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Abstract 

We describe a novel approach to 'packing' of local am- 
biguity in parsing with a wide-coverage HPSG gram- 
mar, and provide an empirical assessment of the in- 
teraction between various packing and parsing strate- 
gies. We present a linear-time, bidirectional subsump- 
tion test for typed feature structures and demonstrate 
that (a) subsumption- and equivalence-based packing is 
applicable to large HPSG grammars and (b) average parse 
complexity can be greatly reduced in bottom-up chart 
parsing with comprehensive HPSG implementations. 

1 B a c k g r o u n d  

The ambiguity inherent in natural language means 
that during parsing, some segments of the input 
string may end up being analysed as the same type 
of linguistic object in several different ways. Each 
of these different ways must be recorded, but subse- 
quent parsing steps must treat the set of analyses as 
a single entity, otherwise the computation becomes 
theoretically intractable. Earley's algorithm (Ear- 
ley, 1970), for example, avoids duplication of parse 
items by maintaining pointers to alternative deriva- 
tions in association with the item. This process 
has been termed 'local ambiguity packing' (Tomita, 
1985), and the structure built up by the parser, a 
'parse forest' (Billot &: Lang, 1989). Context free 
(CF) grammars represent linguistic objects in terms 
of atomic category symbols. The test for duplicate 
parse items--and thus being able to pack the sub- 
analyses associated with them--is equality of cate- 
gory symbols. In the final parse forest every differ- 
ent combination of packed nodes induces a distinct, 
valid parse tree. 

Most existing unification-based parsing systems 
either implicitly or explicitly contain a context-free 
core. For example, in the CLE (Alshawi, 1992) 
the (manually-assigned) functors of the Prolog terms 
forming the categories constitute a CF 'backbone'. 
In the Alvey Tools system (Carroll, 1993) each dis- 
tinct set of features is automatically given a unique 
identifier and this is associated with every category 
containing those features. The packing technique 
has been shown to work well in practice in these 

and similar unification-augmented CF systems: the 
parser first tests for CF category equality, and then 
either (a) checks that the existing feature structure 
subsumes the newly derived one (Moore & Alshawi, 
1992), or (b) forms an efficiently processable disjunc- 
tion of the feature structures (Maxwell and Kaplan, 
1995). Extracting parses from the parse forest is 
similar to the CF case, except that a global check for 
consistency of feature values between packed nodes 
or between feature structure disjuncts is required 
(this global validation is not required if the sub- 
sumption test is strengthened to feature structure 
equivalence). 

In contrast, there is essentially no CF compo- 
nent in systems which directly interpret HPSG gram- 
mars. Although HPSG feature structures are typed, 
an initial CF category equality test cannot be im- 
plemented straightforwardly in terms of the top- 
level types of feature structures since two compat- 
ible types need not be equal, but could stand in 
a subtype-supertype relationship. In addition, the 
feature structure subsumption test is potentially ex- 
pensive since feature structures are large, typically 
containing hundreds of nodes. It is therefore an open 
question whether parsing systems using grammars of 
this type can gain any advantage from local ambi- 
guity packing. 

The question is becoming increasingly impor- 
tant, though, as wide-coverage HPSG grammars are 
starting to be deployed in practical applications-- 
for example for 'deep' analysis in the VerbMo- 
bil speech-to-speech translation system (Wahlster, 
1997; Kiefer, Krieger, Carroll, & Malouf, 1999). 1 In 
this paper we answer the question by demonstrating 
that (a) subsumption- and equivalence-based feature 
structure packing is applicable to large HPSG gram- 
mars, and (b) average complexity and time taken 
for the parsing task can be greatly reduced. In 
Section 2 we present a new, linear-time, bidirec- 

1A significant body of work on efficient processing with 
such grammars has been building up recently, with investi- 
gations into efficient feature structure operations, abstract- 
machine-based compilation, CF backbone computation, and 
finite-state approximation of HPSG derivations, amongst oth- 
ers (Flickinger, Oepen, Uszkoreit, & Tsujii, 2000). 
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tional subsumption test for typed feature structures, 
which we use in a bottom-up, chart-based parsing 
algorithm incorporating novel, efficient accounting 
mechanisms to guarantee minimal chart size (Sec- 
tion 3). We present a full-scale evaluation of the 
techniques on a large corpus (Section 4), and com- 
plete the picture with an empirically-based discus- 
sion of grammar restrictors and parsing strategies 
(Section 5). 

2 E f f i c i e n t  S u b s u m p t i o n  a n d  
E q u i v a l e n c e  A l g o r i t h m s  

Our feature structure subsumption algorithm 2 as- 
sumes totally well-typed structures (Carpenter, 
1992) and employs similar machinery to the 
quasi-destructive unification algorithm described by 
Tomabechi (1991). In particular, it uses temporary 
pointers in dag nodes, each pointer tagged with a 
generation counter, to keep track of intermediate 
results in processing; incrementing the generation 
counter invalidates all temporary pointers in a sin- 
gle operation. But whereas quasi-destructive unifi- 
cation makes two passes (determining whether the 
unification will be successful and then copying out 
the intermediate representation) the subsumption 
algorithm makes only one pass, checking reentran- 
cies and type-supertype relationships at the same 
time. 3 The algorithm, shown in Figure 1, also si- 
multaneously tests if both feature structures sub- 
sume each other (i.e. they are equivalent), if either 
subsumes the other, or if there is no subsumption 
relation between them in either direction. 

The top-level entry point dag-subsumes-pO and 
subsidiary function dag-subsumes-pO 0 each return 
two values, held in variables ]orwardp and back- 
wardp, both initially true, recording whether it is 
possible that  the first dag subsumes the second 
and/or  vice-versa, respectively. When one of these 
possibilities has been ruled out the appropriate vari- 
able is set to false; in the statement of the algorithm 
the two returned values are notated as a pair, i.e. 
(/orwardp, backwardp). If at any stage both vari- 
ables have become set to false the possibility of sub- 
sumption in both directions has been ruled out so 
the algorithm exits. 

The (recursive) subsidiary function dag-subsumes- 
pO 0 does most of the work, traversing the two input 

2Although independently-developed implementations of 
essentially the same algorithm can be found in the source code 
of The Attribute Logic Engine (ALE) version 3.2 (Carpenter 
& Penn, 1999) and the SICStus Prolog term utilities library 
(Penn, personal communication), we believe that there is no 
previous published description of the algorithm. 

3Feature structure F subsumes feature structure G iff: 
(1) if path p is defined in F then p is also defined in G and 
the type of the value of p in F is a supertype or equal to the 
value in G, and (2) all paths that are reentrant in F are also 
reentrant in G. 

dags in step. First, it checks whether the current 
node in either dag is involved in a reentrancy that 
is not present in the other: for each node visited 
in one dag it adds a temporary pointer (held in the 
'copy' slot) to the corresponding node in the other 
dag. If a node is reached that  already has a pointer 
then this is a point of reentrancy in the dag, and 
if the pointer is not identical to the other dag node 
then this reentrancy is not present in the other dag. 
In this case the possibility that  the former dag sub- 
sumes the latter is ruled out. After the reentrancy 
check the type-supertype relationship between the 
types at the current nodes in the two dags is deter- 
mined, and if one type is not equal to or a supertype 
of the other then subsumption cannot hold in that 
direction. Finally, after successfully checking the 
type-supertype relationships, the function recurses 
into the arcs outgoing from each node that have the 
same label. Since we are assuming totally well-typed 
feature structures, it must be the case that either the 
sets of arc labels in the two dags are the same, or 
one is a strict superset of the other. Only arcs with 
the same labels need be processed; extra arcs need 
not since the type-supertype check at the two nodes 
will already have determined that  the feature struc- 
ture containing the extra arcs must be subsumed by 
the other, and they merely serve to further specify 
it and cannot affect the final result. 

Our implementation of the algorithm contains ex- 
t ra  redundant but  cheap optimizations which for rea- 
sons of clarity are not shown in figure 1; these in- 
clude tests that  forwardp is true immediately before 
the first supertype check and that  backwardp is true 
before the second. 4 

The use of temporary pointers means that the 
space complexity of the algorithm is linear in the 
sum of the sizes of the feature structures. However, 
in our implementation the 'copy' slot that  the point- 
ers occupy is already present in each dag node (it is 
required for the final phase of unification to store 
new nodes representing equivalence classes), so in 
practice the subsumption test does not allocate any 
new storage. All pointer references take constant 
time since there are no chains of 'forwarded' point- 
ers (forwarding takes place only during the course of 
unification and no forwarded pointers are left after- 
wards). Assuming the supertype tests can be carried 

4There is scope for further optimisation of the algorithm in 
the case where dagl and dag2 are identical: full processing in- 
side the structure is not required (since all nodes inside it will 
be identical between the two dags and any strictly internal 
reentrancies will necessarily be the same), but we would still 
need to assign temporary pointers inside it so that any exter- 
nal reentrancies into the structure would be treated correctly. 
In our tests we have found that as far as constituents that are 
candidates for local ambiguity packing are concerned there is 
in fact little equality of structures between them, so special 
equality processing does not justify the extra complication. 
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1 procedure  dag-subsumes-p(dagl,dag2) --_ 
2 (forwardp, backwardp) <-- { establish context for non-local exit} 
3 catch wi th  tag 'fail' dag-subsumes-pO(dagl, dag2, true, true); 
4 invalidate-temporary-pointers(); {reset temporary 'copy' pointers} 
5 r e tu rn  (forwardp, backwardp); 
6 e n d  

7 procedure  dag-subsumes-pO(dagl,dag2,forwardp, backwardp) - 
8 if (dagl.copy is empty) t hen  dagl.copy <--- dag2; {check reentraneies} 
9 else if~dagl.copy ~ dag2) then forwardp <-- false; f i  

10 i f  (dag2.copy is empty) then dag2.copy ~- dagl; 
11 else i f  (dag2.copy p dagl) then backwardp ~- false; f i  
12 i f  (forwardp = false and backwardp = false) then 
13 throw (false, false) with tag 'fail'; {reentrancy check failed} 
14 fi 
15 if (not supertype-or-equal-p(dagl.type, dag2.type)) t hen  forwardp +- false; fi {check types} 
16 if (not supertype-or-equal-p(dag2.type, dagl.type)) t hen  backwardp <-- false; fl 
17 i f  (forwardp = false and backwardp = false) then 
18 throw (false, false) with tag 'fail'; {no subtype relations} 
19 fi 
20 for each arc in intersect(dagl.arcs, dag2.arcs) do {check shared arcs recursively} 
21 (forwardp, backwardp) <- 
22 dag-subsumes-pO(destination of arc for dagl, destination of arc for dag2, forwardp, backwardp); 
23 o d  
24 r e tu rn  (forwardp, backwardp); {signal result to caller} 
25 e n d  

Figure 1: Bidirectional, linear-time feature structure subsumption (and equivalence) algorithm. 

out in constant time (e.g. by table lookup), and that 
the grammar allows us to put a small constant upper 
bound on the intersection of outgoing arcs from each 
node, the processing in the body of dag-subsumes- 
pO 0 takes unit time. The body may be executed up 
to N times where N is the number of nodes in the 
smaller of the two feature structures. So overall the 
algorithm has linear time complexity. In practice, 
our implementation (in the environment described in 
Section 4) performs of the order of 34,000 top-level 
feature structure subsumption tests per second. 

3 Ambiguity Packing in t h e  P a r s e r  
Moore and Alshawi (1992) and Carroll (1993) have 
investigated local ambiguity packing for unification 
grammars with CF backbones, using CF category 
equality and feature structure subsumption to test 
if a newly derived constituent can be packed. If a 
new constituent is equivalent to or subsumed by an 
existing constituent, then it can be packed into the 
existing one and will take no further part in pro- 
cessing. However, if the new constituent subsumes 
an existing one, the situation is not so straightfor- 
ward: either (a) no packing takes place and the new 
constituent forms a separate edge (Carroll, 1993), or 
(b) previous processing involving the old constituent 
is undone or invalidated, and it is packed into the 
new one (Moore & Alshawi, 1992; however, it is un- 

clear whether they achieve maximal compactness in 
practice: see Table 1). In the former case the parse 
forest produced will not be optimally compact; in 
the latter it will be, but maintaining chart consis- 
tency and parser correctness becomes a non-trivial 
problem. Packing of a new edge into an existing one 
we call proactive (or forward) packing; for the more 
complex situation involving a new edge subsuming 
an existing one we introduce the term retroactive (or 
backward) packing. 

Several issues arise when packing an old edge (old) 
into one that was newly derived (new) retroactively: 
(i) everything derived from old (called derivatives of 
old in the following) must be invalidated and ex- 
cluded from further processing (as new is known 
to generate more general derivatives); and (ii) all 
pending computation involving old and its deriva- 
tives has to be blocked efficiently. Derivatives of 
old that are invalidated because of retroactive pack- 
ing may already contain packed analyses, however, 
which still represent valid ambiguity. These need to 
be repacked into corresponding derivatives of new 
when those become available. In turn, derivatives of 
old may have been packed already, such that they 
need not be available in the chart for subsequent sub- 
sumption tests. Therefore, the parser cannot simply 
delete everything derived from old when it is packed; 
instead, derivatives must be preserved (but blocked) 
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p r o c e d u r e  block(edge, mark) - 
i f  (edge.frozen = false or mark = freeze) t h e n  edge.frozen +- mark; fi 
for each  parent in edge.parents do  block(parent, freeze); od  

end  

p r o c e d u r e  packed-edge-p(new) - 
for each old in chart[new.start][new.end] do 

(forwardp, backwardp) ~- dag-subsumes-p(old.dag, new.dag); 
i f  (forwardp = true and old.frozen = fa/se) t h e n  

old.packed ~-- (new I old.packed); 
r e t u r n  true; 

fi 
i f  (backwardp) t h e n  

new.packed ~-- (new.packed @ old.packed); 
old.packed +-- 0; 

{mark current edge} 
{ recursively freeze derivatives} 

{passive edges with same span} 
{ test category subsumption} 

{ equivalent or proactive packing} 
{pack 'new' into 'old'} 

{return to caller; signal success} 

{retroactive packing} 
{raise all packings into new host} 

if  (old.frozen = false) t h e n  new.packed e- (old I new.packed); fi {pack 'old' into 'new'} 
block(old, frost); {frost 'old' and freeze derivatives} 
delete(old, chart); {remove 'old' from the chart} 

fl 
od  
r e t u r n  false; {signal failure to pack 'new' to caller} 

end  

Figure 2: Algorithm called on each newly derived edge to achieve maximal packing. 

until the derivations have been recomputed on the 
basis of new. 5 As new is equivalent to or more gen- 
eral than old it is guaranteed to derive at least the 
same set of edges; furthermore, the derivatives of 
new will again be equivalent to or more general than 
the corresponding edges derived from old. 

The procedure packed-edge-p(), sketched in Fig- 
ure 2, achieves pro- and retroactive packing with- 
out significant overhead in the parser; the algorithm 
can be integrated with arbitrary bottom-up (chart- 
based) parsing strategies. The interface assumes 
that the parser calls packed-edge-pO on each new 
edge new as it is derived; a return value of true indi- 
cates that new was packed proactively and requires 
no further processing. Conversely, a false return 
value from packed-edge-p 0 signals that  new should 
subsequently undergo regular processing. The sec- 
ond part of the interface builds on notions we call 
frosting and freezing, meaning temporary and per- 
mament invalidation of edges, respectively. As a 
side-effect of calls to packed-edge-p(), a new edge 
can cause retroactive packing, resulting in the dele- 

5The situation is simpler in the CLE parser (Moore & Al- 
shawl, 1992) because constituents and dominance relations 
are separated in the chart. The CLE encoding, in fact, does not 
record the actual daughters used in building a phrase (e.g. as 
unique references or pointers, as we do), but instead preserves 
the category information (i.e. a description) of those daugh- 
ters. Hence, in extracting complete parses from the chart, 
the CLE has to perform (a limited) search with re-unification 
of categories; in this respect, the CLE parse forest still is an 
underspecified representation of the set of analyses, whereas 
our encoding (see below) facilitates unpacking without extra 
search. 

tion of one or more existing edges from the chart 
and blocking of derivatives. Whenever the parser 
accesses the chart (i.e. in trying to combine edges) 
or retrieves a task from the agenda, it is expected 
to ignore all edges and parser tasks involving such 
edges that  have a non-null 'frozen' value. When an 
existing edge old is packed retroactively, it is frosted 
and ignored by the parser; as old now represents lo- 
cal ambiguity, it still has to be taken into account 
when the parse forest is unpacked. Derivatives of 
old, on the other hand, need to be invalidated in 
both further parsing and later unpacking, since they 
would otherwise give rise to spurious analyses; ac- 
cordingly, such derivatives are frozen permanently. 
Frosting and freezing is done in the subsidiary pro- 
cedure block () that  walks up the parent link recur- 
sively, storing a mark into the 'frozen' slot of edges 
that distinguishes between temporary frosting (in 
the top-level call) and permanent freezing (in recur- 
sire calls). 

For a newly derived edge new, packed-edge-pO 
tests mutual subsumption against all passive edges 
that span the same portion of the input string. 
When forward subsumption (or equivalence) is de- 
tected and the existing edge old is not blocked, reg- 
ular proactive packing is performed (adding new to 
the packing list for old) and the procedure returns 
immediately. 6 In the case of backward subsump- 

6packing an edge el into another edge e2 logically means 
that e2 will henceforth serve as a representative for el and 
the derivation(s) that it encodes. In practice, el is removed 
from the chart and ignored in subsequent parser action and 
subsumption tests. Only in unpacking the parse forest will 
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Figure 3: Effects of maximal ambiguity packing 

tion, analyses packed into old are raised into new 
(using the append operator '~ '  because new can at- 
tract multiple existing edges in the loop); old itself is 
only packed into new when it is not blocked already. 
Finally, old is frosted, its derivatives are recursively 
frozen, and old is deleted from the chart. In contrast 
to proactive packing, the top-level loop in the pro- 
cedure continues so that new can pick up additional 
edges retroactively. However, once a backward sub- 
sumption is detected, it follows that no proactive 
packing can be achieved for new, as the chart can- 
not contain an edge that is more general than old. 

4 E m p i r i c a l  R e s u l t s  

We have carried out an evaluation of the algo- 
rithms presented above using the LinGO grammar 
(Flickinger & Sag, 1998), a publicly-available, multi- 
purpose, broad-coverage HPSG of English developed 
at CSLI Stanford. With roughly 8,000 types, an av- 
erage feature structure size of around 300 nodes, and 
64 lexical and grammar rules (fleshing out the inter- 
action of HPSG ID schemata, wellformedness prin- 
ciples, and LP constraints), LinGO is among the 
largest HPSG grammars available. We used the LKB 
system (Copestake, 1992, 1999) as an experimen- 
tation platform since it provides a parameterisable 
bottom-up chart parser and precise, fine-grained 
profiling facilities (Oepen & Flickinger, 1998). 7 All 
of our results were obtained in this environment, 
running on a 300 Mhz UltraSparc, and using a bal- 
anced test set of 2,100 sentences extracted from 
VerbMobil corpora of transcribed speech: input 
lengths from 1 to 20 words are represented with 100 
test items each; although sentences in the corpus 
range up to 36 words in length there are relatively 
few longer than 20 words. 

the category of el and its decomposition(s) in daughter edges 
(and corresponding subtrees) be used again, to multiply out 
and project local ambiguity. 

;'The LinGO grammar and LKB software are publicly avail- 
able at ' h t t p : / / l i n g o .  s t anford ,  edu/ ' .  
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on the total chart size (truncated above 25 words). 

Figure 3 compares total chart size (in all-paths 
mode) for the regular LKB parser and our variant 
with pro- and retroactive packing enabled. Factor- 
ing ambiguity reduces the number of passive edges 
by a factor of more than three on average, while for 
a number of cases the reduction is by a factor of 30 
and more. Compared to regular parsing, the rate of 
increase of passive chart items with respect to sen- 
tence length is greatly diminished. 

To quantify the degree of packing we achieve 
in practice, we re-ran the experiment reported by 
Moore and Alshawi (1992): counting the number of 
nodes required to represent all readings for a simple 
declarative sentence containing zero to six preposi- 
tional phrase (PP) modifiers. The results reported 
by Moore and Alshawi (1992) (using the CLE gram- 
mar of English) and those obtained using pro- and 
retroactive packing with the LinGO grammar are 
presented in Table 1. 8 Although the comparison 
involves different grammars we believe it to be in- 
structive, since (i) both grammars have comprehen- 
sive coverage, (ii) derive the same numbers of read- 
ings for all test sentences in this experiment, (iii) 
require (almost) the same number of nodes for the 
basic cases (zero and one PP), (iv) exhibit a similar 
size in nodes for one core PP (measured by the in- 
crement from n = 0 to n = 1), and (v) the syntactic 
simplicity of the test material hardly allows crosstalk 

SMoore and Alshawi (1992) use the terms 'node' and 
'record' interchangeably in their discussion of packing, where 
the CLE chart is comprised of separate con(stituent) and 
ana(lysis) entries for category and dominance information, 
respectively. It is unclear whether the counting of 'packed 
nodes' in Moore and Alshawi (1992) includes con records or 
not, since only maa records are required in parse tree recovery. 
In any case, both types of chart record need to be checked by 
subsumption as new entries are added to the chart. Con- 
versely, in our setup each edge represents not only the node 
category, but also pointers to the daughter(s) that gave rise 
to this edge, and moreover, where applicable, a list of packed 
edges that are subsumed by the category (but not necessarily 
by the daughters). For the LKB, the column 'result edges' in 
Table 1 refers to the total number of edges in the chart that 
contribute to at least one complete analysis. 
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K i m  saw a cat (in the hotel) n 

C P U  Time  
n readings parse unpack I plain 

msec msec msec 
0 1 
1 2 
2 5 
3 14 
4 42 
5 132 
6 429 

Moore & Alshawi 
packed nodes 

10 1.0 
21 2.1 
38 3.8 
62 6.2 
94 9.4 
135 13.5 
186 18.6 

Our Method 
resul t  edges 

11 1.0 
23 2.1 
38 3.5 
56 5.1 
77 7.0 
101 9.2 
128 11.6 

210 
340 
460 
600 
870 

1,150 
1,460 

10 
40 
80 
200 
590 

1,860 
5,690 

180 
290 
530 

1,180 
2,990 
8,790 
28,160 

Table h Comparison of retroactive packing vs. the method used by Moore and Alshawi (1992); columns 
labeled '+ '  show the relative increase of packed nodes (result edges) normalised to the n -- 0 baseline. 

with other grammatical phenomena. Comparing rel- 
ative packing efficiency with increasing ambiguity 
(the columns labeled ' - '  in Table 1), our method ap- 
pears to produce a more compact representation of 
ambiguity than the CLE, and at the same time builds 
a more specific representation of the parse forest that 
can be unpacked without search. To give an impres- 
sion of parser throughput, Table 1 includes timings 
for our parsing and unpacking (validation) phases, 
contrasted with the plain, non-packing LKB parser: 
as would be expected, parse time increases linearly 
in the number of edges, while unpacking costs re- 
flect the exponential increase in total numbers of 
analyses; the figures show that our packing scheme 
achieves a very significant speedup, even when un- 
packing time is included in the comparison. 

5 C h o o s i n g  t h e  G r a m m a r  R e s t r i c t o r  
a n d  P a r s i n g  S t r a t e g y  

In order for the subsumption relation to apply mean- 
ingfully to HPSG signs, two conditions must be met. 
Firstly, parse tree construction must not be dupli- 
cated in the feature structures (by means of the 
HPSG DTRS feature) but be left to the parser (i.e. 
recorded in the chart); this is achieved in a stan- 
dard way by feature structure restriction (Shieber, 
1985) applied to all passive edges. Secondly, the pro- 
cessing of constraints that do not restrict the search 
space but build up new (often semantic) structure 
should be postponed, since they are likely to inter- 
fere with subsumption. For example, analyses that 
differ only with respect to PP attachment would 
have the same syntax, but differences in semantics 
may prevent them being packed. This problem can 
be overcome by using restriction to (temporarily) re- 
move such (semantic) attributes from lexical entries 
and also from the rule set, before they are input 
to the parser in the initial parse forest construction 
phase. The second, unpacking phase of the parser re- 

verts to the unrestricted constraint set, so we can al- 
low overgeneration in the first phase and filter glob- 
ally inconsistent analyses during unpacking. Thus, 
the right choice of grammar restrictor can be viewed 
as an empirical rather than analytical problem. 

Table 2 summarizes packing efficiency and parser 
performance for three different restrictors (labeled 
no, partial, and ful l  semantics, respectively); to 
gauge effects of input complexity, the table is fur- 
ther subdivided by sentence length into two groups 
(of around 1,000 sentences each). Compared to reg- 
ular parsing, packing with the full semantics in place 
is not effective: the chart size is reduced slightly, but 
the extra cost for testing subsumption increases total 
parse times by a factor of more than four. Eliminat- 
ing all semantics (i.e. the entire HPSG C0NT value), on 
the other hand, results in overgeneralisation: with 
less information in the feature structures we achieve 
the highest number of packings, but at the same 
time rules apply much more freely, resulting in a 
larger chart compared to parsing with a partial se- 
mantics; moreover, unpacking takes longer because 
the parse forest now contains inconsistent analyses. 
Restricting compositional semantics but preserving 
attributes that participate in selection and agree- 
ment results in minimal chart size and parsing time 
(shown in the partial semant ics  figures) for both di- 
visions of the test corpus. 

The majority of packings involve equivalent fea- 
ture structures which suggests that unpacking could 
be greatly simplified if the grammar restrictor was 
guaranteed to preserve the generative capacity of 
the grammar (in the first parsing phase); then, only 
packings involving actual subsumption would have 
to be validated in the unpacking phase. 9 Finally, 

9There is room for further investigation here: partly for 
theory-internal reasons, current development of the LinGO 
grammar is working towards a stricter separation of restrictive 
(selectional) and constructive (compositional) constraints in 
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1 - 1 0  

words  

I Passive Packed 
Parse r  Edges  T r e e s  

no semantics 
partial semantics 

full semantics 
no packing 

116 
111 
149 
160 

0.9 
0.8 
2.8 
5.6 

n o  semantics 622 1.2 
> 10 partial semantics 575 1.0 

words  full semantics 1693 33-9 
no packing 2075 99-9 

I Packings  CPU Time  (sec) 
= I -D± p se I unpack 

15"5 4"1 2"6 1"8 0"37 ] 0"05 
12"0 3"6 2"4 1"4 0"33 1 0"05 
2"1 0"4 0"2 0"1 0"60 0"04 
. . . .  0"44 

179"0 4 2 " 1  23"8 26"0 2"37 0"70 
134"9 3 5 " 0  20"6 18"9 1"97 0"63 
38"3 3"4 2"9 3"2 29"40 0"56 

. . . .  6"46 

Table 2: Contrasting various grammar restrictors on short (top) and medium-length (bottom) inputs; all 
numbers are averaged over 1,000 items per class; packings are, from left to right: equivalence ( ' - ' ) ,  pro- 
('-~') and retroactive ( ' r ' )  packings, and the number of edges that were frozen ('±'). 

we note that the number of retroactive packings is 
relatively small, and on average each such packing 
leads to only one previously derived edge being in- 
validated. This, of course, is a function of the order 
in which edges are derived, i.e. the parsing strategy. 

All the results in Table 2 were obtained with a 
'right corner' strategy which aims to exhaust compu- 
tation for any suffix of the input string before mov- 
ing the input pointer to the left; this is achieved by 

start (where start means of a scoring function end - -W-  
and end are the vertices of the derivation that would 
result from the computation, and n is the total input 
length) that orders parser tasks in the agenda. How- 
ever, we have observed (Oepen & Callmeier, 2000) 
that HPSG-type, highly lexicalized grammars bene- 
fit greatly from a bidirectional, 'key'-driven, active 
parsing regime, since they often employ rules with 
underspecified arguments that are only instantiated 
by coreference with other daughters (where the 'key' 
daughter is the linguistic head in many but not all 
constructions). This requirement and the general 
non-predictability of categories derived for any to- 
ken substring (in particular with respect to unary 
rule applications), means that a particular parsing 
strategy may reduce retroactive packing but cannot 
avoid it in general. With pro- and retroactive pack- 
ing and the minimal accounting overhead, we find 
overall parser throughput to be very robust against 
variation in the parsing strategy. Lavie and Rosd 
(2000) present heuristics for ordering parser actions 
to achieve maximally compact parse forests--though 
only with respect to a CF category backbone---in the 
absence of retroactive packing; however, the tech- 
niques we have presented here allow local ambigu- 
ity packing and parser tuning--possibly including 
priority-driven best-first search--to be carried out 
mostly independently of each other. 

the grammar and underlying semantic theory. We expect that 
our approach to packing will benefit from these developments. 

6 C o n c l u s i o n s  

We have presented novel algorithms for efficient sub- 
sumption checking and pro- and retroactive local 
ambiguity packing with large feature structures, and 
have provided strong empirical evidence that our 
approach can be applied beneficially to chart pars- 
ing with a large, broad-coverage HPSG of English. 
By comparison to previous work in unification-based 
parsing we have demonstrated that pro- and retroac- 
tive packing are well-suited to achieve optimal pack- 
ing; furthermore, experimental results obtained with 
a publicly-available HPSG processing platform con- 
firm that ambiguity packing can greatly reduce av- 
erage parse complexity for this type of grammars. 

In related work, Miyao (1999) describes an ap- 
proach to packing in which alternative feature struc- 
tures are represented as packed, distributed disjunc- 
tions of feature structure fragments. Although the 
approach may have potential, the shifting of com- 
plex accounting into the unification algorithm is at 
variance with the findings of Kiefer et al. (1999), 
who report large speed-ups from the elimination of 
disjunction processing during unification. Unfortu- 
nately, the reported evaluation measures and lack of 
discussion of parser control issues are insufficient to 
allow a precise comparison. 

We intend to develop the approach presented in 
this paper in several directions. Firstly, we will en- 
hance the unpacking phase to take advantage of the 
large number of equivalence packings we observe. 
This will significantly reduce the amount of work it 
needs to do. Secondly, many application contexts 
and subsequent layers of semantic processing will 
not require unfolding the entire parse forest; here, 
we need to define a selective, incremental unpack- 
ing procedure. Finally, applications like VerbMo- 
bil favour prioritized best-first rather than all-paths 
parsing. Using slightly more sophisticated account- 
ing in the agenda, we plan to investigate priority 
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propagation in a best-first variant of our parser. 
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