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Abstract

The Semantic Textual Relatedness (STR)
shared task aims at detecting the degree of se-
mantic relatedness between pairs of sentences
on low-resource languages from Afroasiatic,
Indoeuropean, Austronesian, Dravidian, and
Nigercongo families. We use the Sentence-
CROBI architecture to tackle this problem. The
model is adapted from its original purpose
of paraphrase detection to explore its capac-
ities in a related task with limited resources
and in multilingual and monolingual settings.
Our approach combines the vector represen-
tation of cross-encoders and bi-encoders and
possesses high adaptable capacity by combin-
ing several pre-trained models. Our system
obtained good results on the low-resource lan-
guages of the dataset using a multilingual fine-
tuning approach.

1 Introduction

Task 1 of SemEval 2024 (Ousidhoum et al., 2024b)
focuses on Semantic Textual Relatedness (STR).
Given two sentences, the semantic relatedness be-
tween them is defined as the degree of closeness
between their meanings (Mohammad and Hirst,
2012). However, the traits that make two sentences
to be understood as related entities can be of differ-
ent order, such as the underlying syntactic structure,
lexical affinity, or the author’s style, among others.

The task organisers have chosen for this track a
set of languages, among which English and Span-
ish stand out, two languages with numerous com-
putational resources. The rest, are low-resourced
languages from Africa (Algerian Arabic, Moroccan
Arabic, Amharic, Hausa, Kinyarwanda) and Asia
(Marathi, Telegu).

Three tracks were proposed in the task: super-
vised, unsupervised and cross-lingual. We partici-
pated in Track A, supervised. This is a regression
problem since a relatedness coefficient must be
given that ranges from O to 1 for each pair of sen-
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tences. Our solution is based on using the sentence-
CROBI model, introduced in Ortiz-Barajas et al.
(2022), which was designed for paraphrase detec-
tion with very good results in English. Our hypoth-
esis is that the same methods used in paraphrase
detection can be applied to the determination of the
degree of relatedness.

The structure of the paper is the following. In
section 2, we describe the related work on this
task using pre-trained language models. Section
3 briefly describes the dataset. In section 4, we
present our methodology. Finally, we present our
results in the development and evaluation phases
in section 5 and conclusions in section 6.

2 Related Work

The Sentence-BERT model (Reimers and
Gurevych, 2019) is an approach that generates
semantically meaningful sentence embeddings.
By training BERT on siamese and triplet network
structures, this approach is able to capture sentence
similarity more effectively. It also reduces com-
putational overhead compared to BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019)
while maintaining high accuracy in tasks such as
semantic textual similarity and transfer learning.

Following this research line, there is an approach
to improve BERT-based semantic embeddings for
similarity tasks (Li et al., 2020). The authors pro-
pose a flow-based calibration method by transform-
ing the original BERT embeddings into an isotropic
latent space using flow. The proposed method
aligns better with gold semantic similarity and re-
duces the influence of lexical similarity.

In this work, we use the Sentence-CROBI model,
a simple architecture that combines bi-encoders
and cross-encoders that was originally proposed to
solve paraphrase detection. Due to its implementa-
tion facility, we adapt this model for the semantic
relatedness task by only changing the task-specify
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Language train | dev | test
Ambharic (amh) 992 95 171
Algerian Arabic (arq) | 1,262 | 92 | 584
Moroccan Arabic (ary) | 925 70 427
English (eng) 5,500 | 250 | 2,500
Spanish (esp) 1,562 | 140 | 600
Hausa (hau) 1,763 | 212 | 603
Marathi (mar) 1,155 | 293 | 298
Telugu (tel) 1,146 | 130 | 297
Kinyarwanda (kin) 778 | 102 | 222

Table 1: Number of instances in each train, dev and test
language partition for the supervised learning track of
the SemRel dataset.

block, the loss function and the pre-trained models
for the cross-encoder and bi-encoder components.

3 Corpora

We briefly describe the corpora that we use to eval-
uate our model in the SemEval shared task 1 in this
section.

The SemRel2024 dataset (Ousidhoum et al.,
2024a) is a comprehensive collection of semantic
textual relatedness datasets for 14 languages, pre-
dominantly spoken in Africa and Asia. These lan-
guages cover a wide range of language families and
include both high-resource and low-resource lan-
guages. Each dataset consists of sentence pairs an-
notated by native speakers with relatedness scores
ranging from O (completely unrelated) to 1 (max-
imally related). The datasets were curated by se-
lecting pairs from various sources such as news
data, Wikipedia, and conversational data to ensure
diversity in topics and formality levels. The relat-
edness scores were generated through Best-Worst
Scaling (BWS) annotations, enhancing the relia-
bility of the rankings. Table 1 shows the SemRel
dataset statistics for all languages in the supervised
learning track.

It can be noticed it is a highly unbalanced dataset.
Only English has more than 2,000 training exam-
ples, followed by Hausa, Spanish, Algerian Arabic,
Marathi and Telugu with more than 1,000 instances
and Ambharic, Moroccan Arabic and Kinyarwanda
with less than 1,000 examples.

4 Methodology

In this section, we describe the proposed architec-
ture, the experimental configuration and the train-
ing details. For pre-processing the sentence pairs,
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Figure 1: Diagram of the Sentence-CROBI model. U
and V' correspond to the individual vector representation
of each text, CLS is the token classification obtained
with the cross-encoder, and D is the Euclidean distance
between U and V'

we perform the same text pre-processing steps as
mentioned in (Ortiz-Barajas et al., 2022).

4.1 Model

In this section, we present the Sentence-CROBI
(Ortiz-Barajas et al., 2022) architecture and its
implementation. The model has two main com-
ponents: a bi-encoder and a cross-encoder. The
bi-encoder is based on the Sentence-BERT model
(Reimers and Gurevych, 2019); this is a BERT
modification using a Siamese neural network that
enables the model to obtain single vector repre-
sentations for each text by applying a Pooling op-
eration to the last hidden state of the bi-encoder
model. We represent these vectors as u and v, re-
spectively. The cross-encoder component receives
the joint encoding of the sentence pair and is ca-
pable of capturing the relation between both texts.
We use the classification token [CLS] as a final
vector representation of the sequence.

We obtain a global representation of the sen-
tence pair by concatenating the classification token
[CLS] from the cross-encoder representation, the
Euclidean distance D between w and v vectors, and
the vectors u and v itself. This global vector is
the input to a task-specific block composed of two
fully connected networks with a single-neuron out-
put. Figure 1 shows the structure of the Sentence-
CROBI model.

The output of the bi-encoder component is a
contextualised word embedding matrix obtained
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by taking the last hidden state of the component,
where each row represents a word of the input sen-
tence. In this work, we apply a mean Pooling oper-
ation, averaging all the matrix dimensions to obtain
a vector representation.

Since we are working on a regression problem,
the task-specific layer of our model is composed
of a fully connected network featuring two lay-
ers. Initially, it accepts the global representation
of sentence pairs as input, undergoing a Dropout
(Hinton et al., 2012) layer with a probability of 0.1.
This regularisation technique is implemented to
prevent network over-fitting by randomly zeroing
some input values. Subsequently, the input pro-
ceeds through a fully connected layer of 1793 units,
employing a hyperbolic tangent as the activation
function. Ultimately, the output layer is composed
of one neuron.

We use the Mean Squared Error (MSE) as a
loss function during the training of the Sentence-
CROBI model. MSE quantifies the average squared
difference between the predicted values and the
ground truth across a dataset, which is widely used
in deep learning (Bishop, 2006; Goodfellow et al.,
2016). For a dataset with N samples, MSE is de-
fined as the mean of the squared differences be-
tween predicted ¢; and actual y; values as shown
in 1.

1 N

MSE = NZ(yi — §;)? (1)
=1

Notably, our task-specific block and the loss
function differ from that proposed in (Ortiz-Barajas
et al., 2022) as paraphrase detection entails a binary
classification task. In contrast, semantic relatedness
is defined as a regression task.

One of the advantages of the Sentence-CROBI
model is its implementation facility that only re-
lies on using two pre-trained models, one as a bi-
encoder and the other as a cross-encoder. The se-
lection of these models depends on the specific
task and available computational resources. The
implementation facility also allows the perform-
ing of fast experimentation with minor changes.
These model features enable us to build solutions
for all languages in Track A following the same
methodology.

4.2 Data splitting

We perform K -fold cross-validation to create train-
ing and validation subsets in the development phase

of the shared task. The process entails iteratively
designating one of the K folds as the validation
set while the remaining K — 1 folds collectively
form the training set. This procedure is repeated K
times, with each of the K folds serving as the val-
idation set exactly once. K -fold cross-validation
mitigates the impact of data partitioning on model
assessment and aids in obtaining a more reliable
estimate of a model’s performance (James et al.,
2013). We set K = 5 for all languages in the
dataset.

4.3 Fine-Tuning

In this section, we describe our fine-tuning ap-
proaches. All approaches use a small number of
epochs and a small learning rate. We train our mod-
els with a batch size of 32, a learning rate in the
range {1 x 1075,2 x 107°,3 x 107°}, and the
Adam optimizer (Kingma and Ba, 2014), with a
warm-up ratio of 0.06 and a linear decay to zero.
We train all models for a maximum of 10 epochs
and perform pseudo early stopping to use the model
with the best performance on the validation data.
The maximum length is 35 for individual texts and
128 for text pairs. The tokenization method dif-
fers between sentence pairs and individual texts,
resulting in varying length representations. Hence,
the length of each representation does not align.
We use HuggingFace’s Transformers library (Wolf
et al., 2020) to implement the Sentence-CROBI
model. Our implementation is publicly available
on GitHub'.

The first experimental setting that we use follows
a monolingual approach, which means we fine-tune
a model for each language of the dataset. We lever-
aged the HuggingFace Hub platform? to select bi-
encoder and cross-encoder components for each
model. To constrain the search space, we exclu-
sively focused on encoder-only architectures that
were either pre-trained or fine-tuned for the specific
language of interest and possessed an associated
paper describing the employed dataset and train-
ing details. In case there are no specific-language
models, we use a multilingual model. We provide
further details for the bi-encoder and cross-encoder
combinations for each language in the dataset to
fine-tune our model in Appendix A.

We also follow a multilingual approach to fine-
tune our model. We group the languages based on
their linguistic family. We consider two families.

1https://github.com/jgermanob/Sentence—CROBI
2https://huggingface.co/models
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Figure 2: Bagging method diagram to obtain the final
predicted score. Each model is fine-tuned using a differ-
ent random seed and the final prediction is the average
of all predictions.

The first one is the Semitic family, which includes
Algerian and Moroccan Arabic as well as Amharic.
The second one is the Indoeuropean family, which
includes English, Spanish and Marathi. Telugu,
Kinyarwanda and Hausa languages belong to dif-
ferent families; therefore, we do not include them
in this approach. We concatenate each training and
validation split to create each family-based split to
train the models. For both families we use XLM-
RoBERTa base (Conneau et al., 2020) as a cross-
encoder and the multilingual uncased base version
of BERT (Devlin et al., 2018) as a bi-encoder.

4.4 Ensemble Learning

In order to enhance the performance of the model
in the Semantic Textual Relatedness task, we em-
ploy the Bagging method (Breiman, 1996), a strat-
egy that mitigates generalisation errors by combin-
ing multiple models. This approach involves train-
ing different models independently and combining
each output set to vote on test data and obtain the
final prediction.

In the case of neural networks, differences in ran-
dom initialisation or in batch generation cause in-
dependent errors in each member of the ensemble;
therefore, the ensemble will perform significantly
better than its members (Goodfellow et al., 2016).

We compute the final similarity score by aver-
aging the output of each fine-tuned model with a
different fold from the cross-validation splitting.
Therefore, we use five distinct and independent
models to obtain a final prediction. Figure 2 shows
a diagram of how this method is used in this work.

5 Results

We present the results of our proposed model in the
following section in the development and evalua-

Lang | Val p (avg) | Dev p
amh 0.4828 0.6230
arq 0.4784 0.6370
ary 0.7308 0.8030
eng 0.8709 0.8440
esp 0.5861 0.6900
hau 0.6076 0.6740
mar 0.7913 0.8470
tel 0.7290 0.8112

Table 2: Results of the proposed model in the develop-
ment phase using a monolingual fine-tuning approach.
We report an average of 5 runs in the validation splits
used for cross-validation. We obtain the final score
predictions in the development set using the bagging
technique.

tion phases of the SemEval 2024 Task 1: Semantic
Textual Relatedness.

5.1 Development Phase

We report the average Spearman rank correlation
coefficient in the validation dataset corresponding
to each fold and the performance score in the devel-
opment dataset reported in the Codalab page of the
shared task for the development phase. We obtain
the final score for each instance in the development
dataset using the bagging technique and the aver-
age predictions of the five independent models for
each fold.

In the case of the monolingual fine-tuning ap-
proach, we use a different model for each language
in the dataset. Table 2 shows the results for each
language. Half of our results in this approach
achieve a performance higher than 0.80 in the per-
formance metric, while the remaining models ob-
tain a result above 0.60. The best performance is
for the English language, with a Spearman corre-
lation coefficient of 0.844. In contrast, the lowest
performance is for the Amharic language, with a
Spearman correlation coefficient of 0.623.

Due to the imbalance present in the dataset, we
employed a multilingual fine-tuning approach by
grouping languages into linguistic families. In this
approach, we considered two groups: the Semitic
(Sem) languages and the Indoeuropean (IE) lan-
guages.

Table 3 shows the results using the multilingual
fine-tuning approach. There is a performance de-
crease in 6 of 8 considered languages. In the case
of the Indoeuropean family, our model obtains a
Spearman correlation coefficient of 0.8191 for En-
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Lang | Fam | Val p (avg) | Dev p
eng IE 0.8079 0.8191
esp IE 0.8079 0.6874
mar | IE 0.8079 0.8290
amh | Sem 0.6926 0.8223
arq Sem 0.6926 0.4727
ary Sem 0.6926 0.8519

Table 3: Results of the proposed model in the develop-
ment phase using a multilingual fine-tuning approach.
We report an average of 5 runs in the validation splits
used for cross-validation. We obtain the final score
predictions in the development set using the bagging
technique.

glish, which represents a 0.0249 decrease; in the
case of Spanish and Marathi, our model decays
0.0026 and 0.018, respectively. In the case of
the Semitic family, the multilingual fine-tuning ap-
proach improves the model performance in 2 of 3
considered languages: Moroccan Arabic (Moroc.
A.) and Ambharic. The model increases its perfor-
mance from 0.803 to 0.8519 in Moroccan Arabic
and from 0.623 to 0.8223 in Amharic, which repre-
sents a 0.1993 performance improvement in terms
of Spearman correlation coefficient.

We must mention that we did not report any
results for the Kinyarwanda language in the devel-
opment phase because it was added to Track A later
(December 12, 2024). Therefore, we were unable
to conduct any experiments prior to the evaluation
phase.

5.2 Evaluation Phase

We select the best-performing model for each lan-
guage in the evaluation phase of the shared task.
We use a monolingual fine-tuning approach for Al-
gerian Arabic, English, Spanish, Hausa, Marathi,
Telugu and Kinyarwanda, as well as a multilingual
approach for Amharic and Moroccan Arabic. We
create a new training set for each language and fam-
ily by adding the development subset and its gold
scores released by the shared task organisers. We
train five independent models for each language
and obtain the final score predictions using the bag-
ging technique.

Table 4 shows the results of our proposed model
in the evaluation test, its comparison with the base-
line and the final ranking in the shared task for each
language. We add a * to denote a multilingual-fine-
tune-based approach. Our model outperforms the
baseline in English and Moroccan Arabic with a

Lang | Score | Baseline | Rank Highest
score
amh * | 0.8398 0.85 7/18 | 0.8886
arq 0.5407 0.6 11/24 | 0.6823
ary * | 0.7861 0.77 13/23 | 0.8625
eng 0.8316 0.83 16/36 | 0.8499
esp 0.6968 0.7 11/25 | 0.7403
hau 0.6702 0.69 9/21 | 0.7642
mar 0.8669 0.88 11/25 | 0.9108
tel 0.7847 0.82 17/25 | 0.8733
kin 0.4585 0.72 16/21 | 0.8169

Table 4: Results of the proposed model in the evaluation
phase using monolingual and multilingual fine-tuning
approaches compared with the baseline and the highest
score. We obtain the final score predictions in the de-
velopment set using the bagging technique. * Denotes a
multilingual approach.

difference from the leaders of 0.0183 and 0.0765,
respectively. The lowest performance of the pro-
posed model is in the Kinyarwanda language, with
a Spearman correlation coefficient of 0.4585 and a
difference from the leader of 0.3584.

We perform an error analysis of our model’s
performance in the evaluation dataset for each lan-
guage in Appendix B. The analysis suggests that
the global vector representation of the sentence pair
has a limited capacity to capture other semantic re-
lationships between the texts apart from similarity,
and future work should follow this direction. Nev-
ertheless, it is essential to highlight that only the
task-specific block should change, which illustrates
the high adaptability capacity of the model.

6 Conclusions

This work presents the Sentence-CROBI model
and its adaptation to the SemEval 2024 Task 1:
Semantic Textual Relatedness. We evaluate the
model’s capacities in monolingual and multilin-
gual fine-tuning approaches to measure its perfor-
mance and adaptability across diverse linguistic
families, yielding acceptable performance in low
and mid-resource languages. Ensemble techniques
further enhance the robustness and reliability of
the model’s predictions. Overall, the findings un-
derscore the model’s capacity for solving related-
ness detection tasks, emphasising its versatility in
accommodating linguistic variations and resource
constraints.
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A Monolingual approach

We use a monolingual fine-tuning approach for
Track A, which means we fine-tune a model for
each language in the dataset as described in section
4.3. We only consider publicily avaliable models in
the HuggingFace Hub ? that were either pre-trained
or fine-tuned for the specific language and possess
and associated paper describing the dataset as well
as the training details.

Table 5 shows the bi-encoder and cross-encoder
combinations for each language in the dataset to
fine-tune our model following the monolingual
approach. Following (Ortiz-Barajas et al., 2022)
methodology, we choose a RoOBERTa-based model
for the cross-encoder and a BERT-based model
for the bi-encoder. Only in the case of the Hausa
language do we use a multilingual combination of
bi-encoder and cross-encoder models because there
are no available pre-trained or fine-tuned models
that made our criteria.

B Error Analysis

We perform an error analysis of our model’s per-
formance in the evaluation dataset for each lan-
guage. It is essential to mention that Spanish is
excluded because the organisers do not provide the
gold scores for this language.

Table 6 shows the differences between our
model’s predictions and the gold scores for each
language in the evaluation dataset. We compute
the difference by subtracting each example’s pre-
dicted score from the gold score. Therefore, a
negative difference means that our model predicts
a higher score than the gold score, whereas a pos-
itive difference means that our model predicts a
lower score than the gold score. The negative dif-
ferences are higher than the positive differences in

Shttps://huggingface.co/models

all languages. This result indicates that our model
predicts a higher semantic textual relatedness score
than the actual relatedness score in all cases.

Table 7 shows the top-5 negative differences pre-
dicted by the Sentence-CROBI model in the En-
glish evaluation dataset; that is, the model predicts
a higher score than the gold score. It is possible
to observe a high semantic similarity between the
texts in the first four examples, and they can be
considered paraphrases. Therefore, our model cap-
tures only one kind of semantic relatedness in these
examples.

Table 8 shows the top-5 positive differences pre-
dicted by the Sentence-CROBI model in the En-
glish evaluation dataset; that is, the model predicts
a lower score than the gold score. It is possible
to observe different types of semantic relatedness
that differ from semantic similarity between the
texts. In the first example, the texts are semantic
contrastive; the first text hints at excitement, while
the second portrays boredom. The texts in the sec-
ond example describe similar situations where a
person performs some public activity. In the third
example, both texts offer insights into events or sit-
uations concerning government or administration
within a specific historical context. The semantic
relatedness between the texts in the fourth exam-
ple is their shared focus on the reading experience
and the consideration of delving into further books
within a series. Finally, the semantic relatedness in
the fifth example lies in their depiction of situations
involving young children, albeit with distinct tones
and activities.
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Lang cross-encoder bi-encoder
amh Am-RoBERTa mBERT-base FT on amharic-CC100
(Yimam et al., 2021) (Conneau et al., 2020)
arq XLM-RoBERTa-base Arabic BERT-base Arabic
(Pandya et al., 2021) (Safaya et al., 2020)
ary XLM-RoBERTa-base Arabic BERT-base Arabic
(Pandya et al., 2021) (Safaya et al., 2020)
eng RoBERTa-large BERT-base
(Liu et al., 2019) (Devlin et al., 2018)
BERTIN BETO
esp (la Rosa et al., 2022) (Cafiete et al., 2020)
hau XLM-RoBERTa-base mBERT-base
(Conneau et al., 2020) (Devlin et al., 2018)
Marathi-RoBERTa Marathi-BERT
mar (Joshi, 2022) (Joshi, 2022)
el XLM-RoBERTa-base Telugu-BERT
(Conneau et al., 2020) (Joshi, 2022)

Table 5: Bi-encoder and cross-encoder model combinations for each language in the dataset using a monolingual
fine-tuning approach.

Lang Negative Positive
difference | difference

amh 111 60

arq 335 246
ary 225 201
eng 1604 996
hau 314 289

kin 314 289
mar 238 60

tel 167 130

Table 6: Negative and positive differences in the scores predicted by our model concerning the gold score in the
evaluation dataset for each language. A negative difference means that our model predicts a higher score than the
gold score, whereas a positive difference means that our model predicts a lower score than the gold score.
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Text 1 Text 2 Pred score | Gold score | abs diff
In general conversation , | When they say aerosol 0.8610 0.44 0.4210
aerosol usually refersto an | most people mean an
aerosol spray can or the | aerosol spray can or the
output of such a can spray it makes
Ciampi was born in | Carlo Azeglio Ciampi was 0.7860 0.39 0.3960
Livorno(Province of | born in 1920 in Livorno ,
Livorno) Italy
TAKE A Shower then talk | I advise you to have a 0.8354 0.44 0.3954
to her shower before speaking

with her
if there ’s a reason , we 'l | if you have a legitimate 0.9060 0.52 0.3860
discuss it reason , we will discuss it
Forget that this is YA lit | It’s OK for what it is but 0.7010 0.32 0.3810
and READ IT you definitely won’t forget

you’re reading a YA novel

Table 7: Top-5 negative differences predicted by the Sentence-CROBI model in the English evaluation dataset; that
is, the model predicts a higher score than the gold score.

Text 1 Text 2 Pred score | Gold score | abs diff
A lot of this book is setting | This book is beige wallpa- 0.2798 0.64 0.3602
up the last book per
A man with glasses is play- | A man holding his arms 0.3780 0.69 0.3120
ing his instrument in a | out horizontally, and grip-
small crown of people that | ping a fencing sword in his
includes another man in a | right hand, as people in the
suit with a trumpet background do the same
thing
This date was January | Currently the distribution 0.2890 0.60 0.3110
3, 1867, which was two | of the Senate Assembly
weeks before the begin- | seats was made to three
ning of the first adminis- | senators for each of the
trative year of Governor | three counties
Gove Saulsbury
i found it different from | I am trying to decide 0.4192 0.072 0.3008
many other books i’ve | whether to read the other
read books in the series
A young boy wearing a | A young baby boy crying 0.3433 0.63 0.2867
red winter coat is eating | while wearing a shirt that
and holding up a candy bar | says ""I am the BOSS

Table 8: Top-5 positive differences predicted by the Sentence-CROBI model in the English evaluation dataset; that
is, the model predicts a lower score than the gold score.
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