectival phrases
(AP), (iii) noun phrases (NP), (iv) prepositional
phrases (PP), (v) verbal complexes (VC), (vi)
single verbs (V), (vii) subordinate clauses (CL).

Additionally, feature attributes specifying
certain properties and characteristics of the
chunks are annotated. The properties are clas-
sified and stored in different feature attributes
to ease the access. One large disjunctive fea-
ture attribute holding all information would be
unwieldy. As each chunk category has different
characteristics, the annotated feature attributes
vary from chunk category to chunk category. In
other words, each chunk category has its own
annotation scheme. For AdvP, e.g., only head
lemma and lexical properties are annotated,
while for NPs head lemma, lexical properties,
and morpho-syntactic information is annotated.
There are three general feature attributes, which
are common to most of the chunks: (i) head
lemma, (ii) morpho-syntactic information, (iii)
lexical-semantic and structural properties (in-
cluding temporal aspect, proper nouns, direc-
tional adverbs, deverbal adjectives).

The head lemma of the chunk is taken from
the lemma value the head position. The head
position is either specified in the rule using a
target, or in the rule processing using a “fixed”
position, i.e., a position that can be determined
independently of the actual results relative to
another position. Normally, the head lemma is
a single token, derived from a single position.
In some cases, however, the lemmas of several
tokens have been subsumed to form the head
lemma. Multi-word proper nouns, e.g., have a
multi-token head lemma, as a single lemma can-
not be filtered out. The head lemma of verbal
complexes with separated prefixes is a single-
token head, however, it has been taken from
two different position. The head lemma of PPs,
consists of two separate head lemma items: the
lemma of the preposition, and the lemma, of the
embedded NP.

YAC gains morpho-syntactic information of
chunks using the morpho-syntactic features of
relevant elements of the chunk. Invariant ele-
ments (e.g., invariant APs such as lila (purple))
are not considered. The morpho-syntactic infor-
mation does not have to be, and in most cases,
is not unique. If there is more than one element
relevant for agreement, it is possible to reduce
the ambiguity. An intersection of the differ-
ent value-sets is used to determine the morpho-
syntactic information of the chunk. In contrast
to probabilistic approaches, no guessing is in-
volved, i.e., if the value is still ambiguous, it is
left ambiguous. In the case that no value is re-
turned, i.e., the relevant elements do not agree,
the chunk is rejected as agreement is required
within a chunk.

Lexical-semantic and structural properties are
important for the parsing as well as for further
applications. The properties can be triggers for
specific internal structures, functions, and us-
ages of chunks. Some of the properties are in-
herent in the corpus itself, i.e., they can be de-
termined from the information already present
in the corpus: (i) PoS-tags, (ii) text markers.
PoS-tags and text markers Named entities, e.g.,
can be derived from the PoS-tag NE for proper
noun (1).

(1) [vp Johann Sebastian Bach]
NE NE NE

Text markers such as quotation marks, paren-
thesis, and brackets indicate the special charac-
ter of a chunk (e.g. as named entity or possible
modifier)(2), and can function as a secure con-
text in which the restrictions on the chunks are
relaxed.

(2) "Wilhelm Meisters Lehrjahre"

Other properties are determined by external
knowledge sources, such as lexicons and ontolo-
gies. Local adverbs (3), e.g., are identified ac-
cording to manually prepared word lists.

(3) hier (here); dort (there)

Another possibility to derive properties is
from the chunking process itself. In this case,
specific embeddings are indicated as properties
of the embedding chunk. Complex AP embed-
ding PPs (4a) and NPs (4b) are marked by a re-

spective feature indicating the embedded struc-

ture.

(4) a. |ap [pp iber die Kopfe der
above the heads of the

Apostel | gesetzten |

apostles set

‘set above the heads of the apostles’

b. [ap [vp der "Inkatha'-Partei
to the Inkatha-Partei
| angehorenden |
belonging

‘belonging to the Inkatha-Partei’

The grammar rules of YAC are written in an
efficient query language (CQP), and then are
post-processed by separate Perl-scripts. This
allows: (i) efficient work even with large cor-
pora, (ii) modular query language, (iii) interac-
tive grammar development, (iv) powerful post-
processing of rules.

Powerful compression algorithms allow one to
work with large corpora. Even complex queries
can be efficiently evaluated and processed. It is
possible to work with corpora of 200-300 mil-
lion tokens. The query language is modular,
i.e., it allows to split complex rules into differ-
ent blocks. The fact that the grammar rules are
written in a query language allows an interac-
tive development and testing of the rules. The
same formalism used for the grammar rules can
be used for interactive querying of the final re-
sults. Templates covering structures which are
found to be relevant can be easily included in the
parsing process if desired. Lexical information
can be added without multiplying the grammar
size unnecessarily. Different output formats can
be provided, and hierarchical structures can be
built.

The chunking process is divided intro three
levels, which serve different purposes:

e First Level: (i) annotates base-chunks, (ii)
annotates chunks with a specific internal
structure, (iii) introduces lexical-semantic
properties

e Second Level: (i) main parsing level, (ii) it-
erative application of general phrase struc-
ture rules to build recursive chunks

e Third Level: finishing level

There are several advantages of annotating
base-chunks with specific internal structures and
introducing lexical and semantic information in
the first level: (i) the specific rules do not in-
teract with the main parsing rules, (ii) the rules
for chunks which do not involve complex (recur-
sive) embedding have to be applied only once,
(iii) the additional rules which are necessary to
cover specific phenomena of specialized text do-
mains can be included easily without affecting
the main parsing process, (iv) the rules of the
main parsing process can be kept relatively sim-
ple and general, as most special cases are already
covered, (v) only a relatively small number of
"general" rules is needed for the main parsing
process.

In order to test real performance, we decided
to build a manually annotated corpus as refer-
ence®. We extracted 400 sentences from the NE-
GRA corpus at random. The resulting reference
contains 1920 NPs. We think that the size of the
reference is large enough to make valid state-
ments about precision and recall of the system.
We calculated the precision as the number of
true positives divided by the number of struc-
tures found by YAC, and the recall by dividing
the number of true positives by the number of
structures in the reference.

Evaluation was performed on ideal PoS-tags
taken from the NEGRA corpus as well as on
automatically annotated PoS-tags produced by
the TreeTagger. In both cases, the morpho-
syntactic information was not ideal, but auto-
matically added and left ambiguous.

Table 1 gives the evaluation figures of YAC
on ideal PoS-tags.

all chunks maximal chunks
precision | recall || precision | recall

NP 96.36 | 96.51 95.55 | 96.47
PP 98.08 | 96.51 98.07 | 96.50
AP 96.39 | 97.50 96.12 | 97.45
VC - - 99.01 | 98.59

Table 1: Evaluation figures of YAC on ideal
PoS-tags

3We also tried to extract a gold standard from syntax
annotation of NEGRA. However, it was impossible to
cut-out chunks corresponding to our chunk definition.
The problems we had are discussed in detail in (Kermes,
2003)

Precision figures for the evaluation of all
chunks range from approximately 96% for APs
and NPs to 98% for PPs. As VCs are not recur-
sive, they do not occur in this category. Recall
is slightly lower ranging from 96.5% for APs and
NPs to 97.5% for PPs. The figures are slightly
lower for the evaluation of maximal chunks. The
reason for the decrease of figures can be ex-
plained by the fact that some structures are not
combined to one large structure but left separate
instead. In the case of NPs, e.g., certain post-
head modifiers are not identified as such. Conse-
quently, the maximal chunk cannot be identified
correctly. However, embedded chunks can still
be correctly identified. In the case of nominal
post-head modifiers, the two NP structures are
annotated as two separate maximal chunks as in
(ba) instead of as one maximal chunk as in (5b).

(5) a. [np eine Art | [np

a kind of
Gesundheitspolizei |
health police

b. [np eine Art Gesundheitspolizei |

In order to test the performance of YAC un-
der real-life conditions, we evaluated its perfor-
mance on automatically annotated PoS-tags as
well. The evaluation figures are given in Table
2.

all chunks maximal chunks
precision | recall || precision | recall

NP 89.93 | 91.67 89.43 | 91.68
PP 94.05 | 89.67 94.04 | 89.65
AP 84.24 | 89.25 83.67 | 89.59
vC — — 97.72 | 96.62

Table 2: Evaluation figures of YAC on auto-
matic PoS-tags

As can be observed, precision and recall fig-
ures for NPs and APs drop significantly if YAC
is applied to a corpus PoS-tagged by the Tree-
Tagger. The recall, although it is also signif-
icantly lower, is not affected to the same ex-
tent. Looking at the false analyses, it can be ob-
served that two factors are responsible for most
of the errors: (i) proper nouns, and (ii) capital-
ized words.

The first major factor for false analyses were
proper nouns. In contrast to many other lan-

guages, German capitalizes both common nouns
and proper nouns. Thus, it is difficult to distin-
guish between the two categories. The tagger
has to guess whether an unknown capitalized
word is a noun or a proper noun. In many cases,
proper nouns are mistakenly tagged as common
nouns. Thus, special rules for proper nouns
cannot fire in all necessary cases. The conse-
quence is that multi-word proper nouns cannot
be assembled, and are left as separate NPs (6a).
This is often punished not only once but several
times, especially, if the proper nouns are em-
bedded in larger structures. The correct anal-
ysis with flat annotation of post-head modifiers
is given in (6b).
(6) a. [np Darstellung [yp des
description of the
Dortmunder Sportmediziners |
Dortmund sports physician
[vp Professor Klaus || [vp Volker
Professor Klaus Volker
]

b. [np Darstellung [yp des
description of the
Dortmunder Sportmediziners |
Dortmund sports physician
[vp Professor Klaus Volker | |
Professor Klaus Volker

In this case, the tagger failed to identify the sur-
name Vilker as a proper noun. Consequently,
both the maximal NP and the NP Professor
Klaus Vélker could not be identified correctly.
This results in two false negatives and three false
positives. Thus, one false PoS-tag entails several
faults in the chunker output.

The second major factor for errors in the an-
notation are capitalized words. The tagger did
not seem to take sentence boundaries into ac-
count. Thus, in many cases, capitalized words
at the beginning of sentences were erroneously
tagged as nouns. Most of these wrongly tagged
capitalized words were adjectives, which ex-
plains the low precision figures of APs on au-
tomatically tagged text. Again, similar to the
proper nouns, one false tag entails several false
structures. As the adjective is mistakenly anal-
ysed as separate NP as in (7).

(7) [np Seelische
psychological

| [vp Gesundheit |
health

The result of this multiple punishment is that
the precision for APs and NPs drops quite dra-
matically. The recall of APs is also largely af-
fected as many adjectives are erroneously tagged
as nouns. The recall for NPs drops less dramati-
cally as the tagging errors affect fewer structures
than the mere precision figures would suggest.

PPs are affected less by tagging errors. The
recall figures, which are lower in comparison to
the recall figures for ideally tagged text, sug-
gest that more correct PPs failed to be identi-
fied. The reason is that words which can func-
tion as prepositions, can have other functions,
and thus, other PoS-tags as well (e.g., conjunc-
tion). However, if a preposition is erroneously
annotated with another PoS-tag, the PP can no
longer be identified. Additionally, the precision
of PPs can be affected by wrong NP assignment
as well.

V(s are affected least by automatic tagging.
The tagger can obviously identify verbal ele-
ments with a good precision. If the tagger makes
errors, it is with respect to the character of the
verbal element (e.g., finite vs. infinite). How-
ever, as the rules for VC leave the verbal ele-
ments underspecified, the chunking performance
is not affected by assignment of the wrong kind
of verbal element.

The good precision figures prove the quality
of the chunks annotated by YAC. The precision
figures of YAC are almost as high as the fig-
ures of other state-of-the-art systems for Ger-
man (Schiehlen, 2002; Skut and Brants, 1998;
Brants, 1999). However, a real comparison is
difficult because the single systems do not share
the same theoretical background. Schiehlen
(Schiehlen, 2002), e.g., applies his chunker to an
ideally tokenized text, which includes the results
of named entity recognition. That is, he takes
multi-word proper nouns as given, and treats
them as single classified tokens. We, however,
try to identify named entities and other multi-
word units on the basis of rules. The reason
is, that we want to present a tool for extraction
purposes. If we apply YAC to a large unknown
corpus, we cannot expect to have a perfect lex-
icon including all multi-word units. Thus, we
have to find a way to identify them on the basis
of rules, and although we are successful in many

cases, named entities are nevertheless one of the
major error factors in the annotation of YAC.
Thus, we can expect to obtain better results, if
YAC were applied on a perfect tokenization in
the sense of Schiehlen.

Brants (Brants, 1999) presents evaluation fig-
ures for his Cascaded Markov Model approach.
He reports precision and recall for minimal
(base) chunks (after 1 layer of annotation), and
for maximal chunks (after 9 layers of annota-
tion). Accordingly, the precision for maximal
chunks is 91.4% and the recall 84.8%. The fig-
ures are based on automatically tagged text.
The precision is comparable to that reported by
Schiehlen, thus slightly higher than the preci-
sion of YAC, however, the recall is considerably
lower. The recall of YAC is as high as its pre-
cision, which proves that YAC has a good cov-
erage of phenomena. Other state-of-the-art sys-
tems have lower recall figures. A good recall,
however, is important for the extraction of phe-
nomena with relatively low frequency such as
adjectives in predicative(-like) constructions. In
this case we need large amounts of parsed text
to be able to extract enough relevant data. Be-
sides, it has to be taken into account that the
tool of Brants was both trained and tested on
the NEGRA corpus, albeit however, on different
parts. Thus, the tool was specifically trained for
this text.

3 Conclusion

YAC is a text analyzing tool for German text,
which is both robust and efficient, and a good
basis for the extraction of linguistic and lexico-
graphic information. The goal is to relieve ex-
traction tasks from parts of the linguistic anal-
ysis. The main principle behind YAC is that
it tries to achieve a maximum of output with
a minimum of input. In other words, based on
a limited amount of prerequisite knowledge, we
want to be able to extract large amounts of in-
formation.

We use a relatively small and simple set of
rules for the annotation. Nevertheless, we are
able to provide a useful basis for extraction
processes. The annotated structures are rela-
tively flat in comparison to a full parse. How-
ever, in comparison to a classic chunker, the
structures are more complex, including com-
plex (recursive) embedding. We try to find a

compromise between the goal of providing suf-
ficient structural information, and of annotat-
ing reliable structures. The principle behind
the underlying chunk definition of YAC is to
provide structures which are large enough to
provide sufficient information, which are easily
combinable into larger structures, and do not
involve highly ambiguous attachment decisions
(e.g., PP-attachment).

Simple rules and simple structural annota-
tion means also implementing few theoretical as-
sumptions. This does not make the annotation
theory-independent, but at least less bound to a
given linguistic theory. Consequently, YAC can
be useful for applications from various theoreti-
cal backgrounds.

The grammar rules of YAC rely only on lex-
ical information such as PoS-tags, lemma and
morpho-syntactic information. The latter is
usually ambiguous, and lists all possible options
for a word. We do not make use of informa-
tion about subcategorization frames, selectional
preferences, cooccurrences. As we want to ex-
tract this kind of information, we cannot de-
pend on it as input to the system. The lexical-
semantic information we use is limited to small
lists of words. These lists together with simple
pattern matching strategies, and certain heuris-
tics can be used to annotate a number of chunks
with different lexical-semantic properties.

We do not only annotate extended chunk
structures, but enrich the structures addition-
ally with information relevant for extraction.
This information includes the head lemma, in-
formation about morpho-syntax, and lexical-
semantic properties of the head. State-of-the-
art chunkers - if at all - provide only some of
the relevant information. This information is
important, if not necessary for extraction pro-
cesses.

Despite the relatively simple and flat annota-
tion, YAC provides a basis for fine-grained dis-
tinctions among the extracted data. The addi-
tional information allows for a powerful filter-
ing and grouping of the results. We do not
only want to extract simple subcategorization
frames, but are interested in selectional prefer-
ences, cooccurrences, distributional variations,
and relations among the different phenomena.
Available systems do not allow to make such a
fine-grained distinction

References

Steven Abney. 1991. Parsing by chunks. In
Robert Berwick, Steven Abney, and Carol
Tenny, editors, Principle-Based Parsing.
Kluwer Academic Publishers.

Steven Abney. 1996. Chunk stylebook.
Working draft.

Thorsten Brants. 1999. Cascaded markov
models. In Proceedings of 9th Conference of the
European Chapter of the Association for
Computational Linguistics EACL-99, Bergen,
Norway.

Oliver Christ, Bruno M. Schulze, Anja
Hofmann, and Esther Konig, 1999. The IMS
Cropus Workbench: Corpus Query Processor
(CQP): User’s Manual. University of
Stuttgart: Institute for Natural Language
Processing, Azenbergstr.12, 70174 Stuttgart,
Germany, August.

Hannah Kermes. 2003. Off-line (and Online)
Text Analysis for Computational Lexicography.
Ph.D. thesis, Institut fiir Maschinelle
Sprachverarbeitung, Universitdt Stuttgart.
Submitted.

Adam Kilgarriff and David Tugwell. 2001a.
WASP-Bench: an MT lexicographers’
workstation supporting state-of-the-art lexical
disambiguation. In Proceedings of MT Summit
VII, pages 187-190, Santiago de Compostela.
Adam Kilgarriff and David Tugwell. 2001b.
WORD SKETCH: Extraction and display of
significant collocations for lexicography. In In

Proceedings of the workshop "COLLOCATION:

Computational Extraction, Analysis and
Exploitation”, 39th ACL & 10th EACL, pages
32-38, Toulouse, July.

Sandra Kiibler and Erhard W. Hinrichs. 2001.
T{SBL: A similarity-based chunk parser for
robust syntactic processing. In Proceedings of
HLT 2001, San Diego, California, March.
Wolfgang Lezius, Stefanie Dipper, and Arne
Fitschen. 2000. IMSLex — representing
morphological and syntactical information in a
relational database. In Ulrich Heid, Stefan
Evert, Egbert Lehmann, and Christian Rohrer,
editors, Proceedings of the 9th EURALEX
International Congress,Stuttgart, Germany,
pages 133-139, Stuttgart, Germany.

Michael Schiehlen. 2002. Experiments in
German noun chunking. In Proceedings of the

19th International Conference on
Computational Linguistics.

Anne Schiller, Simone Teufel, Christine
Stockert, and Christine Thielen. 1999.
Guidelines fiir das Tagging deutscher
Textcorpora mit STTS. Technical report,
Universitdt Stuttgart, IMS and Universitat
Tiibingen, November.

Helmut Schmid. 1994. Probabilistic
part-of-speech tagging using decision trees. In
International Conference on New Methods in
Language Processing, pages 44-49, Manchester,
UK.

Helmut Schmid. 1995. Improvements in
part-of-speech tagging with an application to
German. In Proceedings of the ACL
SIGDAT-Workshop.

Wojciech Skut and Thorsten Brants. 1998. A
maximum-entropy partial parser for
unrestricted text. In Sizth Workshop on Very
Large Corpora, pages 143-151, Montreal,
Canada.

Nancy Underwood. 1998. Issues in designing a
flexible validation methodology for nlp lexica.
In Proceedings of the First International
Conference on Language Resources and
Evaluation, volume 1, pages 129-134, Granada.

