Improving a Statistical MT System with Automatically
Learned Rewrite Patterns

Fei Xia
IBM T. J. Watson Research Center
P.O. Box 218, Yorktown Heights
NY 10598, USA
feixia@us.ibm.com

Abstract

Current clump-based statistical MT systems have two
limitations with respect to word ordering: First, they
lack a mechanism for expressing and using generaliza-
tion that accounts for reorderings of linguistic phrases.
Second, the ordering of target words in such systems
does not respect linguistic phrase boundaries. To ad-
dress these limitations, we propose to use automatically
learned rewrite patterns to preprocess the source sen-
tences so that they have a word order similar to that of
the target language. Our system is a hybrid one. The
basic model is statistical, but we use broad-coverage rule-
based parsers in two ways — during training for learn-
ing rewrite patterns, and at runtime for reordering the
source sentences. QOur experiments show 10% relative
improvement in Bleu measure.

1 Introduction

We can contrast two major approaches to machine
translation (MT), which we call here simply statis-
tical MT and syntaz-based MT.! A statistical MT
(SMT) system (in our somewhat restricted sense)
automatically learns all the model parameters from
bilingual text. It does not need parsers, grammars,
or a pre-existing translation lexicon. Recently the
so-called phrase-based SMT models such as (Och et
al., 1999; Marcu and Wong, 2002; Tillmann and
Xia, 2003) have outperformed the word-based SMT
models proposed by Brown et al. (1993). A phrase
in such systems can be any contiguous text, and it
is not necessarily a linguistic phrase (such as noun
phrase). To avoid confusion, in this paper we shall
call any contiguous piece of text a clump, and call
a phrase-based SMT system a clump-based system.
We reserve the name phrase for linguistic phrase
only, as appears in parse trees.

The main advantage of clump-based systems over
word-based systems is that the former can memo-
rize the translation of large clumps, and therefore
alleviate the problems of translation selection, func-
tion word insertion, and the ordering of target words
within a clump. However, both kinds of systems lack
a mechanism for expressing and using generalization
that accounts for reorderings of linguistic phrases in

I This dichotomy oversimplifies the situation, because there
are so many possible hybrid versions of MT systems such as
(Yamada and Knight, 2002).

Michael McCord
IBM T. J. Watson Research Center
P.O. Box 218, Yorktown Heights
NY 10598, USA
mcmccord@us.ibm.com

the source and target languages.? Also, the ordering
of clumps in clump-based systems does not respect
linguistic phrase boundaries because the models are
not aware of, and do not use, linguistic phrases.

In contrast, syntax-based systems such as LMT
(McCord, 1989; McCord and Bernth, 1998) express
generalizations explicitly; for instance, one can use
the rewrite pattern “Adj N = N Adj ” to express
the fact that the adjective modifies a noun from the
left in the source language, but from the right in the
target language. Another advantage of syntax-based
systems is that the ordering of target words respect
linguistic phrase boundaries, since the rewriting is
performed with respect to a parse tree. However,
syntax-based systems need parsers, translation lexi-
cons and rewrite patterns, which often require much
human effort to create.

Since the two kinds of systems have complemen-
tary strengths, a natural question is whether they
can be combined to improve MT results. Och et
al. (2004) applied various methods ranging from no
syntax to deep syntax to rerank the topN candidates
produced by a clump-based SMT system. Notably,
their experimental results showed little improvement
from syntax-based features.

In this paper, we outline our attempt at combining
the merits of both types of MT systems. Instead of
using syntax-based features in post-processing to se-
lect translations produced by a SMT, we use parsers
and rewrite patterns to preprocess the source sen-
tences so that the reordered source sentences have
a word order similar to that of the target language.
Such reordered source sentences, along with the orig-
inal target sentences, are then sent to a clump-based
SMT system (i.e., our baseline system) for training
and testing. The rewrite patterns are learned from
the same bilingual text. We found in an experiment
for English-French that after such preprocessing, the
translation performance improved by 10% in Bleu
measure (Papineni et al., 2002).

2 System Overview

In this section, we give a brief overview of the base-
line SMT system and then outline a new approach.

2 Alignment templates in (Och et al., 1999) can describe
the reorderings of words or word classes, not the reorderings
of linguistic phrases.

(a) word alignment
France is the first western country

\

la france est le premier pays occidenta

(b) some of the clump pairs

France => france, France => lafrance
is=>est, first => premier

isthe first => est le premier

first western country => premier pays occidental
western country => pays occidental

Figure 1: The training stage of the baseline system

2.1 The baseline SMT system

Our baseline system is a clump-based system as de-
scribed in (Tillmann and Xia, 2003). During train-
ing, words in every sentence pair in the training
data are aligned by a word aligner, and clump pairs
are then extracted with some adjacency constraints.
Clump pairs from all the sentence pairs plus their
counts form a clump dictionary. Figure 1 shows
an (English, French) sentence pair, the word align-
ment provided by a word aligner, and some of the
extracted clump pairs.3

During decoding, the decoder segments the source
sentence into multiple clumps, and translates each
clump with the clump dictionary learned at the
training time. All the possible translations are
ranked using a scoring formula that contains a block
unigram model and a word-based trigram language
model, where a block is the same as a (source clump,
target clump) pair. The translations with the high-
est scores are produced as system output. In order
to account for the different word order in source and
target language, the decoder allows source clumps
to be translated in non-monotonic order.

Figure 2 illustrates the decoding stage of the sys-
tem: (a) is a source sentence to be translated. (b) is
a portion of the clump dictionary that is relevant to
the sentence. Given such a dictionary, the decoder
tries different ways to segment the source sentence.
One possible segmentation is shown in (c). Next, the
decoder replaces each source segment (i.e., clump)
with the corresponding target clump(s) using the
clump dictionary. Given the four source clumps in
(c), the decoder could try all 4! possible permuta-
tions, resulting in different word order in the target
side. Four of such translations are shown in (d),
where the bars (|) mark clump boundaries. Among
these translations, only the last one is correct.

This example demonstrates two limitations of the
baseline system with respect to word ordering. First,
the parse trees for the two source sentences in Fig-
ures 1 and 2 are identical except for the lexical

30ne can use any word aligner that he prefers, and the
aligner does not have to find links for all the words. For
instance, the French words la and le (both meaning the in
English) are not linked to any English word.

(a) sentenceto be translated
He is thefirst international student

(b) part of the clump dictionary

is=>est, the=>le, first => premier
isthefirst => est le premier, he=>il
student = étudiant
international => international

(c) one possible segmentation
[He][is the first]|[international | [student|

(d) possible trandations

il | est le premier | international | étudiant.
est le premier | il | international | étudiant.
il | international | est le premier | étudiant.

il | est le premier | étudiant | international.

Figure 2: The decoding stage of the baseline system

items at leaf nodes. Because the system does not
have a mechanism to express the generation such
as “Adj,; Adjs N = Adj; N Adj,”, it cannot benefit
from the similarity of the parse trees. Second, when
a clump (such as “is the first” in this example) is not
a linguistic phrase, swapping it with other clumps of-
ten results in ungrammatical sentences, such as the
second and third translations in Figure 2(d). Be-
cause the baseline system is not aware of linguistic
phrases, it cannot avoid trying such ungrammatical
translations. Not only does this practice tremen-
dously slow down the system, but it also runs the
risk that the language model might prefer such un-
grammatical translations.

2.2 The new approach

To address these limitations, we propose to learn
rewrite patterns from the training data, and then
use them to reorder source sentences before decod-
ing, so the decoder can translate source clumps in
monotonic order. This approach has the following
steps:

(T) At training time :

(T1) Learn rewrite patterns: first parse sen-
tences and align phrases, and then extract
rewrite patterns.

(T2) Reorder the source sentences using the
rewrite patterns.

(T3) Train the baseline system with the re-
ordered source sentences and the original
target sentences to get the clump dictio-
nary.

(D) At decoding time :

(D1) Reorder the test sentences with the
rewrite patterns.

(D2) Translate the reordered sentences with
the baseline decoder in monotonic order.

Among the five steps, Steps (T3) and (D2) are
identical to the training step and the decoding step
in the baseline system; Step (T2) is the same as Step
(D1), except that one is on training data, the other is
on test data. Therefore, we shall explain only Steps
(T1) and (T2) in the next section.

This approach requires a parser for the source lan-
guage, as the rewrite patterns are applied to source
parse trees. A parser for the target language is op-
tional, because, as we shall show in Section 3.2, the
parse trees for target sentences are used only to pro-
vide an additional constraint for pattern extraction.

3 Learning and Applying Rewrite
Patterns

There has been much work on learning rewrite pat-
terns from parallel data, such as (Kaji et al., 1992;
Matsumoto et al., 1993; Wu, 1996; Watanabe et
al., 2000; Meyers et al., 2000; Lavoie et al., 2001;
Menezes and Richardson, 2001) Most of these pre-
vious efforts use the learned patterns directly in a
syntax-based MT system. In contrast, we use the
patterns to preprocess the source sentences.

3.1 Definition of rewrite patterns

We define a rewrite pattern to be a quintuple:

(SrcRule, TgtRule, SrcHeadPos,
TgtHeadPos, ChildAlign):

The five components are as follows:

(1) SrcRule is a context-free rule of the form

U(X) = U(X1) ... I(Xm),

where [(X) is the label of a node X in a parse tree,
and each X is a child of X in the parse tree. The set
{X;} must include the head child of X.* The label
I(X) of anode X can be any information associated
with X. For instance, it can be a syntactic tag (such
as N P for noun phrase), a function tag (such as SBJ
for subject), the head word of X, or any combination
of these.

(2) TgtRule is of the same format as SrcRule, and
let us represent it as I[(Y) — (Y1) ... I(Yn).

(3) SrcHeadPos is an integer giving the position
of X’s head child in the child sequence X; ... X,;,.

(4) Similarly TgtHeadPos is the position of Y’s
head child in the child sequence Y; ... Y.

(5) ChildAlign is a correspondence between the
{X;} and the {Y;}. We require the correspondence
to be injective, but not necessarily bijective, because
of possible insertions and deletions of elements such
as function words.

4We require the head child to be included in a rewrite
pattern because quite often the ordering of dependents is with
respect to the head child.

To simplify the notation in this paper, we drop
the SrcHeadPos, TgtHeadPos, and ChildAlign from
the notation if there is no confusion. For instance,
the rewrite pattern

(NP = Adj N, NP — N Adj
0,1,{0:1,1:0})

is now simply written as:
(NP — Adj N) = (NP — N Adj)

Because the parent label can often be predicted from
the label of its head child, we may further drop the
parent labels, and write the pattern as Adj N =
N Adj.

We call a rewrite pattern lexicalized if at least one
source node label X; includes the head word. Lexi-
calized rewrite patterns are used to handle the cases
where the ordering of a source child sequence in the
target language depends on the head word of some
child in the sequence. For instance, for most ad-
jectives, “Adj N ” in English becomes “N Adj” in
French. This can be expressed as an unlexicalized
pattern “Adj N = N Adj”. However, for some adjec-
tives such as good, “Adj N” in English often remains
the same order in French. This can be expressed by a
lexicalized pattern “Adj(good) N = Adj(bon) N”.

3.2 Learning rewrite patterns

The rewrite patterns are generated from bilingual
text in four steps as described below.

3.2.1 Parsing the sentences

The first step is to parse source and target sen-
tences, though, as mentioned before, a parser for
the target language is optional to this work. In our
experiments, we use Slot Grammar (SG) parsers.
SG is a dependency-oriented system (McCord, 1980;
McCord, 1990; McCord, 1993). Figure 3 shows sim-
plified forms of the SG parse trees for the sentence
pair in Figure 1. In this display form, there is
one line per node (and per head word). On each
line, one sees (1) the node label (which is usually
the sentence word number of the head word), along
with arcs to the node’s (surface) daughters, (2) the
head word, and (3) the features of the node. The
first feature listed is always a part of speech. Of
course an SG noun phrase is just a phrase whose
POS feature is noun, and similarly for other parts
of speech. The full SG parse data structures contain
not only the surface information displayed here, but
also deep structure information that includes word
senses along with logical argument structure and re-
mote relations.

Currently SGs exist for English, Spanish, French,
Italian, Portuguese and German. The French SG
parser, used here, is actually part of a single gram-
mar for the four Romance languages, with switches
for the differences, and this is developed by Esmé
Manandise. There is an SG shell that contains many

/@—subj France mnoun propn sg
top s verb vpres sg

(3)—ndet the det sg

(@—nadj first adj
/@—nadj western adj
pred country noun cn sg

Word alignment:
Phrase alignment:

/@— ndet la
_(@——subj France

top est
(@—ndet le
nadj premier adj sg m
-

(6)——npred pays noun cn sg m
\@—nadj occidental adj sg m

det sg f

noun propn sg f
verb vpres sg
det sg m

(1—2, 2—3, 3—4, 4—5, 5—7, 6—6)
(1—2, 2—3, 3—4, 4—5, 5—7, 6—6)

Figure 3: Parse trees for source and target sentences, with word alignment and (equal) phrase alignment

language-universal rules and makes up a large per-
centage of the rules for any specific language gram-
mar. Most of SG is “hand-coded”, because of the
emphasis on generalizations and language univer-
sals.

3.2.2 Aligning phrases

Previous work on phrase alignment such as (Mat-
sumoto et al., 1993; Imamura, 2001) starts with
word alignment and then aligns phrases using heuris-
tic rules. We adopt a similar approach: We first
align source and target words using a word aligner
trained from the parallel data. Then for each source
phrase S and each target phrase T, we calculate
the percentage of words in the two phrases that are
linked together using the formula in Eq. (1). Next
we align S to the T with the highest Score(S,T).
Here #Links(S,T) is the total number of source
words in S and target words in T that are linked
together, and Span(S) and Span(T) are the num-
bers of words in S and T, respectively.

#Links(S,T)

Seore(5,T) = Span(S) + Span(T) (1)
For our SG displays, a word alignment can be
shown as the list of pairs of words aligned, where
each word is identified by the node number of the
phrase headed by the word (which in turn is usu-
ally the word’s position number in the sentence).
A phrase alignment can be shown similarly, using
phrase labels. In Figure 3, we see the word align-
ment provided by a word aligner, along with the re-
sulting phrase alignment (which comes out with the

same representation in this case).

3.2.3 Extracting rewrite patterns

Given a parse tree pair (SrcTree, TgtTree) and a
phrase alignment Al, where Al is represented as a
set of (source node, target node) pairs, we extract
all the rewrite patterns X; ... X;, = Y7 ... Y, that
satisfy all of the following conditions:

e X; are siblings in SrcTree, and their relative or-
dering in X3 ... X, is the same as their ordering
in SrcTree. Similar conditions hold for Y; with
respect to TgtTree.

e The parent node X of X; aligns to the parent
node Y of ¥; in Al. Each source child in {X;}

Table 1: Some extracted rewrite patterns from the
sentence pair in Figure 3

Unlexicalized rules:

1: NPy V NP = NPy V NP

2: N = Det N

4: Adj N = Adj N

5: Adj N = N Adj

Lexicalized rules:

6: Adj(first) N = Adj(premier) N

7: Adj N(country) = Adj N(pays)

8: Adj(western) N = N Adj(occidental)
9: Adj N(country) = N(pays) Adj

must align to a unique target child in {Y;} and
vice versa, except for children that dominate
only function words.?

¢ {X;} must contain the head child of X in Src-
Tree, and {Y;} must contain the head child of
Y in TgtTree, and the two head children are
aligned in Al.

¢ For any aligned child pair (X;,Y}), they are ei-
ther both lexicalized or both unlexicalized in
the pattern.

The number of rewrite patterns extracted from
a tree node pair is exponential with respect to the
number of aligned children. To deal with that, we
generate only patterns whose source rule length is
no more than a threshold, which is set to five in our
experiment. Table 1 lists a few patterns extracted
from the sentence pair in Figure 3. The top five
are unlexicalized, and the bottom four are lexical-
ized. Among them, Patterns 6 and 7 are lexicalized
versions of Pattern 4; similarly, Patterns 8 and 9
are lexicalized version of Pattern 5. Some patterns
(such as Patterns 4 and 5) are in conflict as they
share the same source rule, but have different target
rules. Such conflict is addressed next.

5This exception is meant to allow patterns such as N =
Det N (e.g., “France” in English becomes “la France” in
French), where the French determiner does not align to any
word on the English side.

(G1)

N=>N 09
N=>DetN 0.1
(G3) N(France) => Dat (@) N 0.7

N(France) => N 0.3

(GO)[AdLAGZN=> NAG2AdL 05
AdiL AG2N=> AGi1NAd2 0.35
AdiLAd2N=> Adi1Adi2N 015

(G2) [agN=>NAG 07
AdiN=> Adj N 03

(G4)
G5)

Adj (western) N=> N Adj 1.0 (
Adj (first) N=> Adj N 0.95
Adj (first) N=> NAdj 0.05

(CY Adji(firs) Adi2N=> Ad1NAd2 0.6
Adji(firs) Adji2N=> Adi1Adi2N 04

(G8)
‘ Adji(first) Adj2(western) N=> Adj1 N Adj2 1.0 ‘

Figure 4: A sample hierarchy for pattern groups

3.2.4 Organizing rewrite patterns

After running the previous steps on training data
and merging identical patterns, the number of re-
sulting patterns can easily reach millions as many
of the patterns are lexicalized. Furthermore, there
will be many conflicting patterns. Therefore, the
rewrite patterns need to be organized and filtered
before they can be applied to source parse trees as in
Steps (T2) and (D1). Existing filtering algorithms
such as (Imamura et al., 2003) are not applicable
here because rewrite patterns in our approach are
not used directly for translation.

To apply a rewrite pattern to a source parse tree
at a tree node, the source rule of the pattern has to
match the children of the tree node. Therefore, pat-
terns should be organized according to their source
rules. Some source rules are clearly related. We say
that a rule X = X; ... X,,, is more specific than
another rule X' = X7 ... X/, if the former rule is
a lexicalized version of the latter rule, or if X and
X' are the same, and X; ... X,,, is a superstring of
X1 ... X],. For instance, a lexicalized rule such as
“NP — Adj(first) N” is more specific than its un-
lexicalized version “NP — Adj N”, and the rule
“NP — Det Adj N” is more specific than the rule
“NP — Adj N”. Given two rules such as “NP —
Adj N’ and “NP — N PP”, neither is more specific
than the other; therefore this specificity relation is
not a total relation.

We organize patterns in two steps: First, we group
patterns according to the source rules; that is, two
patterns belong to the same group if and only if they
have exactly the same source rule. We also normalize
the counts for patterns in the same group. For each
group, we find the pattern with the highest count,
and call it the default pattern for the source rule.
Second, for each group pair (G;, G;), we add a link
from G; to G if and only if the source rule for G is
more specific than the source rule for G;, and there
is no other group coming between G; and G;. The
resulting structure is a network, as a group can have
more than one parent.

Figure 4 shows a small hierarchy, which has eight

pattern groups.® The further away a group is from
the root node of the hierarchy, the more specific its
source rule is. We allow a group to “overwrite” the
decisions made by its parent groups. For instance,
given this hierarchy and a noun phrase of the form
“Adj N7 in the source language, if we know noth-
ing else, we should apply the patterns in Group G2,
which are likely to swap Adj and N. However, if we
know that the head word of Adj is first, we should
apply the patterns in Group G5 which are likely to
keep the word order unchanged.

Now that we have put all the patterns into a hi-
erarchy, we can quantify the usefulness of a pattern
group G by measuring the degree of agreement be-
tween this G and G’s parent groups. The more they
agree, the less useful G is. The exact formula for
measuring the “agreement” depends on exactly how
rewrite patterns are used. Once a formula is se-
lected, one can filter out patterns or pattern groups
whose usefulness measure is below a threshold.

3.3 Applying rewrite patterns

There are many ways of applying rewrite patterns to
parse trees. Currently we adopt the following greedy
algorithm: given a parse tree T'ree and rewrite pat-
terns stored in a hierarchy, we apply the patterns to
Tree and obtain a new tree Tree’ by visiting each
internal node Node of Tree and applying the most
specific applicable pattern to Node to reorder the
children of Node. Because at each internal node we
apply at most one rewrite pattern and the pattern
will only change the relative ordering of the node’s
children, traversal order is immaterial.

Given an internal node N in a parse tree, let us
represent the node and its children N; as a lexical-
ized context-free rule

N — Nl(wl) Nm(wm)

where w; is the head word of N;. A pattern group is
said to be applicable to the node N if the lexicalized
context-free rule for N is identical to, or more spe-
cific than, the source rule of the pattern group. For
instance, the lexicalized context-free rule for node 6
of the English tree in Figure 3 is “NP — Det(the)
Adj(first) Adj(western) N(country)”, which is more
specific than the source rules for pattern group G1,
G2, G6, and G7 in Figure 4, so all the four groups
are applicable to node 6.

If there is more than one applicable group, we
choose the one with the longest and most lexical-
ized source rule. Once we have selected the pattern
group, we apply the default pattern in that group
to the node. In this case, we apply the pattern
“Adj1(first) Adj2 N = Adjl N Adj2” in G7 to node
6. Similarly, we apply the pattern “N(France) =
Det(la) N(france)’ in Group G3 to node 2. The new
parse tree after applying rewrite patterns is shown

6In this figure, we omit target node’ head words unless
the head word is a spontaneous word such as la in the first
pattern of Group G3.

4 /@— ndet la_t det sg N
/@— subj France noun propn sg
top is verb vpres sg
(W—ndet the det sg
é@—nadj first adj

(6)——pred country noun cn sg
\@—nadj western adj

_ “la_t France is the first country western” Y,

Figure 5: Results of applying rewrite patterns

0.28

0.26

0.24

0.22 |

Bleu score

0.2 - with source reordering —+—

without source reordering -
0.18

016 1/

0.14

.
2 4 6 8 10 12
The maximal clump length

Figure 6: The MT results on TestSet1

in Figure 5.7 Note the similarity between the new
parse tree and the target parse tree in Figure 3. The
new sentence that is read off from the new parse tree
is a sequence of English words in French word order,
and it is used for training or decoding.

4 Experiments

For evaluation, we use the 90-million-word English-
French Canadian Hansard corpus as the training
data. From the training data, we extract 2.9 mil-
lion rewrite patterns that occur at least once. After
organizing and filtering the patterns as described in
Section 3.2.4, the number of patterns reduces to 56
thousand, and 1042 of them are unlexicalized. When
applying them to the source parse trees in training
data, on average each source tree triggers only 1.4
patterns. The most commonly used patterns are the
ones that reorder a noun and its modifiers.

To evaluate the impact of source reordering on MT
performance, we train the baseline system on the
same Canadian Hansard corpus. For testing, we use
two test sets. The first one, TestSet1, contains 3971
sentences from the same Hansard corpus, which are
not included in the training data. The second test
set, TestSet2, contains 500 sentences from various
news articles. The average sentence lengths for the
two test sets are 21.7 words and 28.8 words, respec-
tively. The Bleu scores with one reference transla-
tion are shown in Figure 6 and 7.2 In both figures,

"In the new parse tree, we attach _t to any word inserted
by a rewrite rule; for instance, “la_t” is a made-up token that
comes from the word “la” in the target language.

8Clearly the Bleu scores would be higher if more references

0.22

0.21
0.2 r
0.19

o
S 018
“ J
3 017 with source reordering ——
) N without source reordering -
016 /
015 /
014 }f
0.13
2 4 6 8 10 12

The maximal clump length

Figure 7: The MT results on TestSet2

X-axis is the maximal clump length that the MT
system memorizes during the training time; i.e., the
value of n as a clump is simply an n-gram. The top
curve shows the Bleu scores when both training and
test sentences are reordered using rewrite patterns;
and the bottom curve illustrates the baseline results,
where the same system is trained and tested on the
original sentences without reordering. The 95% con-
fidence intervals for TestSet1 ranges from + 0.005 to
+ 0.011; the 95% confidence intervals for TestSet2
ranges from £ 0.012 to £ 0.017 as TestSet2 contains
less number of sentences than TestSet1.

Several conclusions can be drawn from the two fig-
ures. First, clump-based systems benefit from mem-
orizing n-grams, but the improvement quickly levels
off because there are fewer long n-grams that appear
in both training and test data. Second, the curves in
Figure 7 become flat once n reaches 4. In contrast,
the curves in 6 keep going up even after n reaches 8.
This indicates that TestSet1 (the Hansard test set)
is much closer to the training data than is TestSet2
(the new-domain test set), which is not surprising
given that TestSetl comes from the same corpus as
the training data. Third, the improvement provided
by reordering source sentences is statistically signif-
icant for TestSet2 no matter what the value of n is,
but the improvement is no longer statistically signif-
icant for TestSetl once n reaches 4. This is because
the main benefit of using rewrite patterns is to pro-
duce the correct target word order for unseen source
word sequences. Since TestSetl is very close to the
training data and there are fewer unseen source word
sequences, the benefit of reordering diminishes.

For the experimental results in Figure 6 and 7, the
decoder translates the source clumps in monotonic
order. To test the effect of reordering on the tar-
get side, we rerun the experiment on TestSet2 where
we allow the decoder to translate the source clump
in a non-monotonic order.” The Bleu score with

were used. For instance, in a separate experiment conducted
by our colleague Yaser Al-onaizan, the Bleu score of one sys-
tem output is 0.44 when four references are used. When the
same output is evaluated against each of the four reference
translations, the average 1-reference Bleu score is 0.25.
9Because the number of source clump permutations is ex-
ponential, in this experiment, we allow only certain kinds of
clump reordering. Even with this restriction, the decoding

Table 2: The effect of non-monotonic decoding

non-monotonic | monotonic
decoding decoding
rewrite patterns | 0.187 0.196
not used
rewrite patterns | 0.185 0.215
used

one reference is shown in Table 2, where the max-
imal clump length is set to 8, and 95% confidence
intervals are about + 0.016. This result indicates
that letting the decoder reorder clumps using the
word-based trigram language model alone hurts the
performance.

5 Conclusion

This paper addresses two limitations of clump-based
SMTs: First, the systems lack a mechanism for ex-
pressing and using generalization that accounts for
reorderings of linguistic phrases. Second, the order-
ing of clumps in such systems does not respect lin-
guistic phrase boundaries. To alleviate these prob-
lems, we have used automatically learned rewrite
patterns to preprocess the source sentences so that
they have a word order similar to that of the tar-
get language and the decoder can translate the sen-
tences in monotonic order. We have used broad-
coverage rule-based parsers both in the discovery of
the rewrite patterns, and in the runtime sentence re-
ordering by applying those patterns to parse trees.
Our experiments show 10% relative improvement in
Bleu measure for a more realistic test set.

There are several directions for future work. First,
we would like to try our approach on other lan-
guage pairs with more word-order difference. Sec-
ond, we want to study how parsing accuracy affects
the reordering results and eventually the MT results.
Third, we are hoping to exploit the possibility of us-
ing rewrite patterns directly in the decoder.

References

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Estimation.
Computational Linguistics, 19(2):263-311.

Kenji Imamura, Eiichiro Sumita, and Yuji Matsumoto. 2003.
Feedback Cleaning of Machine Translation Rules Using
Automatic Evaluation. In Proceedings of the 41st Annual
Meeting of the Association for Computational Linguistics
(ACL 2003), pages 447-454.

Kenji Imamura. 2001. Hierarchical Phrase Alignment Har-
monized with Parsing. In Proc. of the 6th Natural Lan-
guage Processing Pacific Rim Symposium (NLPRS 2001),
pages 377-384.

Hiroyuki Kaji, Yuuko Kida, and Yasutsugu Morimoto. 1992.
Learning Translation Templates From Bilingual Text. In
Proc. of the 14th International Conference on Computa-
tional Linguistics (COLING 1992), pages 672-678.

Benoit Lavoie, Michael White, and Tanya Korelsky. 2001.
Inducing Lexico-Structural Transfer Rules from Parsed Bi-

time is 140 times slower than the monotonic decoding.

texts. In Proc. of the Workshop on Data-driven Machine
Translation in conjunction with ACL 2001.

Daniel Marcu and William Wong. 2002. A Phrased-Based,
Joint Probability Model for Statistical Machine Transla-
tion. In Proc. of the Conf. on Empirical Methods in Nat-
ural Language Processing (EMNLP 2002), pages 133-139.

Yuji Matsumoto, Hiroyuki Ishimoto, and Takehito Utsuro.
1993. Structural Matching of Parallel Texts. In Proc of the
31st Annual Meeting of the Association for Computational
Linguistics (ACL 1993), pages 23-30.

Michael C. McCord and Arendse Bernth. 1998. The LMT
Transformational System. In Proc. of the Third Confer-
ence of the Association for Machine Translation in the
Americas (AMTA 1998), pages 344-355.

Michael McCord. 1980. Slot Grammars. Computational Lin-
guistics, 6(1):31-43.

Michael McCord. 1989. Design of LMT: A Prolog-based
Machine Translation System. Computational Linguistics,
15:33-52.

Michael C. McCord. 1990. Slot Grammar: A system for sim-
pler construction of practical natural language grammars.
In R. Studer, editor, Natural Language and Logic: Inter-
national Scientific Symposium, Lecture Notes in Computer
Science, pages 118-145. Springer Verlag, Berlin.

Michael C. McCord. 1993. Heuristics for broad-coverage nat-
ural language parsing. In Proceedings of the ARPA Human
Language Technology Workshop, pages 127-132. Morgan-
Kaufmann.

Arul Menezes and Stephen D. Richardson. 2001. A best-first
alignment algorithm for automatic extraction of transfer
mappings from bilingual corpora. In Proc. of the Workshop
on Data-Driven Machine Translation in conjunction with
ACL 2001.

Adam Meyers, Michiko Kosaka, and Ralph Grishman. 2000.
Chart-based transfer rule application in machine transla-
tion. In Proc. of the 18th International Conference on
Computational Linguistics (COLING 2000).

Franz-Josef Och, Christoph Tillmann, and Hermann Ney.
1999. Improved Alignment Models for Statistical Machine
Translation. In Proc. of the Joint Conf. on Empirical
Methods in Natural Language Processing and Very Large
Corpora (EMNLP/VLC 1999), pages 20-28.

Franz Och, Daniel Gildea, Sanjeev Khudanpur, Anoop
Sarkar, Kenji Yamada, Alex Fraser, Shankar Kumar, Li-
bin Shen, David Smith, Katherine Eng, Viren Jain, Zhen
Jin, and Dragomir Radev. 2004. A Smorgasbord of Fea-
tures for Statistical Machine Translation. In Proceedings of
the Human Language Technology Conference of the North
American Chapter of the Association for Computational
Linguistics (HLT/NAACL 2004).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: a Method for Automatic Evaluation of
Machine Translation. In Proc. of the 40th Annual Conf.
of the Association for Computational Linguistics (ACL
2002), pages 311-318.

Christoph Tillmann and Fei Xia. 2003. A Phrase-Based
Unigram Model for Statistical Machine Translation. In
Proc. of the third Human Language Technology Confer-
ence (HLT/NAACL 2003).

Hideo Watanabe, Sado Kurohashi, and Eiji Aramak. 2000.
Finding Structural Correspondences from Bilingual Parsed
Corpus for Corpus-based Translation. In Proc. of the 18th
International Conference on Computational Linguistics
(COLING 2000).

Dekai Wu. 1996. A Polynominal-Time Algorithm for Sta-
tistical Machine Translation. In Proc of the 34th Annual
Meeting of the Association for Computational Linguistics
(ACL 1996).

Kenji Yamada and Kevin Knight. 2002. A Decoder for
Syntax-based Statistical MT. In Proc. of the 40th An-
nual Conf. of the Association for Computational Linguis-
tics (ACL 2002), pages 303-310.

