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Abstract

Semantic textual relatedness is a broader con-
cept of semantic similarity. It measures the ex-
tent to which two chunks of text convey similar
meaning or topics, or share related concepts or
contexts. This notion of relatedness can be ap-
plied in various applications, such as document
clustering and summarizing. SemRel-2024, a
shared task in SemEval-2024, aims at reduc-
ing the gap in the semantic relatedness task
by providing datasets for fourteen languages
and dialects including Arabic. This paper re-
ports on our participation in Track A (Algerian
and Moroccan dialects) and Track B (Modern
Standard Arabic). A BERT-based model is aug-
mented and fine-tuned for regression scoring
in supervised track (A), while BERT-based co-
sine similarity is employed for unsupervised
track (B). Our system ranked 1% in SemRel-
2024 for MSA with a Spearman correlation
score of 0.49. We ranked 5" for Moroccan and
12t for Algerian with scores of 0.83 and 0.53,
respectively.

1 Introduction

The literature commonly examines semantic simi-
larity, where the focus is on whether two linguistic
units (words, phrases, sentences, etc.) share sim-
ilar meanings (Bentivogli et al., 2016). However,
semantic textual relatedness (STR) is less explored
due to its complexity and the scarcity of datasets
(Abdalla et al., 2023; Darwish et al., 2021). While
the former task checks for the presence of similar
meaning or paraphrase, STR takes a more com-
prehensive approach, evaluating relatedness across
multiple dimensions, spanning topical similarity,
conceptual overlap, contextual coherence, prag-
matic connection, themes, scopes, ideas, stylistic
conditions, ontological relations, entailment, tem-
poral relation, as well as semantic similarity itself
(Miller and Charles, 1991; Halliday and Hasan,
2014; Jarrar, 2021, 2011). For example, consider
the two sentences (The Earth orbits the sun at a

speed of ~110,000 km/h.) and (Earth rotates at
~1670 km/h around its axis.). They hold seman-
tic relatedness through the shared topic of Earth’s
speeds. In contrast, both sentences are not seman-
tically similar as they possess distinct meanings.
This illustrates the broader range of STR as de-
scribed by Abdalla et al. (2023), which ranges from
highly relevant sentences, expressing the same idea
with different wording, to entirely unrelated sen-
tences, discussing unrelated topics.

Semantic relatedness has proven to be useful in
evaluating sentence representations generated by
language models (Asaadi et al., 2019), in addition
to question answering (Tsatsaronis et al., 2014),
machine translation (Mi and Xie, 2024), plagiarism
detection (Sabir et al., 2019), word-sense disam-
biguation (Al-Hajj and Jarrar, 2021a; Malaysha
et al., 2023), among others. Exploring the relat-
edness and similar tasks in languages other than
English is hindered by the lack of data (Jarrar et al.,
2023b; Al-Hajj and Jarrar, 2021b). The SemRel-
2024 shared task (Ousidhoum et al., 2024a) pro-
vided datasets in fourteen languages and offered
three tracks. In the supervised track (A), training
and testing are performed on the same language. In
the unsupervised track (B), the use of labeled data
for training is prohibited; and in the cross-lingual
track (C), testing is conducted on a different lan-
guage than the one used for training.

This paper presents our contribution to track
A and track B. In track A, we fine-tuned BERT
models using the Algerian and Moroccan sen-
tence pairs to produce similarity scores. To enrich
the data, we augmented the SemRel-2024 dataset
(Ousidhoum et al., 2024a) by generating additional
sentence pairs from Google Gemini ', a genera-
tive model, using a predefined prompt template.
These generated pairs imitated the style and mean-
ing of the existing pairs, and we assigned them

"https://gemini.google.com/
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scores corresponding to the originals. We used the
same datasets provided by the Shared Task in addi-
tion to a ~760 augmented Moroccan pairs to fine-
tune BERT models, AraBERTV2 (Antoun et al.,
2020) and ArBERTV2 (Abdul-Mageed et al., 2021),
which resulted in a performance enhancement of
0.05 points. In track B, as training on labeled data
is not allowed, we used cosine similarity using av-
erage pooling embedding (Zhao et al., 2022) on top
of each model. Our approaches achieved Spearman
scores (Tsatsaronis et al., 2014) of 0.49 for MSA
(ranked first), 0.83 for Moroccan (ranked fifth), and
0.53 for Algerian (ranked twelfth).

2 Related Work

Semantic textual relatedness (STR) has proven
to be a valuable task in numerous NLP applica-
tions, including the evaluation of LLMs (Asaadi
et al., 2019; Naseem et al., 2021). Determining
the degree of relatedness in STR, however, re-
mains a challenging task in computational seman-
tics. That is because STR encompasses a broader
range of commonalities beyond just meaning, in-
cluding shared viewpoint, topic, and period, de-
manding a deeper understanding than semantic
similarity alone (Asaadi et al., 2019; Abdalla et al.,
2023). For example, consider reading these two
sentences (He heard the waves crashing gently)
and (Making him feel calm and peaceful). While
humans easily recognize their strong relatedness
and shared description of the same view (a beach
scene), machines require advanced lexical and sta-
tistical methods to achieve the same level of under-
standing. STR techniques mainly come from four
approaches: lexical similarity (Chen et al., 2018;
Jarrar and Amayreh, 2019; Alhafi et al., 2019), se-
mantic similarity (Hasan et al., 2020; Ghanem et al.,
2023), deep learning (Zhang and Moldovan, 2019),
and LLMs (Li et al., 2021).

Recently, Abdalla et al. (2023) introduced their
STR-2022 dataset, which uses fine-grained scores
ranging from O (least related) to 1 (completely re-
lated). Their dataset consists of 5,500 scored En-
glish sentence pairs. They framed the task as su-
pervised regression, where they fine-tuned two lan-
guage models, BERT-base (Kenton and Toutanova,
2019) and RoBERTa-base (Liu et al., 2019), and
applied average pooling on top of the final embed-
ding layer. Their testing of these models on the
STR-2022 dataset yielded an average Spearman
correlation of 0.82 for BERT-base and 0.83 for

RoBERTa-base. On the other hand, their unsuper-
vised experiments using Word2Vec (Mikolov et al.,
2013) achieved a correlation score of 0.60, out-
performing both BERT-base (0.58) and RoBERTa-
base (0.48) by 0.02 and 0.12 points, respectively.

Asaadi et al. (2019) created the Bi-gram Se-
mantic Relatedness Dataset (BiRD) for examin-
ing semantic composition. To avoid inconsisten-
cies and biases from traditional 1-5 rating scales,
they employed fine-grained scoring of bi-gram
pairs (0-1) using the best-worst scaling (BWS) an-
notation technique (Kiritchenko and Mohammad,
2017). The dataset consists of 3,345 scored En-
glish term pairs. They utilised three models to
generate word representations: GloVe (Pennington
et al., 2014), FastText (Grave et al., 2018), and a
word-context co-occurrence matrix (Turney et al.,
2011). To calculate relatedness scores between
pairs, they employed cosine similarity between the
generated addition-pooled vectors. The FastText
model achieved the highest performance with a
Pearson correlation of 0.60.

The semantic relatedness between noun-pairs
was studied using contextual similarity by Miller
and Charles (1991). They attempted to understand
distinctions between nouns in contextual discourse
and how the similarity can be broader than just
the meaning. Additional ideas could rely on ex-
tracting named entities (Liqreina et al., 2023; Jarrar
et al., 2022) to measure the relatedness (Ghosh
et al., 2023). However, the task evolved, leading
to the creation of the up-to-date dataset presented
by the SemRel-2024 shared task (Ousidhoum et al.,
2024b). Their dataset annotation scores are at the
level of sentence pairs. They shared baseline results
for fourteen languages and dialects using Spearman
correlation score. Since our focus is on Arabic, we
have chosen its results to show. For example, their
baseline is 0.42 for MSA in track B using multi-
lingual BERT (mBERT) (Kenton and Toutanova,
2019), 0.60 for Algerian and 0.77 for Moroccan in
track A using Label Agnostic BERT Sentence em-
beddings (LaBSE) (Feng et al., 2022). Specifically,
their Algerian Arabic dataset offers 1,261 training
and 583 test instances, Moroccan Arabic dataset
includes 924 training and 425 test instances, and
MSA Arabic dataset has 595 instances for testing.

Many efforts have been made to understand Ara-
bic dialects, such as dialect identification, intent de-
tection, and morphological annotations (Haff et al.,
2022; Nayouf et al., 2023; Jarrar et al., 2023c, 2017,
2023a), but none studied STR between dialects.
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Figure 1: BERT-based Supervised Architecture (A).

3 System Overview

This section presents the techniques, datasets, and
the augmentation we employed in tracks A and B.

3.1 Supervised Track (A)

Since the datasets use continuous scoring values,
we tackled STR as a regression problem. We
fine-tuned BERT with Mean Squared Error (MSE)
objective. The model uses a regressor output
layer, represented by a single neuron to predict
the scores of the sentence-pairs. The data was
pre-processed using the technique presented in
(Antoun et al., 2020) to achieve standardized
word forms. Before supplying the sentence
pairs to the model, each was concatenated using
the special tokens of the model input in this
format:[CLS]Sentencel[SEP]Sentence2[SEP].
Figure 1 depicts our method architecture for the
supervised track (A). Since we focused on the
Algerian and Moroccan dialects in this track, we
investigated various model parameters including
learning rates, number of epochs, and pre-trained
models to understand which model is better suited
for each dialect. We found that both models,
AraBERTV2 2 and ArBERTV2 2, best fits the
Moroccan dialect more than Algerian. Nonetheless,
we used same models for the Algerian dataset.

3.2 Unsupervised Track (B)

The STR using MSA is covered in track B (unsuper-
vised learning), where training (or fine-tuning) on
labeled data is not permitted. We employed cosine
similarity (Reimers and Gurevych, 2019) as an un-
supervised technique to calculate the sentence-pair
scores. Figure 2 illustrates our architecture. We

“https://github.com/aub-mind/arabert
3https://huggingface.co/UBC-NLP/ARBERTv2
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Figure 2: BERT-based Unsupervised Architecture (B).

conducted initial experiments using the same afore-
mentioned models, ArBERTvV2 and AraBERTV?2,
for generating sentence representations. Various
pooling options (CLS, average, max, and min)
(Zhao et al., 2022) were applied on the final em-
bedding layer in each (frozen) model, and found
that AraBERTv2 with average-pooling is better
suited for MSA in this track. The same data pre-
processing used in track A is applied in B.

3.3 Datasets

The datasets provided by the SemRel-2024 shared
task cover fourteen languages and dialects. In the
paper, we used three Arabic datasets (Algerian,
Moroccan, and MSA). Table 1 presents their data
splits, including train, development, and testing.
MSA has no labeled train data as it is included in
Track B. However, for the other two dialects, we
employed BERT-based models, that requires large
train data (Bevilacqua et al., 2021).

MSA Algerian Moroccan

Train
Original - 1,261 924
Augments — - 757
Total - 1,261 1,681
Dev. 32 97 70
Test 595 583 425

Table 1: The original and augmented datasets splits.

Different methods can be used for data aug-
mentation, such as back-translation (Lin and Gi-
ambi, 2021) and generative models (Saidi et al.,
2022). The back-translation technique was tested
by (Malaysha et al., 2023) and showed minor im-
provement in performance. The availability of high-
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Original Sentence 1

Original Sentence 2

Score

ol aall AL () gaal) Bgad (g pilly suliS 12, U )5S

o) poall AL () guall Bgad sy iy 5ulii 9 g )5S 0.79

Original Sentence 1

Augmented Sentence 2

o) pand) 3L ) srall Agad oy iy sl 12,1558

i 34 99 o) pead) ABLL gmld g e Colasls A3l 0.79

Augmented Sentence 1

Original Sentence 2

U sastead 12 col pond) A8 () gall Aga O3

o) penll AL () gonl gnd g pilly puldi QO Lipy€ 0.79

Figure 3: Example of the augmented sentence-pairs.

quality generative models, such as ChatGPT # and
Google Gemini, encouraged us to employ them in
automatic augmentation. We employed in-context
learning (Min et al., 2022) by prompting both mod-
els with the request depicted in Figure 4.

Prompt
Augment the following Arabic sentence using

Moroccan dialect. Please generate Moroccan
sentence similar in meaning to the one | provide you,
and use average number of words close to the length
of the provided sentence. You have to format the
augmented sentence between pair of box brackets []|
Do not add any explanations, | just need the reply
same the format | provided without any additional
texts or confirmations. | will repeat this request
hundreds of times using different sentences, so do
not change the format of your reply. The sentence is

in Moroccan dialect:
\')\uj‘ Al ¢ el Agad ey ually suls3 12, U5, S /
i

Reply: [U5,58 5hmi 12 col yaall 2Ll () guall dgn O]

\ J

Figure 4: The prompt template employed for Gemini.

The initial manual reviews and tests for twenty
prompts of Moroccan and Algerian sentences
showed that both models are weak in Algerian com-
prehension. ChatGPT is also weak in the Moroc-
can, while Gemini demonstrated a high understand-
ing of the Moroccan. Therefore, we decided to em-
ploy Gemini to augment the Moroccan train split.
From every sentence-pair, we took each sentence
and prompted it using the template in Figure 4. We
mapped the augmented (new) sentence from the
model with the other sentence in the same pair us-
ing the same score of the pair, as illustrated in Fig-
ure 3. By manually reviewing all the model replies,
we found cases that were not valid (wrong content),
and accordingly, we defined filters to exclude the
not applicable data per the following rules:

* The model admits in the reply that it is just a

*https://chat.openai.com/

language model and cannot fulfill the request.
The model reply in such case has common
format to rely on for the filter comparison.

* The case when the reply goes far from the
original meaning. This option is achieved by
manually reviewing the paraphrased contents.

* When the model rejects augmentation because
the requested sentence contains information
that breaks the model policy, i.e., talking about
public figures or sensitive discussions. Similar
to first rule, it has common reply format to
automatically compare with.

Finally, after filtering the invalid augmentations, we
reached 757 accepted sentences which we added to
the Moroccan training set (See Table 1), reaching a
total of 1,681 instances.

4 Experimental Setup

Our experiments fine-tuned two language models
for Algerian and Moroccan, where we used the
following pre-trained models: maubmindlab/bert-
base-arabertv02 (Antoun et al., 2020) and UBC-
NLP/ARBERTV2 (Abdul-Mageed et al., 2021). We
employed the training data provided by the shared
task, in addition to the data generated by our aug-
mentation technique, when applied. The develop-
ment data is excluded from either training or test-
ing in the official evaluation phase, and testing is
done on the shared task test set (See Table 1). The
data pairs were concatenated using special tokens
(LCLS] and [SEP]), as depicted in Figure 1, and
digested by the models. The fine-tuning was done
as a regression task using one neuron in the output
layer, optimized using MSE as the loss function,
and we used R-squared (Miles, 2005) to measure
the improvement. The final hyper-parameters in
the fine-tuning process were: 10 epochs for train-
ing, 4 epochs for early stopping, a batch size of 16,
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Development Phase Track A Track B
Algerian Moroccan Augmented Moroccan | MSA

ArBERTv2 0.55 0.82 0.887 0.42

AraBERTv2 0.69 0.84 0.794 0.58

Table 2: Our results on the development phase (i.e., on development split).

TEST Phase Track A Track B
Algerian Moroccan Augmented Moroccan | MSA
Baseline (ousidhoum etal., 20242)  0.60 0.77 0.77 0.42
ArBERTYV2 0.42] 0.781 0.831 0.34]
AraBERTv2 0.53) 0.791 0.771 0.497

Table 3: The evaluation results on the test data. Our official ranked scores are in bold.

512 is the maximum sequence length, a learning
rate of 2e~°, 50 evaluation steps, a seed of 42, and
train (+ augmented data) split.

In the experiments of B track for the MSA, no
supervised fine-tuning is needed. Therefore, we
neither used labeled data nor augmentation. We
employed average-pooling on the embeddings of
the sentence tokens from the final layer in each
model. Then, we calculated the cosine similarity
between the average embeddings of the sentences
in each pair. This was done to estimate the fine-
grained scores for the test (or development) data
provided by the shared task. The shared task con-
siders Spearman correlation score to evaluate the
submitted predictions against their ground truth.

5 Results

Our approaches have achieved competitive ranks
in the SemRel-2024 shared task. The official re-
sults of the tracks we participated in, as well as the
baselines that were introduced by Ousidhoum et al.
(2024a), are shown in Table 3. Additionally, our
results on the development data are presented in
Table 2. In the test evaluation, we ranked first in
Track B for the MSA, with a Spearman correlation
score of 0.49 using the AraBERTvV2 model, out-
performing the baseline by 0.07 points. However,
ArBERTV2 did not perform well in Track B for
MSA on both test and development splits. In con-
trast, ArBERTV2 achieved a high score in Track A
for the Moroccan dialect when fine-tuned on both
the train split and augmentation data, outperform-
ing the baseline by 0.06 points on test split, ranking
S5th among the submitted systems. Nonetheless,
neither of the models, ArBERTvV2 or AraBERTV2,
surpassed the baseline for the Algerian dialect in
Track A, where our rank is 12. Similarly, both

models achieved low performance on the Alge-
rian development split. It is possible that if we
were able to augment the Algerian data as well,
it could have performed better, similar to the im-
provement achieved in the Moroccan dataset. It is
worth noting that AraBERTv2 outperformed both
the baseline and ArBERTV2 on the original train-
ing data of the Moroccan dataset. However, its
performance degraded on both test and develop-
ment splits once the augmentation was included in
the fine-tuning, unlike what happened with the Ar-
BERTV2 model, on both splits. This could be due
to the nature of the data utilized in the pre-training
phase of the model. Due to the anisotropy problem
(Baggetto and Fresno, 2022) inherent in BERT-
based pre-trained models, we noted that computing
cosine similarity directly between sentence repre-
sentations is insufficient for discerning relatedness.

6 Conclusion

We presented our contributions to the SemRel-2024
shared task. We targeted three Arabic dialects cov-
ered by the shared task datasets, including MSA,
Algerian, and Moroccan. Our approaches em-
ployed supervised and unsupervised techniques us-
ing commonly known language models, namely
ArBERT and AraBERT. We augmented the train-
ing data using generative models, which enhanced
the models’ performance. Our system ranked first
(MSA), fifth (Moroccan), and twelfth (Algerian)
across the different tracks. We plan to augment
additional data of Moroccan and Algerian using
other models than what we used in this work. We
will use the augmentations to experiment with both
Arabic mono-dialect and cross-dialect fine-tuning.
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