
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 5325–5344

June 16-21, 2024 ©2024 Association for Computational Linguistics

To Translate or Not to Translate: A Systematic Investigation of
Translation-Based Cross-Lingual Transfer to Low-Resource Languages

Benedikt Ebing and Goran Glavaš
University of Würzburg

Center for Artificial Intelligence and Data Science (CAIDAS)
{benedikt.ebing, goran.glavas}@uni-wuerzburg.de

Abstract

Perfect machine translation (MT) would ren-
der cross-lingual transfer (XLT) by means of
multilingual language models (mLMs) super-
fluous. Given, on the one hand, the large body
of work on improving XLT with mLMs and,
on the other hand, recent advances in mas-
sively multilingual MT, in this work, we sys-
tematically evaluate existing and propose new
translation-based XLT approaches for transfer
to low-resource languages. We show that all
translation-based approaches dramatically out-
perform zero-shot XLT with mLMs—with the
combination of round-trip translation of the
source-language training data and the trans-
lation of the target-language test instances at
inference—being generally the most effective.
We next show that one can obtain further em-
pirical gains by adding reliable translations
to other high-resource languages to the train-
ing data. Moreover, we propose an effective
translation-based XLT strategy even for lan-
guages not supported by the MT system. Fi-
nally, we show that model selection for XLT
based on target-language validation data ob-
tained with MT outperforms model selection
based on the source-language data. We be-
lieve our findings warrant a broader inclusion
of more robust translation-based baselines in
XLT research.

1 Introduction

Multilingual language models (mLMs) like
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020), or mT5 (Xue et al., 2021) have be-
come the backbone of multilingual NLP. Their mul-
tilingual pretraining and the consequent ability to
encode texts from a wide range of languages make
them suitable for cross-lingual transfer (XLT) for
downstream NLP tasks: fine-tuned on available
task-specific data in high-resource languages, they
can be used to make predictions for languages

that lack task-specific (training) data. Their ef-
fectiveness as vehicles of both zero-shot (no task-
specific training instances in the target language,
ZS-XLT) and few-shot XLT (few training instances
in the target language, FS-XLT) has been docu-
mented for a plethora of tasks and languages (Wu
and Dredze, 2019; Wang et al., 2019; Lauscher
et al., 2020; Schmidt et al., 2022). Cross-lingual
transfer with mLMs, however, yields poor perfor-
mance for low-resource target languages that are
(i) un(der)represented in the pretraining corpora,
especially if they are additionally (ii) linguistically
distant from the source language (Lauscher et al.,
2020; Adelani et al., 2022; Ebrahimi et al., 2022).

Recent years have witnessed a large body of
work that focused on improving XLT, in partic-
ular for low-resource target languages. First, a
multitude of new multilingual benchmarks have
been introduced, aiming to either evaluate XLT
with mLMs on sets of linguistically diverse lan-
guages (Clark et al., 2020; Ponti et al., 2020; Ruder
et al., 2021) or on groups of related low-resource
languages from underrepresented language fami-
lies (i.e., families without any high-resource lan-
guage) and/or geographies (Adelani et al., 2021,
2022; Ebrahimi et al., 2022; Aggarwal et al., 2022;
Muhammad et al., 2022; Armstrong et al., 2022;
Winata et al., 2023, inter alia). Second, a diverse
set of methodological proposals have been intro-
duced, ranging from (i) attempts to better align
mLMs’ representation subspaces of languages (Wu
and Dredze, 2020; Hu et al., 2021; Yang et al., 2022,
inter alia) over (ii) those that increase the represen-
tational capacity for underrepresented languages,
typically via additional post-hoc language-specific
language modeling training (Pfeiffer et al., 2020,
2022; Ansell et al., 2022; Parović et al., 2022, inter
alia) to (iii) various FS-XLT proposals that seek
to maximally exploit small sets of task-specific
target language instances (Hedderich et al., 2020;
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Lauscher et al., 2020; Zhao et al., 2021; Schmidt
et al., 2022, inter alia).

Much of the above work rendered translation-
based XLT strategies—in which an MT model is
employed to either translate the source-language
training data into the target language before train-
ing (referred to as translate-train) or translate the
target-language instances to the source language
before inference (translate-test)—competitive w.r.t.
mLM-based transfer (Hu et al., 2020; Ruder et al.,
2021; Ebrahimi et al., 2022; Aggarwal et al., 2022).
Sporadically, however, MT has been leveraged for
more elaborate translation-based strategies—e.g.,
translating source-language training data to mul-
tiple (related) target languages (Hu et al., 2020),
combining the translated target-language training
data with the original source-language training data
(Chen et al., 2023), or using monolingual English
LMs instead of mLMs for translate-test (Artetxe
et al., 2020, 2023)—complicating the selection of
translation-based baselines in XLT research. In
fact, the most recent evidence (Artetxe et al., 2023)
suggests that the potential of translation-based XLT
has been underestimated due to the selection of sub-
optimal translation strategies. What is more, much
of the work on low-resource XLT completely disre-
gards translation-based baselines, arguing a priori,
without empirical confirmation, that (1) due to the
lack of parallel data, MT models for low-resource
languages exhibit poor performance, which directly
caps the potential of translation-based XLT and/or
(2) their evaluation encompasses target languages
that are unsupported by (state-of-the-art, commer-
cial) MT systems.

Two recent developments, however, warrant a
systematic (re-)evaluation of translation-based XLT
for low-resource languages: (i) the availability of
open massively multilingual MT models that not
only support an increasingly large set of languages
(Tiedemann and Thottingal, 2020; Liu et al., 2020;
Fan et al., 2021; Team et al., 2022; Kudugunta
et al., 2023), but also yield meaningful translations
even for the smallest of those languages; and (ii)
recent proposals of novel translation-based XLT
strategies that have been largely uninvestigated in
XLT to truly low-resource languages (Hu et al.,
2020; Chen et al., 2023; Artetxe et al., 2023).

Contributions. In this work, we contribute to the
body of translation-based XLT in light of these re-
cent advances, focusing explicitly on low-resource

target languages: 1) we offer a systematic compar-
ison of different translation-based XLT strategies
on three established benchmarks for sequence- and
token-level classification, encompassing in total
40 different low-resource languages; 2) Motivated
by the success of multi-source training (Ruder,
2017; Ansell et al., 2021) and ensembling (Oh
et al., 2022), as well as the high quality of MT
between high-resource languages, we propose two
novel strategies that integrate translations from
the source data to three diverse high-resource lan-
guages (Turkish, Russian, and Chinese); we find
that integrating translations to other high-resource
languages substantially improves performance for
sequence-level classification tasks; 3) We propose
a simple and effective translation-based XLT ap-
proach for languages not covered by the MT mod-
els in which we translate from/to the linguistically
closest supported language, demonstrating substan-
tial gains over ZS-XLT with mLMs; 4) We intro-
duce a translation-based model selection in which
the optimal model checkpoint is selected based on
performance on the validation data automatically
translated to the target language; we show that this
results in better performance than model selection
based on source-language validation data. 5) Fi-
nally, we run several ablations, offering insights
into the impact of lower-level design decisions—
such as the MT decoding strategy or joint vs. se-
quential fine-tuning—on translation-based XLT.

2 Translation-Based Strategies

Most of the existing XLT work evaluates only the
most straightforward translate-train (T-Train) and
translate-test (T-Test) baselines. The former as-
sumes the translation of the training data, available
in some high-resource language (almost always En-
glish), to the target language in which inference is
performed. The latter trains on the clean source-
language data but, at inference time, translates the
target language instances to the source language
before making predictions. More recent works (Oh
et al., 2022; Artetxe et al., 2023) propose a combi-
nation of the two, which we dub roundtrip-train-
test (RTT), where the source-language training data
is round-trip translated (i.e., to the target language
and then back) so that the translated test data at
inference time better matches the training distribu-
tion, reflecting the idiosyncrasies of the same MT
model. In what follows, we describe the variants of
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Figure 1: Schematic overview of translation-based XLT methods. Clean source or target language data is indicated
in black, while noisy translated data is shown in orange.

T-Train, T-Test, and RTT that we evaluate. Fig-
ure 1 concisely illustrates all MT-based approaches
under evaluation.

2.1 Translate-Train (T-Train)

Target (TRG). This is the standard T-Train where
the source-language training data is translated into
one particular target language. The mLM is then
fine-tuned on the automatically translated (i.e.,
noisy) target-language training dataset.

Multi-Target (M-TRG). This is a generalization of
T-Train in which we translate the source-language
training data into each language from a set of (pre-
sumably related) target languages: in our experi-
ments, these are all languages of a particular bench-
mark dataset supported by the MT model, e.g., all
AmericasNLI languages (Ebrahimi et al., 2022).
We then fine-tune the mLM in a multi-source setup,
i.e., on the concatenation of the training data trans-
lated to each of the target languages (per task).

Keeping the Source-Language Data (+SRC). In
this variant, we concatenate the noisy translated
training dataset in the target language (or a set
of target languages) with the original (i.e., clean)
training data in the source language. We denote
these variants TRG+SRC (if we concatenate source
language data to TRG) and M-TRG+SRC (if we con-
catenate the source-language data to M-TRG).

Adding Diverse High-Resource Languages
(+HR). We additionally explore translating the
source-language training data to a (small) set of
linguistically diverse high-resource languages. The
motivation for this is two-fold: (1) multilingual
(i.e., multi-source) fine-tuning has been shown to
bring benefits compared to monolingual (English-
only) fine-tuning (Ansell et al., 2021); and (2) au-

tomatic translation from high-resource source lan-
guage (i.e., English) to other high-resource lan-
guages (i.e., Chinese, Turkish, and Russian) is
generally of much higher quality than translation
to low-resource target languages (e.g., Guarani).
Exploiting strong MT between high-resource lan-
guages will, under this assumption, allow us
to obtain linguistically diverse yet high-quality
training data, which should consequently lead to
improvements in XLT to any low-resource lan-
guage. We evaluate variants in which transla-
tions to high-resource languages are added to
TRG+SRC (i.e., TRG+SRC+HR) and M-TRG+SRC (i.e.,
M-TRG+SRC+HR).

2.2 Translate-Test (T-Test)

We evaluate the standard T-Test baseline where
the model is trained on the original source-language
data and, at inference time, the target-language in-
stances are translated to the source language before
the source-language model makes the prediction.

2.3 Roundtrip-Train-Test (RTT)

Round-Trip T-Train + T-Test (RT). Prior work
suggested that the mismatch between high-quality
training data and noisily translated evaluation data
poses a challenge for the T-Test approach (Artetxe
et al., 2020; Oh et al., 2022; Artetxe et al., 2023).
To overcome this shift in data distribution that
the model is exposed to at test time, in RTT, we
also train on the noisy source-language data ob-
tained via round-trip translation of the original
clean source-language data to the target language
and back. Similar to T-Train, we evaluate the vari-
ants of RTT where the noisy source-language data
is obtained via round-trip translation to a single tar-
get language (denoted with RT) and multiple target
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languages (M-RT) and, finally, concatenated to the
original (i.e., clean) source-language data (RT+SRC,
M-RT+SRC).

Model Ensembling for RTT (M-RT-Ens). Follow-
ing our idea of exploiting other high-resource lan-
guages in translation-based XLT, we propose a
novel RTT variant in which we not only round-
trip translate the source-language data into the tar-
get language and back into the source language
but also translate the source data into the target
language and then into different high-resource
languages, other than the initial source language
(e.g., Source→Target→Chinese). We apply this
paradigm to the same three high-resource lan-
guages used for the T-Train-based approaches
(i.e., Chinese, Russian, and Turkish). Here in en-
sembling, however, for each of these high-resource
languages, we independently fine-tune an mLM
instance on the round-trip translated data of that
language, concatenated with the original source-
language (i.e., English) data (e.g., for English as
source and Chinese as the high-resource auxiliary,
we concatenate the clean original English with the
noisy Chinese data obtained via two-step trans-
lation). Finally, we ensemble the predictions of
the (four) fine-tuned models (English, Chinese,
Turkish, Russian): we average the class proba-
bility distributions of the models obtained for a
target-language test instance, previously translated
to each of the high-resource languages, respec-
tively. We denote this RTT ensemble approach
with M-RT-Ens-HR. Since model ensembles are
known to outperform single models (Wortsman
et al., 2022), in our experiments, we compare
M-RT-Ens-HR against the ensemble (of equally
many models) fine-tuned on the round-trip trans-
lated source-language data (i.e., round-trip trans-
lated English) only, using different random seeds
(we denote this with M-RT-Ens-SRC).

2.4 Unsupported Languages

Even though recent multilingual MT models cover
a broad range of low-resource languages, the ma-
jority of the world’s languages remain unsupported.
Motivated by prior work on finding the best trans-
fer source for a given target language (Lin et al.,
2019; Adelani et al., 2022; Glavaš and Vulić, 2021),
we propose to translate to (T-Train) and from
(T-Test) an MT-supported language that is linguis-
tically closest to the unsupported target: to this end,

we quantify the linguistic proximity of languages
as the cosine similarity of their typological vectors
from the URIEL database (Littell et al., 2017).

3 Experimental Setup

Machine Translation. For translation, we leverage
the state-of-the-art massively multilingual NLLB
model with 3.3B parameters (Team et al., 2022).
Building on prior work (Artetxe et al., 2023), we
ablate over decoding strategies, including greedy
decoding, nucleus sampling with top-p = 0.8, and
beam search with beam size 5. In our final evalua-
tion, translations are generated using beam search.

Evaluation Tasks and Datasets.. Following
prior work on low-resource XLT (Ansell et al.,
2021, 2022; Schmidt et al., 2022), we evaluate on
sequence- and token-level classification tasks cov-
ering languages un(der)represented in the pretrain-
ing corpus of our base models. In all experiments,
English is the source language.1

Natural Language Inference (NLI). We evaluate our
approaches on AmericasNLI (AmNLI) (Ebrahimi
et al., 2022). AmNLI contains 10 indigenous lan-
guages of the Americas, only 3 of which are sup-
ported by the NLLB model we use and none are
present in the pretraining corpus of our backbone
model. We utilize the English training and val-
idation portion of XNLI (Conneau et al., 2018)
as our source-language data. The dataset covers
393k training and 2490 validation instances. We
jointly encode the hypothesis-premise pair and feed
the transformed sequence start token into a feed-
forward softmax classifier.

Text Classification (TC). We use the sentiment
classification dataset NusaX (Winata et al., 2023),
which comprises 10 languages from Indonesia, 7
of which are supported by the NLLB model and
2 are seen by our backbone model in pretraining.
The English training (500 instances) and validation
portions (100 instances) are used as our source-
language data. Similar to NLI, we feed the trans-
formed representation of the sequence start token—
output of the Transformer encoder—into the soft-
max classifier.

Named Entity Recognition (NER). Our evaluation
spans a set of 20 languages from MasakhaNER 2.0

1We provide the complete list of languages in App. A.
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(Masakha) (Adelani et al., 2022). The dataset com-
prises a diverse set of underrepresented languages
spoken in Sub-Saharan Africa. Among these, 18
languages are supported by the NLLB model we
use for MT, but only 3 are covered in the pretrain-
ing corpus of our backbone model. Our source data
are the English training and validation portions of
CoNLL (Tjong Kim Sang and De Meulder, 2003),
with more than 14k instances for training and 3250
validation instances. In this token-level task, the
classifier makes a prediction from the output (i.e.,
transformed) representation of each input token.

Word Aligner. Translation-based transfer for
token-level tasks requires label projection, i.e.,
mapping of the labels from source-language tokens
to the tokens of the translated target sequence. To
that end, we map labels post-translation with Ac-
cAlign (Wang et al., 2022), a state-of-the-art word
aligner based on the multilingual sentence encoder
LaBSE (Feng et al., 2022).2 When recovering the
labels for the translated sequences, we discard a
training instance whenever we cannot map a la-
beled source-language token to its target-language
counterpart. The projection rates (for training data),
i.e., the percentage of successful token mappings,
is given for all supported languages in the App. B.

Downstream Fine-Tuning. We use XLM-R
(Large) (Conneau et al., 2020) in all our experi-
ments. For T-Test and RTT, we also experiment
with RoBERTa (Large) (Liu et al., 2019). We
outline the downstream fine-tuning details in Ap-
pendix C. We evaluate models at various check-
points of training: (i) at the end of the epoch3 with
the best performance on source-language valida-
tion data (Val-Src), (ii) at the end of the epoch with
the best performance on source-language valida-
tion data machine translated to the target language
(Val-MT-Trg), and (iii) at the end of the epoch with
the best performance on target-language validation
data (Val-Trg). Val-MT-Trg and Val-Trg cannot be
directly applied to T-Test and RTT as both model
selection methods use (translated) target language
data, while the training data of T-Test and RTT is
solely in English. Hence, we adapt Val-MT-Trg and
Val-Trg for T-Test and RTT: for Val-MT-Trg, we
conduct round-trip translation on the source vali-
dation data pivoting through the target language
(i.e., Source→Target→Source), and for Val-Trg,

2We adhere to the hyperparameters specified in their work.
3For AmNLI, we checkpoint after every 10% of an epoch.

AmNLI NusaX Masakha Avg

Zero-Shot

SRC X 44.7±1.2 71.2±1.3 47.9±0.6 54.6±1.1

Translate-Train

TRG X 61.1±0.4 77.8±0.8 62.1±0.3 67.0±0.5

TRG+SRC X 62.4±0.3 79.7±0.6 64.1±0.3 68.8±0.4

M-TRG X 63.4±0.5 79.0±0.7 56.9±0.4 66.4±0.5

M-TRG+SRC X 63.6±0.6 80.8±0.4 57.4±0.6 67.3±0.5

incl. Translations to High-Resource Languages

TRG+SRC+HR X 62.9±0.5 78.1±1.3 62.9±0.3 68.0±0.8

M-TRG+SRC+HR X 64.7±0.4 79.1±1.9 58.0±0.5 67.3±1.2

Translate-Test

SRC R 53.1±0.1 79.4±0.4 54.7±0.1 62.4±0.2

SRC X 52.9±0.5 80.9±0.8 54.1±0.1 62.6±0.5

Roundtrip-Train-Test

RT+SRC R 62.4±0.6 81.2±0.4 54.6±0.1 66.1±0.4

RT+SRC X 63.1±0.4 81.6±0.5 53.6±0.2 66.1±0.4

M-RT+SRC R 64.3±0.2 81.0±0.4 54.0±0.2 66.4±0.3

M-RT+SRC X 64.0±0.3 82.1±0.4 53.0±0.4 66.4±0.4

M-RT-Ens-SRC X 63.7±0.2 82.8±0.3 53.7±0.1 66.7±0.2

incl. Translations to High-Resource Languages

M-RT-Ens-HR X 66.1±0.2 83.9±0.4 45.8±0.1 65.3±0.3

Table 1: Results for translation-based XLT for languages
supported by the MT model. We use XLM-R (X) and
RoBERTa (R). The best results are shown in bold.

we simply MT-ed the (oracle) target validation data
to the source language. Unless specified otherwise,
we report results based on Val-Src and show the
results for Val-MT-Trg and Val-Trg in Appendix E.
We run experiments with 3 distinct random seeds
and report mean accuracy for NLI and average F1
for NER and TC, as well as the standard deviation.

4 Main Results and Discussion

Table 1 summarizes our main results: performance
of MT-based T-Train, T-Test, and RTT variants
in low-resource XLT on three low-resource XLT
benchmarks.

T-Train vs. T-Test. We first assess the widely
used T-Train and T-Test baselines. These sim-
ple translation-based XLT strategies outperform
ZS-XLT dramatically: from 6.2% on Masakha
(T-Test with XLM-R) up to 18.9% on AmNLI
(M-TRG+SRC), rendering them as unavoidable base-
lines for any XLT effort. Keeping the original clean
source language data in the training mix is benefi-
cial: TRG+SRC and M-TRG+SRC consistently outper-
form TRG and M-TRG, respectively. For sequence-
level classification tasks (AmNLI and NusaX),
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training on the concatenation of the clean source
data and the source data translated to a set of re-
lated target languages (M-TRG+SRC) yields the best
results. For NER on Masakha, TRG+SRC maxi-
mizes XLT performance. We further observe that
the optimal T-Train (TRG+SRC) strategy signifi-
cantly outperforms (+6.2%) the best T-Test ap-
proach. Our T-Test results also demonstrate that
in low-resource XLT, mLMs yield comparable per-
formance to monolingual LMs: this contradicts the
recent T-Test finding for high-resource languages
of Artetxe et al. (2023).

RTT. For sequence-level classification tasks, we
find that RTT outperforms the best T-Train strat-
egy (M-TRG+SRC), which is in line with prior find-
ings (Artetxe et al., 2023; Oh et al., 2022). For
NusaX, this observation holds for all RTT variants.
For AmNLI, only M-RT+SRC consistently outper-
forms M-TRG+SRC. We further observe inconclusive
results regarding the LM for which we get the high-
est performance for M-RT+SRC: while RoBERTa is
superior on AmNLI, XLM-R displays better perfor-
mance on NusaX. This result, however, does not ex-
tend to RT+SRC, for which XLM-R consistently out-
performs RoBERTa. As already seen, T-Test lags
T-Train on Masakha, and this is also true for RTT.
Even more so, RTT progressively degrades in perfor-
mance the more round-trip translated data is intro-
duced (i.e., RT+SRC trails T-Test by at least 0.1%
whereas M-RT+SRC does so by 0.7%). We hypothe-
size that both the amount of round-trip translated
data and the type of task drive the performance
of monolingual LMs like RoBERTa in translation-
based XLT to low-resource languages. Our re-
sults challenge prior work (Artetxe et al., 2023; Oh
et al., 2022), in which T-Test and RTT are better
with monolingual LMs than with mLMs. Their ex-
periments, however, covered predominantly high-
resource target languages.

Adding High-Resource Languages. Table 1 fur-
ther reports results of T-Train and RTT variants
that include high-resource languages (i.e., Chi-
nese, Russian, and Turkish) for translation-based
XLT. The results for T-Train are inconsistent.
For AmNLI, including high-resource languages
(M-TRG+SRC+HR) boosts performance by at least
1.1%. These gains persist for different model
selection strategies (cf. Appendix E). However,
such multilingual data augmentation adversely af-
fects the performance on NusaX and Masakha.

AmNLI NusaX Masakha Avg

Translate-Train

Val-Src 62.6±0.5 79.3±0.6 60.1±0.4 67.3±0.5

Val-MT-Trg 62.8±0.5 79.6±0.7 60.3±0.3 67.6±0.5

Val-Trg 62.9±0.5 80.2±0.6 62.2±0.4 68.4±0.5

Translate-Test

Val-Src 53.0±0.4 80.1±0.6 54.4±0.6 62.5±0.5

Val-MT-Trg 53.1±0.5 79.8±0.5 54.3±0.1 62.4±0.4

Val-Trg 53.4±0.4 80.8±0.7 54.4±0.1 62.9±0.5

Roundtrip-Train-Test

Val-Src 63.5±0.4 81.5±0.4 53.8±0.3 66.3±0.4

Val-MT-Trg 63.5±0.4 81.4±0.5 53.7±0.2 66.2±0.4

Val-Trg 63.4±0.5 81.7±0.4 54.0±0.2 66.4±0.4

Table 2: Comparison of model selection strategies for
languages supported by the MT model. We average
the results of TRG, TRG+SRC, M-TRG, and M-TRG+SRC for
T-Train, SRC for T-Test, and RT+SRC and M-RT+SRC
for RTT. The best results per task and training setup
(e.g., T-Train) are underlined; the best results for each
training setup are shown in bold.

We posit that the choice of high-resource lan-
guages critically affects T-Train since the test
data is still in the low-resource target language,
increasing the risk of negative transfer. In con-
trast, integrating high-resource languages into RTT
(i.e., M-RT-Ens-HR) results in substantial gains
of at least 1.8% for AmNLI and NusaX com-
pared to M-RT+SRC. Unlike its success on sequence-
level classification tasks, M-RT-Ens-HR degrades
performance for Masakha. While ensembles of-
ten inherently produce higher scores than single
models (Wortsman et al., 2022), our results on
sequence-level tasks show that ensembles trained
on round-trip translations to various high-resource
languages (M-RT-Ens-HR) outperform ensembles
trained solely on round-trip translated data to the
source language (M-RT-Ens-SRC). In contrast to
T-Train, integrating high-resource languages in
RTT reduces the likelihood of negative transfer
since the test data is in the same language as the
training data. Ensembling additionally smooths
over language-specific translation and downstream
transfer errors. Finally, ensembling monolingual
LMs might offer further gains but requires such
models for each high-resource language.

MT-Strategies for Model Selection. In XLT,
model selection is done using validation data in
the source or target language, with the latter violat-
ing true ZS-XLT (Schmidt et al., 2022, 2023). The
usage of MT to create validation data for model se-
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AmNLI NusaX Masakha Avg

Zero-Shot

SRC X 44.2±0.6 57.8±1.4 60.2±1.6 54.1±1.3

Translate-Train

TRG+SRC X 47.5±0.4 67.5±1.3 61.8±0.8 59.0±0.9

M-TRG+SRC X 46.5±0.3 74.0±1.4 61.0±1.2 60.5±1.1

Translate-Test

SRC R 36.5±0.2 54.4±1.3 48.1±0.5 46.3±0.8

SRC X 37.4±0.3 54.9±1.5 46.6±1.4 46.3±1.2

Roundtrip-Train-Test

M-RT+SRC R 38.8±0.3 60.5±0.7 45.0±0.4 48.1±0.5

M-RT+SRC X 39.1±0.2 59.1±1.2 44.0±1.4 47.4±1.1

incl. Translations to High-Resource Languages

M-RT-Ens-HR X 41.1±0.2 65.0±0.6 42.8±0.6 49.6±0.5

Table 3: Results for translation-based XLT for languages
not supported by the MT model. We use XLM-R (X)
and RoBERTa (R). The best results are shown in bold.

lection, however, remains understudied (Ebrahimi
et al., 2022). We thus next explore MT-based model
selection strategies and compare them against stan-
dard counterparts (cf. §3) in Table 2. In T-Train,
in line with prior work (Ebrahimi et al., 2022;
Schmidt et al., 2022), Val-Trg outperforms all other
model selection variants. We show, however, for
the first time, that it is also the upper bound of
T-Test and RTT. Additionally, in T-Train Val-MT-
Trg (i.e., model selection based on the automat-
ically translated target language validation data)
surpasses Val-Src on average across all tasks; this
is notably not the case for T-Test and RTT.

Unsupported Languages. Even the most multi-
lingual MT models (Team et al., 2022) support
only a tiny fraction of the world’s 7000+ lan-
guages. Table 3 summarizes the performance of
our MT-based XLT strategy for languages not sup-
ported by MT, where we translate to/from the
closest respective supported language (see §2.4).
We find that T-Train strategies remain success-
ful and substantially improve by 4.9% (TRG+SRC)
and 6.4% (M-TRG+SRC) over the ZS-XLT on av-
erage. In contrast, T-Test and RTT for unsup-
ported languages substantially trail ZS-XLT per-
formance. This is because it is not really possible
to get good translations in the source language by
simply pretending the input comes from a differ-
ent, supported language (in T-Test and RTT). In
contrast, with T-Train, we obtain proper trans-
lations in a supported language that is close to

AmNLI NusaX Masakha Avg

Nucleus 56.2±3.2 75.6±2.4 60.5±1.9 64.1±2.6

Greedy 62.5±0.6 79.5±2.2 64.0±1.1 68.7±1.5

Beam 62.6±0.5 79.4±2.1 64.8±1.2 68.9±1.4

Table 4: Results for T-Train (TRG) for different de-
coding strategies evaluated on the validation data of
AmNLI, NusaX, and Masakha. The best results are
shown in bold.

AmNLI NusaX Masakha Avg

Joint 63.5±0.4 80.7±0.4 62.8±0.4 69.0±0.4

Sequential 64.1±1.4 80.1±0.7 62.4±0.4 68.9±0.9

Table 5: Comparison of sequential vs. joint translation-
based XLT for languages supported by the MT model.
We average the results of TRG+SRC and M-TRG+SRC
and the respective sequential variants (SRC→TRG and
SRC→M-TRG). The best results are shown in bold.
Model selection is done on the best epoch based on
target language validation data (Val-Trg).

the real target (as in T-Train): the transfer then
amounts to the mLM-based ZS-XLT ability from
the close, MT-supported language to the real MT-
unsupported target. This further supports the find-
ing that MT quality much less affects performance
of T-Train strategies than of T-Test or RTT ap-
proaches (Artetxe et al., 2023).

5 Further Findings

Decoding Strategy. Previous work examined the
impact of various decoding strategies on down-
stream performance, particularly in the context
of back-translation (Edunov et al., 2018) and
sequence-level classification (Artetxe et al., 2023).
They found nucleus sampling consistently superior
to beam search and greedy decoding. However, our
results in Table 4 suggest a noteworthy deviation
for low-resource languages. We find beam search
and greedy decoding substantially outperform nu-
cleus sampling. We posit that the underrepresenta-
tion of low-resource languages in the training data
of MT models contributes to this contrast.4

Joint vs. Sequential Training. Prior work primar-
ily concatenated the source data with the translated
target language data and trained on both jointly (Hu
et al., 2020; Oh et al., 2022; Artetxe et al., 2023).
In contrast, Aggarwal et al. (2022) propose a se-

4We present details on the resource availability of the tasks
we evaluated, compared to related work, in Appendix D.
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AmNLI NusaX Masakha Avg

NLLB GT NLLB GT NLLB GT NLLB GT

Translate-Train

TRG+SRC X 62.9 63.1 87.0 87.0 66.0 65.3 72.0 71.8

Translate-Test

SRC R 53.1 63.6 85.3 85.7 54.8 59.7 64.4 69.7
SRC X 52.9 64.8 85.8 86.6 54.1 59.0 64.3 70.1

Roundtrip-Train-Test

RT+SRC R 62.4 69.9 85.2 86.9 55.0 59.9 67.5 72.2
RT+SRC X 63.1 69.1 86.0 87.5 54.0 59.2 67.7 71.9

Table 6: Results for translation-based XLT for two MT
systems (NLLB and GT) for languages supported by
both MT models. For T-Train, model selection is done
on the best epoch based on target-language validation
data (Val-Trg), and for T-Test and RTT, based on source-
language validation data (Val-Src). We evaluated XLM-
R (X) and RoBERTa (R).

quential T-Train approach in which the model is
first trained on the source-language data and then,
in a subsequent step, on the translated data of ei-
ther (i) a single target language (TRG) or (ii) multi-
ple target languages jointly (M-TRG). We adopt this
in our T-Train variants (denoted SRC→TRG and
SRC→M-TRG) and compare them against the more
established joint training: results in Table 5 show
comparable performance between the two. This
favors sequential training, as it is more computa-
tionally efficient (Schmidt et al., 2022).

Importance of the MT model. In the MT land-
scape, the translation quality of the industrial-grade
models is often considered superior to that of their
publicly available counterparts. Because of this,
we ablate the impact of the used MT model on
translation-based XLT by generating translations
through Google Translate (GT)—a representative
example of an industrial MT model. We evaluate
T-Train (i.e., TRG+SRC), T-Test (i.e., SRC), and
RTT (i.e., RT+SRC) with GT. Our results in Table 6
indicate that the performance remains comparable
for T-Train, while GT surpasses NLLB by a sub-
stantial margin in the context of T-Test and RTT.
We hypothesize that our observation stems from
the increased translation quality which is of larger
importance for T-Test and RTT than for T-Train
(Artetxe et al., 2023). Furthermore, our ablation
confirms that RTT remains the most competitive
translation-based XLT method for sequence-level
classification tasks. Unfortunately, GT does not
support the exact same set of languages as NLLB.

We thus carry out the ablation on the following lan-
guages supported by both MT systems: for AmNLI:
Aymara, Guarani, and Quechua; for NusaX: Ja-
vanese and Sundanese; and for Masakha: Bam-
bara, Éwé, Hausa, Igbo, Kinyarwanda, chiShona,
Kiswahili, Akan/Twi, isiXhosa, Yorùbá, isiZulu.

6 Related Work

Translation-based Transfer. Translation-based
XLT has been adopted early (Fortuna and Shawe-
Taylor, 2005; Banea et al., 2008; Shi et al., 2010)
yet remains a competitive baseline to date (Ruder
et al., 2021; Ebrahimi et al., 2022; Aggarwal et al.,
2022). Prior work evaluated training on the trans-
lated data of a single target language (Ebrahimi
et al., 2022), on the concatenation of all target lan-
guages (Ruder et al., 2021), and have integrated
the source language either by sequentially training
first on the source followed by the translated target
language data (Aggarwal et al., 2022) or by jointly
training on the concatenation of both (Chen et al.,
2023). While earlier approaches focus primarily
on the translation of the training data (T-Train),
more recent work evaluated the translation of test
data as well (Hu et al., 2020; Isbister et al., 2021)
(T-Test). Finally, both approaches can be com-
bined by training the model on round-trip trans-
lated noisy source data (i.e., translating source data
to the target language and back to the source) and
evaluating it on target language test data translated
to the source language (Artetxe et al., 2020; Oh
et al., 2022; Artetxe et al., 2023). Previous stud-
ies have either focused on improving one of these
paradigms or utilized them as baselines. In con-
trast, we provide a comparative empirical evalu-
ation of existing translation-based approaches to
XLT, testing them explicitly against ZS-XLT for
low-resource languages.

Label projection. Translation-based transfer
for token-level tasks necessitates label projec-
tion, which is achieved through either alignment-
based or (Tjong Kim Sang and De Meulder, 2003;
Jalili Sabet et al., 2020; Nagata et al., 2020) marker-
based approaches (Lee et al., 2018; Lewis et al.,
2020; Hu et al., 2020; Bornea et al., 2021). The
former maps each token in the source sequence to a
token in the translated target sequence, with recent
neural word aligners utilizing contextualized em-
beddings of mLMs to produce the alignment (Dou
and Neubig, 2021; Wang et al., 2022). Marker-
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based alignment, in contrast, entails marking la-
beled tokens in the sequence prior to translation,
often by enclosing them in XML or HTML tags,
and preserving them throughout the translation pro-
cess. Subsequently, the labels can be recovered
from the markers. While alignment-based methods
are prone to issues like error propagation, transla-
tion shift (Akbik et al., 2015), and non-contiguous
alignments (Zenkel et al., 2020), marker-based pro-
jection compromises translation performance by
introducing artificial tokens and is susceptible to
vanishing markers, particularly with non-industrial,
publicly available translation models (Chen et al.,
2023). In XLT for NER (Masakha), we leveraged
a state-of-the-art alignment-based model (Wang
et al., 2022).

7 Conclusion

We reviewed the field of translation-based cross-
lingual transfer (XLT) to low-resource lan-
guages through a comparative evaluation of var-
ious approaches—derived from translate-train
(T-Train), translate-test (T-Test), and roundtrip-
train-test (RTT)—on three established benchmarks
encompassing 40 languages. We demonstrated that
translation-based XLT substantially outperforms
zero-shot XLT no matter the task. Furthermore, ir-
respective of the translation-based strategy, includ-
ing the clean source language data in the training
yielded consistent improvements. For sequence-
level tasks, training on the source language data
round-trip translated through a set of related target
languages and evaluating, at inference, the target
language instances translated back to the source lan-
guage performed best (RTT). In contrast, for token-
level tasks, training on the translations to a single
target language showed the best results (T-Train).
Additionally, we proposed novel translation-based
XLT strategies for T-Train and RTT by including
translations to a set of typologically diverse high-
resource languages. Further, we successfully pro-
posed translation-based strategies for languages
unsupported by the MT model and showcased the
effectiveness of using automatically translated val-
idation data for model selection. Our empirical
comparison and its findings warrant broader inclu-
sion of more competitive translation-based XLT
approaches as standard baselines in all research
efforts set to improve XLT with mLMs.

8 Limitations

We strove to provide a comprehensive and system-
atic evaluation of translation-based XLT to low-
resource languages, additionally providing novel
T-Train and RTT paradigms. However, our study
faces limitations, primarily stemming from the
prevalent practice of obtaining benchmarks for low-
resource languages by translating datasets from
high-resource languages, which applies to AmNLI,
NusaX, and some languages of Masakha. The re-
sulting data possesses distinctive characteristics
arising from the translation process, commonly re-
ferred to as translationese. On the one hand, we ex-
plicitly exploit this behavior by demonstrating that
augmenting the training data in the same way as we
augment the test data (i.e., RTT) yields the best re-
sults. On the other hand, there exist uncontrollable
implications potentially influencing our results, for
instance, that translation often becomes easier for
datasets originating from translation themselves.
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A Models and Datasets

Language Code Pre. Model Supp. Trans. Closest

AmNLI

Aymara AYM No Yes -
Guaraní GN No Yes -
Quechua QUY No Yes -
Asháninka CNI No No AYM
Bribri BZD No No QUY
Nahuatl NAH No No GN
Otomí OTO No No GN
Rarámuri TAR No No AYM
Shipibo-Konibo SHP No No QUY
Wixarika HCH No No GN

NusaX

Acehnese ACE No Yes -
Balinese BAN No Yes -
Banjarese BJN No Yes -
Buginese BUG No Yes -
Minangkabau MIN No Yes -
Javanese JAV Yes Yes -
Sundanese SUN Yes Yes -
Madurese MAD No No SUN
Ngaju NIJ No No SUN
Toba Batak BBC No No BUG

MasakhaNER

Bambara BAM No Yes -
Éwé EWE No Yes -
Fon FON No Yes -
Hausa HAU Yes Yes -
Igbo IBO No Yes -
Kinyarwanda KIN No Yes -
Luganda LUG No Yes -
Luo LUO No Yes -
Mossi MOS No Yes -
Chichewa NYA No Yes -
chiShona SNA No Yes -
Kiswahili SWA Yes Yes -
Setswana TSN No Yes -
Akan/Twi TWI No Yes -
Wolof WOL No Yes -
isiXhosa XHO Yes Yes -
Yorùbá YOR No Yes -
isiZulu ZUL No Yes -
Ghomálá’ BBJ No No SWA
Naija PCM No No HAU

Table 7: List of languages per task showing the coverage
in the pretraining corpus of our backbone model (Pre.
Model), the support by NLLB (Supp. Trans.), and the
closest language we translated to/from for languages
that are not supported by the translation model (Closest).

The models for translation, word alignment, and
downstream fine-tuning were accessed through the
Hugging Face transformers library (Wolf et al.,
2020). Additional adapter checkpoints for the
used word aligner were downloaded from the cor-
responding GitHub repository: AccAlign (Wang
et al., 2022). We accessed all our datasets through
the Hugging Face datasets library (Lhoest et al.,
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AccAlign EasyProj

BAM 94.4 90.9
EWE 95.6 92.2
FON 92.9 83.4
HAU 97.5 94.4
IBO 98.3 96.1
KIN 97.2 93.8
LUG 97.0 95.3
LUO 96.6 94.0
MOS 90.3 92.3
NYA 98.5 96.7
SNA 98.7 95.6
SWA 98.8 96.3
TSN 98.0 95.0
TWI 96.2 94.6
WOL 93.0 93.4
XHO 97.8 95.1
YOR 97.3 94.3
ZUL 97.7 93.1

Avg Proj. Rate 96.4 93.7

Avg. Perf. 65.5 65.6

Table 8: Projection rates and average performance in
the TRG+SRC setup for word alignments produce by Ac-
cAlign (Wang et al., 2022) and EasyProj (Chen et al.,
2023). Model selection is done on the best epoch based
on target-language validation data (Val-Trg).

2021). Further, we ensured compliance with the li-
censes of the models and datasets. Table 7 displays
a detailed list of all languages.

B Word Alignment

Table 8 shows the projection rates for AccAlign
(Wang et al., 2022) (used in our work) and the
state-of-the-art marker-based method EasyProject
(EasyProj) (Chen et al., 2023). The projection rate
is computed as the ratio of retained training in-
stances after label projection to all instances in the
original training data. The results highlight that
the downstream performance of AccAlign is on par
with the competitive EasyProj. Nevertheless, we
attribute variations in the projection rate not only to
superior alignment but also to differences in filter-
ing strategies. While Chen et al. (2023) filter trans-
lated instances that do not match the number and
type of tags in the source instance, our approach
filters instances if a tagged source-language token
cannot be mapped to its target language equivalent.
We leave the exploration of the impact of different
filtering approaches to future work.

AmNLI NusaX Masakha

Task NLI TC NER
Epochs 2 20 10
Batch Size 32 32 32
Learning Rate 2e-6 1e-5 1e-5
Weight Decay 0.01 0.01 0.01

Table 9: Hyperparameters for downstream fine-tuning.

C Training and Computational Details

Table 9 outlines the hyperparameters for down-
stream fine-tuning of our utilized tasks.5 Along-
side, we implement a linear schedule of 10% warm-
up and decay and employ mixed precision. All
translations were run on a single A100 with 40GB
VRAM, and all downstream training and evalua-
tion runs were completed on a single V100 with
32GB VRAM. We roughly estimate that GPU time
accumulates to 3500 hours across all translations
and downstream fine-tunings.

D Resource Availability

To substantiate our claim that the languages we
evaluate are characterized by far lower resource
availability compared to related work, we assess the
relative size of parallel data used for training NLLB
for languages encompassed in the datasets we used
and those employed in Artetxe et al. (2023). For
each language, we calculate the ratio of available
parallel data to the total size of the parallel corpus
and, subsequently, average the results per dataset.
The computations are based on the following
corpus https://huggingface.co/datasets/allenai/nllb.
Our metric serves as a proxy for the average cover-
age of a dataset in the training data of NLLB. As
shown in Table 10, the resource availability for the
datasets we evaluated is approximately an order of
magnitude smaller.

5We used a comparably small learning rate for AmNLI
as single seeds did not converge for higher learning rates in
preliminary experiments.
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Artetxe et al. (2023) Ours

XNLI PAWS-X MARC XStory XCOPA EXAMS Avg AmNLI NusaX Masakha Avg

Avg. Res. Availability 2.67 3.61 4.24 2.24 1.17 2.67 2.78 0.09 0.21 0.41 0.24

Table 10: Average percentage of available parallel data per task from the corpus used to train NLLB for three
datasets we evaluated on: AmNLI, NusaX, and Masakha; and six datasets Artetxe et al. (2023) did: XNLI (Conneau
et al., 2018), PAWS-X (Yang et al., 2019), MARC (Keung et al., 2020), XStoryCloze (XStory) (Lin et al., 2022),
XCOPA (Ponti et al., 2020), EXAMS (Hardalov et al., 2020).

E Detailed Main Results

AYM GN QUY Avg

I II III I II III I II III I II III

Zero-Shot

SRC X 43.2 44.0 42.4 46.5 46.8 47.7 44.3 44.7 44.2 44.7 45.2 44.8

Translate-Train

SRC+HR X 38.0 38.8 38.8 42.0 44.8 44.5 40.2 42.1 41.7 40.1 41.9 41.7
T X 58.4 59.5 58.7 63.6 63.2 62.8 61.5 62.2 61.8 61.1 61.6 61.1
TRG+SRC X 59.4 59.4 59.6 66.1 65.6 65.6 61.9 62.3 63.4 62.4 62.4 62.9
SRC→TRG X 53.8 62.8 61.9 64.1 66.2 67.0 54.8 64.3 62.7 57.6 64.4 63.9
TRG+SRC+HR X 59.4 59.7 59.8 65.8 65.8 66.2 63.5 63.9 64.3 62.9 63.1 63.4
M-TRG X 61.2 61.6 61.4 64.4 64.1 64.2 64.7 64.4 64.7 63.4 63.4 63.5
M-TRG+SRC X 61.4 62.4 62.3 65.5 65.2 65.2 63.8 64.0 64.8 63.6 63.9 64.1
SRC→M-TRG X 58.3 62.1 62.6 60.6 66.8 66.8 59.5 65.0 65.0 59.5 64.7 64.8
M-TRG+SRC+HR X 62.7 63.0 62.7 66.6 67.0 66.3 64.7 64.6 65.1 64.7 64.9 64.7

Translate-Test

SRC R 46.9 46.9 46.9 60.2 60.1 60.0 52.3 52.5 52.8 53.1 53.2 53.2
SRC X 46.3 46.3 47.8 60.8 61.0 60.8 51.7 52.0 52.5 52.9 53.1 53.7

Roundtrip-Train-Test

RT+SRC R 58.1 59.2 58.4 68.5 67.6 68.2 60.6 61.3 61.3 62.4 62.7 62.6
RT+SRC X 58.9 59.3 59.3 69.7 69.7 69.3 60.7 60.4 60.6 63.1 63.1 63.1
M-RT+SRC R 60.8 61.0 60.4 69.6 69.0 69.2 62.4 62.6 62.0 64.3 64.2 63.9
M-RT+SRC X 59.8 59.7 59.6 69.6 69.5 69.3 62.7 62.9 62.9 64.0 64.0 63.9
M-RT-Ens-SRC X 59.6 60.0 60.1 70.1 69.9 69.2 61.4 62.3 62.7 63.7 64.0 64.0
M-RT-Ens-HR X 61.1 61.6 62.7 70.3 70.1 70.0 66.8 66.1 66.1 66.1 65.9 66.3

Table 11: Results for translation-based XLT evaluated of AmNLI for languages supported by the translation model.
Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on translated
source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg (III)). We
use XLM-R (X) and RoBERTa (R).
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BZD CNI HCH NAH OTO SHP TAR AVG

I II III I II III I II III I II III I II III I II III I II III I II III

Zero-Shot

SRC X 44.1 42.4 44.5 44.0 44.1 44.9 40.9 40.9 40.7 45.9 45.9 46.5 43.8 44.0 44.1 50.5 50.0 49.7 40.1 43.4 44.4 44.2 44.4 45.0

Translate-Train

SRC+HR X 42.0 42.0 43.6 40.9 43.9 43.9 36.1 39.2 38.1 43.1 44.2 44.0 43.8 44.0 44.1 45.1 48.5 46.8 38.2 41.5 42.5 41.3 43.3 43.3
TRG X 43.2 42.6 45.0 48.8 46.4 48.4 44.6 46.1 46.4 49.3 49.2 49.5 47.5 47.4 46.8 50.5 49.1 50.7 47.7 49.2 49.1 47.4 47.1 48.0
TRG+SRC X 44.9 44.4 45.7 47.6 47.5 48.8 44.8 45.0 45.7 48.4 48.4 48.6 47.8 47.8 48.0 51.0 48.0 51.0 47.7 48.5 49.0 47.5 47.1 48.1
SRC→TRG X 46.1 44.2 45.7 47.8 48.0 48.9 45.7 46.0 45.4 47.9 47.4 49.3 47.2 48.9 47.6 49.7 49.7 49.6 45.4 46.5 47.1 47.1 47.2 47.7
TRG+SRC+HR X 44.5 44.4 44.9 46.8 47.0 47.6 44.7 44.8 45.6 49.2 50.1 48.9 47.3 48.1 47.4 48.1 47.8 49.0 49.4 49.1 49.6 47.2 47.3 47.6
M-TRG X 45.9 44.9 46.2 46.1 46.1 45.6 45.0 44.8 45.1 49.6 49.1 48.6 46.3 46.9 45.5 48.5 48.9 48.8 47.2 46.6 49.5 46.9 46.8 47.0
M-TRG+SRC X 45.5 45.5 46.1 45.5 46.6 46.7 44.4 44.9 44.6 48.1 47.7 48.7 46.9 46.9 46.1 49.5 49.2 50.2 45.6 45.8 46.4 46.5 46.7 47.0
SRC→M-TRG X 46.4 46.0 45.5 47.4 47.4 47.0 45.7 45.3 45.1 48.5 47.4 48.8 47.8 47.5 47.6 50.8 49.2 51.0 46.8 46.0 47.0 47.6 47.0 47.4
M-TRG+SRC+HR X 45.2 45.3 46.9 45.8 46.5 46.5 45.2 45.1 45.0 48.2 48.6 50.1 47.0 47.4 47.1 50.0 50.1 50.7 46.3 46.2 47.7 46.8 47.0 47.7

Translate-Test

SRC R 35.8 36.0 35.6 32.9 33.7 33.1 36.5 36.1 36.9 39.5 40.1 39.6 38.4 38.2 37.3 38.5 38.8 39.2 33.8 34.4 33.5 36.5 36.8 36.5
SRC X 35.3 35.1 36.1 35.8 36.4 36.4 37.0 37.1 36.3 38.8 39.2 38.7 39.4 39.4 38.0 41.4 40.9 40.8 33.8 34.3 33.9 37.4 37.5 37.2

Roundtrip-Train-Test

RT+SRC R 36.4 36.7 36.8 36.5 36.9 36.7 37.3 36.5 37.2 39.8 39.8 39.5 41.5 40.6 40.6 42.7 42.1 41.5 34.5 34.7 34.0 38.4 38.2 38.0
RT+SRC X 37.4 36.2 35.8 37.4 37.2 36.7 37.3 37.3 36.8 39.5 39.6 39.2 40.4 40.2 40.9 43.5 44.4 43.2 35.1 35.8 35.0 38.6 38.7 38.2
M-RT+SRC R 37.1 37.5 37.1 38.9 39.3 37.9 38.4 37.9 38.6 39.4 39.4 40.2 40.9 40.8 41.8 41.9 41.7 43.3 35.3 34.7 34.5 38.8 38.7 39.0
M-RT+SRC X 37.1 36.8 37.2 39.0 38.8 37.8 39.6 39.4 39.5 41.1 40.4 41.0 39.3 39.8 39.4 43.2 42.8 42.9 34.8 34.8 34.9 39.1 39.0 38.9
M-RT-Ens-SRC X 37.0 37.0 36.8 38.7 39.0 38.2 39.2 38.6 39.4 41.3 40.2 40.3 39.4 38.6 41.2 43.5 42.5 43.2 34.8 34.5 35.1 39.1 38.6 39.2
M-RT-Ens-HR X 41.1 40.7 41.4 39.1 38.9 39.2 39.9 40.7 40.5 43.7 43.3 44.9 40.2 40.9 42.2 46.6 47.2 46.7 37.4 38.3 37.6 41.1 41.4 41.8

Table 12: Results for translation-based XLT evaluated of AmNLI for languages not supported by the translation
model. Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on
translated source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg
(III)). We use XLM-R (X) and RoBERTa (R).

ACE BAN BJN BUG JAV MIN SUN Avg

I II III I II III I II III I II III I II III I II III I II III I II III

Zero-Shot

SRC X 65.7 64.6 65.7 72.5 72.7 71.9 79.5 79.7 80.1 36.9 42.6 43.9 82.7 79.9 84.8 79.2 80.3 80.4 81.8 83.9 83.6 71.2 72.0 72.9

Translate-Train

SRC+HR X 67.0 68.0 68.8 72.0 72.5 73.0 80.4 80.4 80.6 39.6 44.1 43.5 80.7 83.7 86.0 77.2 79.1 78.9 81.3 80.8 81.0 71.2 72.7 73.1
TRG X 74.1 74.4 75.3 73.2 75.5 74.0 83.4 82.7 82.1 62.2 64.6 64.7 86.1 86.0 88.9 82.2 83.2 83.1 83.6 83.4 84.3 77.8 78.6 78.9
TRG+SRC X 76.2 75.6 77.6 76.8 75.9 75.6 82.4 83.4 82.0 65.1 65.6 67.0 88.1 87.1 90.9 85.1 84.6 85.3 84.6 84.1 83.0 79.7 79.5 80.2
SRC→TRG X 74.6 75.0 75.6 76.3 77.0 77.0 81.9 82.1 82.6 64.7 62.9 65.4 86.9 87.2 89.7 83.5 84.3 82.9 84.1 83.9 83.6 78.9 78.9 79.5
TRG+SRC+HR X 73.1 75.1 75.4 75.4 76.2 76.1 81.5 81.6 82.2 63.6 61.8 64.6 87.4 87.8 89.5 82.6 83.8 84.7 83.1 84.4 83.9 78.1 78.7 79.5
M-TRG X 74.8 77.8 77.9 75.6 77.5 77.1 84.1 84.3 84.5 65.0 64.6 65.2 84.8 86.0 88.8 85.1 84.0 84.3 83.6 84.4 84.6 79.0 79.8 80.3
M-TRG+SRC X 77.7 77.8 76.4 77.4 77.3 78.5 86.1 84.8 86.0 65.1 66.2 66.8 86.5 84.4 88.3 86.5 85.8 86.2 86.5 86.4 86.5 80.8 80.4 81.2
SRC→M-TRG X 75.3 76.7 75.4 77.1 78.5 78.0 84.2 83.6 85.0 64.0 66.8 67.7 84.0 83.2 88.2 84.3 84.4 84.4 85.6 85.7 83.5 79.2 79.8 80.3
M-TRG+SRC+HR X 76.8 78.2 77.8 76.5 78.0 77.1 84.0 84.1 84.9 65.6 66.9 66.0 81.8 84.9 88.5 83.5 83.9 85.1 85.5 85.1 85.4 79.1 80.2 80.7

Translate-Test

SRC R 77.3 75.5 77.5 74.1 75.5 75.8 82.2 79.6 82.0 69.5 71.8 72.3 85.8 84.3 85.5 81.9 82.0 82.9 84.8 84.3 84.8 79.4 79.0 80.1
SRC X 78.8 77.9 78.5 77.2 77.4 78.8 83.6 83.3 82.3 71.7 70.1 74.5 85.5 86.1 85.8 83.4 83.6 84.6 86.1 86.3 85.8 80.9 80.7 81.5

Roundtrip-Train-Test

RT+SRC R 79.5 79.3 79.1 76.1 77.9 77.8 82.8 82.4 82.2 74.5 74.3 73.7 85.7 83.7 85.0 85.6 84.3 84.3 84.6 84.7 85.3 81.2 81.0 81.0
RT+SRC X 78.3 79.4 79.7 78.8 78.1 77.1 83.9 83.8 84.1 73.1 74.1 75.3 86.5 86.8 86.4 84.9 85.5 85.9 85.6 84.9 85.7 81.6 81.8 82.0
M-RT+SRC R 78.6 77.8 78.2 77.8 79.3 80.1 83.6 83.6 83.4 73.8 73.4 74.6 85.8 85.3 86.0 83.9 84.2 84.2 83.7 83.6 83.5 81.0 81.0 81.4
M-RT+SRC X 78.8 78.6 79.8 79.6 78.0 80.3 85.2 84.8 85.0 74.5 75.1 75.6 86.9 87.1 86.6 84.7 84.3 84.8 85.0 85.1 84.8 82.1 81.9 82.4
M-RT-Ens-SRC X 79.8 79.1 80.2 80.2 80.0 80.5 86.5 86.5 86.3 74.8 75.8 75.7 87.5 87.3 86.6 85.3 85.8 85.3 85.8 85.7 84.2 82.8 82.9 82.7
M-RT-Ens-HR X 83.2 83.5 83.2 82.2 81.6 82.4 86.0 85.7 85.1 75.2 75.5 74.6 88.0 88.0 87.0 86.5 86.1 86.7 86.5 86.9 86.0 83.9 83.9 83.6

Table 13: Results for translation-based XLT evaluated of NusaX for languages supported by the translation model.
Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on translated
source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg (III)). We
use XLM-R (X) and RoBERTa (R).
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BBC MAD NIJ Avg

I II III I II III I II III I II III

Zero-Shot

SRC X 41.4 45.5 45.9 65.5 64.8 67.4 66.6 65.7 67.2 57.8 58.7 60.2

Translate-Train

SRC+HR X 42.7 46.5 45.3 65.1 62.8 68.5 62.7 62.1 65.6 56.8 57.1 59.8
TRG X 60.6 60.9 62.2 70.1 69.6 73.1 66.1 67.4 69.9 65.6 65.9 68.4
TRG+SRC X 61.2 62.2 64.0 72.4 72.4 71.9 69.0 69.7 68.6 67.5 68.1 68.2
SRC→TRG X 63.8 62.7 66.1 70.7 69.5 70.7 69.6 69.2 70.1 68.0 67.1 68.9
TRG+SRC+HR X 62.2 63.2 61.7 71.7 72.1 72.4 71.5 68.9 71.6 68.5 68.1 68.6
M-TRG X 65.8 67.8 66.8 76.8 75.6 78.9 74.8 74.5 76.2 72.5 72.6 74.0
M-TRG+SRC X 66.3 67.9 65.2 78.2 76.6 77.8 77.5 75.7 77.8 74.0 73.4 73.6
SRC→M-TRG X 68.0 68.3 65.6 77.8 77.9 78.0 76.1 77.2 78.4 74.0 74.5 74.0
M-TRG+SRC+HR X 65.1 66.9 64.0 76.7 75.5 77.0 75.2 75.3 76.8 72.3 72.6 72.6

Translate-Test

SRC R 42.6 47.8 49.2 56.4 56.4 58.8 64.3 63.7 65.8 54.4 56.0 57.9
SRC X 40.4 38.5 55.1 60.9 59.8 63.6 63.4 62.1 65.8 54.9 53.5 61.5

Roundtrip-Train-Test

RT+SRC R 49.6 45.5 50.2 55.1 56.1 58.1 60.9 62.0 63.1 55.2 54.5 57.1
RT+SRC X 44.0 46.6 54.6 62.5 62.2 64.3 64.6 65.2 64.3 57.0 58.0 61.1
M-RT+SRC R 51.5 50.5 52.5 61.7 60.8 61.6 68.3 66.4 68.3 60.5 59.2 60.8
M-RT+SRC X 47.2 54.2 55.3 62.7 64.6 66.7 67.3 68.5 67.0 59.1 62.4 63.0
M-RT-Ens-SRC X 49.4 54.1 56.4 65.7 68.0 68.5 68.3 69.5 69.6 61.1 63.9 64.8
M-RT-Ens-HR X 51.9 56.9 58.1 69.8 68.8 70.9 73.2 72.5 72.7 65.0 66.1 67.2

Table 14: Results for translation-based XLT evaluated of NusaX for languages not supported by the translation
model. Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on
translated source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg
(III)). We use XLM-R (X) and RoBERTa (R).

BAM EWE FON HAU IBO KIN LUG LUO MOS NYA SNA SWA TSN TWI WOL XHO YOR ZUL Avg

Zero-Shot

SRC X 36.9 67.9 46.8 73.4 48.0 42.0 58.6 37.7 47.6 47.4 35.8 85.5 48.1 43.3 48.2 22.8 31.1 41.1 47.9

Translate-Train

SRC+HR X 35.8 70.4 50.5 72.5 54.6 43.3 63.9 40.9 50.6 53.3 55.4 81.9 52.5 42.7 52.3 56.9 33.6 59.1 53.9
TRG X 51.3 72.6 64.5 71.4 65.8 53.5 69.7 47.7 53.9 63.9 65.6 76.3 68.0 60.3 58.8 68.7 36.4 69.0 62.1
TRG+SRC X 48.9 75.4 65.9 72.3 68.1 54.7 74.3 50.1 57.0 68.0 69.9 77.4 68.7 61.5 61.7 70.0 38.0 71.4 64.1
SRC→TRG X 51.0 71.4 65.7 72.1 68.3 54.2 73.2 48.8 56.1 65.0 67.4 76.2 69.7 60.1 56.9 69.1 38.1 70.9 63.0
TRG+SRC+HR X 47.9 71.8 67.2 71.5 70.2 54.4 73.3 48.6 54.5 66.6 68.1 76.1 68.0 61.0 58.0 68.5 38.0 68.7 62.9
M-TRG X 43.8 65.1 60.7 69.2 63.7 51.1 66.2 47.1 45.2 57.0 62.1 75.2 58.2 58.9 48.4 58.1 36.2 58.6 56.9
M-TRG+SRC X 44.1 65.5 58.1 70.1 61.8 53.2 66.7 45.6 46.7 56.6 60.7 76.1 62.4 59.7 46.8 61.2 35.9 62.8 57.4
SRC→M-TRG X 48.3 68.0 63.7 69.8 64.8 54.0 67.0 48.4 50.1 58.6 61.2 75.9 61.2 60.1 52.5 62.0 38.7 62.5 59.3
M-TRG+SRC+HR X 45.7 65.4 64.3 69.0 64.9 52.7 65.2 46.5 49.2 56.9 60.7 75.3 57.9 58.6 53.9 60.4 36.7 61.7 58.0

Translate-Test

SRC R 39.9 61.3 56.4 58.0 55.8 51.6 68.1 45.5 39.6 63.7 58.5 62.0 60.1 56.8 49.7 58.0 43.9 57.0 54.8
SRC X 39.4 61.5 56.3 57.8 54.9 50.5 67.9 43.2 39.1 63.1 58.0 61.6 57.9 55.2 49.9 57.6 43.4 56.7 54.1

Roundtrip-Train-Test

RT+SRC R 39.7 61.2 57.2 58.3 60.6 49.9 65.6 44.0 37.6 63.8 57.8 62.2 59.8 57.2 50.9 55.9 45.2 57.4 54.7
RT+SRC X 39.0 60.0 57.2 57.8 58.2 50.6 65.1 42.6 36.4 62.5 57.0 61.8 57.6 55.2 50.1 55.0 44.3 56.5 53.7
M-RT+SRC R 40.0 57.9 55.0 58.3 59.8 49.6 63.7 43.0 35.5 62.3 55.3 62.7 59.5 55.6 50.1 54.5 43.7 55.4 53.4
M-RT+SRC X 39.1 59.0 55.8 58.4 59.6 49.3 65.1 41.1 36.9 61.1 55.3 62.4 58.2 56.0 50.2 53.5 43.0 55.7 53.3
M-RT-Ens-SRC X 39.9 59.2 56.2 58.0 60.3 50.2 64.8 41.5 38.1 61.7 56.0 62.4 57.0 56.5 50.9 54.1 44.2 55.8 53.7
M-RT-Ens-HR X 33.8 50.6 46.7 47.6 50.4 42.1 53.7 34.7 34.7 53.1 50.2 54.1 48.3 47.0 44.3 47.9 38.6 46.6 45.8

Table 15: Results for translation-based XLT evaluated of Masakha for languages supported by the translation model.
Model selection is done on the best epoch based on source-language validation data (Val-Src). We use XLM-R (X)
and RoBERTa (R).

5342



BAM EWE FON HAU IBO KIN LUG LUO MOS NYA SNA SWA TSN TWI WOL XHO YOR ZUL Avg

Zero-Shot

SRC X 38.9 69.1 49.4 73.2 50.6 43.3 62.4 38.4 49.8 49.0 35.7 85.3 49.6 45.2 50.9 22.6 32.4 41.3 49.3

Translate-Train

SRC+HR X 38.7 72.4 54.4 72.6 58.5 46.0 65.5 40.6 51.9 54.4 54.6 82.0 52.9 47.7 51.6 57.3 33.7 59.4 55.2
TRG X 50.0 74.4 65.0 71.2 65.7 53.8 73.0 48.4 55.0 64.6 66.3 76.4 68.6 58.7 58.8 68.2 37.1 70.2 62.5
TRG+SRC X 50.6 75.5 66.0 72.2 68.6 55.3 75.0 50.0 55.6 67.5 69.2 77.7 69.5 61.8 60.6 69.3 38.6 72.1 64.2
SRC→TRG X 50.8 73.6 66.0 72.0 68.5 56.0 74.9 50.0 56.1 67.0 70.0 76.9 69.9 61.8 61.0 69.5 38.4 71.3 64.1
TRG+SRC+HR X 50.9 72.0 67.5 71.6 69.7 54.1 73.9 49.1 54.1 67.5 69.3 76.8 68.7 61.5 57.9 68.8 39.1 70.2 63.5
M-TRG X 46.5 64.4 59.0 69.4 64.1 51.4 65.4 45.3 46.7 56.9 60.3 74.6 59.6 58.3 52.4 59.6 36.6 60.0 57.2
M-TRG+SRC X 44.7 65.5 59.4 68.8 66.2 51.7 63.3 46.8 47.4 56.7 60.3 74.8 59.9 57.4 53.5 59.8 36.0 61.8 57.4
SRC→M-TRG X 45.1 64.6 62.9 69.6 65.1 51.6 67.3 46.1 46.4 55.6 60.4 73.8 59.1 60.1 51.1 61.3 34.9 61.1 57.6
M-TRG+SRC+HR X 45.0 64.0 59.5 68.4 65.5 51.0 62.3 47.1 48.0 56.5 60.3 74.6 59.1 57.9 51.7 59.3 33.6 61.0 56.9

Translate-Test

SRC R 39.9 61.4 56.3 58.0 55.9 51.4 67.8 44.8 39.7 63.7 58.5 62.0 60.0 56.3 49.8 57.6 44.1 57.4 54.7
SRC X 39.2 61.2 55.6 57.8 54.8 50.6 67.7 43.0 39.1 63.3 57.8 61.7 57.8 54.5 49.7 57.5 43.0 56.6 53.9

Roundtrip-Train-Test

RT+SRC R 39.7 61.1 56.9 58.4 61.2 50.2 65.9 44.5 37.7 63.5 57.8 62.4 59.8 56.9 51.4 55.9 45.5 57.0 54.8
RT+SRC X 39.7 59.6 56.5 58.0 58.6 50.7 66.0 42.5 36.4 62.7 57.1 61.9 57.0 54.1 50.7 55.1 44.3 56.0 53.7
M-RT+SRC R 39.1 58.4 56.6 58.1 60.2 49.1 62.3 42.0 35.1 62.3 56.2 62.2 59.8 57.2 50.3 54.5 43.2 55.7 53.5
M-RT+SRC X 40.4 57.2 55.4 58.1 61.2 49.0 62.5 42.0 35.9 61.5 54.7 62.1 57.8 55.7 49.7 50.9 42.6 54.2 52.8
M-RT-Ens-SRC X 40.2 58.8 55.9 58.3 60.7 50.0 64.7 40.8 36.8 61.8 56.0 62.7 57.1 56.2 51.2 53.7 43.7 55.8 53.6
M-RT-Ens-HR X 33.9 50.6 47.1 47.9 50.3 41.9 53.3 34.2 34.5 53.3 49.8 54.7 48.3 47.4 44.5 47.8 37.8 46.9 45.8

Table 16: Results for translation-based XLT evaluated of Masakha for languages supported by the translation model.
Model selection is done on the best epoch based on translated source-language validation data (Val-MT-Trg). We
use XLM-R (X) and RoBERTa (R).

BAM EWE FON HAU IBO KIN LUG LUO MOS NYA SNA SWA TSN TWI WOL XHO YOR ZUL Avg

Zero-Shot

SRC X 39.6 70.8 50.9 73.4 52.9 43.5 64.7 39.3 49.6 51.6 40.6 85.5 52.7 46.0 51.6 22.2 34.4 41.9 50.6

Translate-Train

SRC+HR X 40.3 72.3 56.2 72.9 60.9 46.4 66.0 39.9 53.9 54.1 55.9 84.0 53.4 49.5 53.8 57.2 35.2 60.9 56.3
TRG X 52.0 75.5 64.7 71.3 66.8 54.5 75.0 49.5 59.3 64.6 67.9 76.6 67.8 61.8 59.5 67.9 37.7 69.8 63.4
TRG+SRC X 54.6 77.1 67.1 72.6 69.9 56.8 76.5 50.9 58.5 68.3 70.2 79.2 69.8 62.4 61.8 70.1 40.2 72.9 65.5
SRC→TRG X 52.0 75.5 66.8 72.8 69.5 56.8 76.5 49.3 59.1 68.0 70.1 77.9 69.8 61.3 61.6 69.9 39.7 71.7 64.9
TRG+SRC+HR X 52.9 74.4 68.1 73.0 70.2 55.0 74.7 49.1 57.8 69.1 70.0 77.8 68.5 61.9 60.2 69.5 40.1 69.6 64.5
M-TRG X 49.1 71.7 63.4 71.3 66.2 54.9 66.2 47.6 49.3 58.4 63.0 76.9 62.9 57.7 54.9 63.4 37.8 63.7 59.9
M-TRG+SRC X 49.0 70.0 61.2 71.0 67.3 53.5 69.4 47.1 50.4 59.1 62.7 76.8 62.3 58.3 55.9 62.6 39.1 64.7 60.0
SRC→M-TRG X 48.7 70.3 64.7 70.8 66.6 55.1 69.6 49.4 50.4 59.9 62.2 76.0 62.1 59.2 52.6 63.0 38.2 63.7 60.1
M-TRG+SRC+HR X 48.6 68.3 64.5 70.9 68.2 53.9 68.9 45.8 49.3 59.3 62.9 76.6 63.3 61.8 55.5 63.0 39.2 63.1 60.2

Translate-Test

SRC R 39.7 61.4 56.6 58.0 56.5 51.6 67.9 45.0 39.7 63.6 58.4 61.8 59.6 56.9 49.8 57.8 44.3 57.0 54.7
SRC X 39.8 61.1 56.1 57.8 55.1 50.7 67.9 42.5 38.9 63.3 57.7 61.6 57.8 54.9 49.6 57.3 43.0 56.7 54.0

Roundtrip-Train-Test

RT+SRC R 40.6 60.3 56.5 58.3 61.1 51.1 66.9 43.4 38.0 63.6 57.8 62.6 60.3 57.0 51.7 55.7 45.4 56.0 54.8
RT+SRC X 40.4 60.4 57.3 58.2 58.3 50.6 66.9 41.8 37.1 63.0 56.9 62.4 55.7 56.8 51.0 55.2 44.6 56.9 54.1
M-RT+SRC R 40.9 59.1 55.9 57.9 61.6 50.1 65.1 42.7 36.5 62.4 55.5 63.7 59.6 57.2 50.7 53.7 44.1 55.7 54.0
M-RT+SRC X 40.7 59.3 55.4 58.1 61.5 49.4 63.9 40.2 36.6 61.2 55.0 63.1 58.2 56.3 49.9 50.0 44.0 54.9 53.2
M-RT-Ens-SRC X 40.5 59.8 55.9 58.2 61.0 50.6 65.5 41.7 38.1 62.0 56.1 63.3 57.7 57.3 51.0 51.7 44.7 55.2 53.9
M-RT-Ens-HR X 35.4 52.4 48.3 48.4 51.8 43.3 57.1 35.4 35.5 53.4 50.6 55.3 49.3 49.1 45.4 48.1 40.2 49.4 47.1

Table 17: Results for translation-based XLT evaluated of Masakha for languages supported by the translation model.
Model selection is done on the best epoch based on target-language validation data (Val-Trg). We use XLM-R (X)
and RoBERTa (R).
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BBJ PCM Avg

I II III I II III I II III

Zero-Shot

SRC X 41.9 42.0 45.4 78.5 78.3 78.2 60.2 60.1 61.8

Translate-Train

SRC+HR X 45.8 45.7 44.6 77.2 77.3 76.5 61.5 61.5 60.6
TRG X 43.2 41.8 44.1 75.0 75.7 75.9 59.1 58.7 60.0
TRG+SRC X 46.3 46.5 48.7 77.3 77.2 77.6 61.8 61.8 63.2
SRC→TRG X 46.0 46.7 47.5 76.3 76.4 77.1 61.2 61.5 62.3
TRG+SRC+HR X 42.0 44.8 46.3 77.0 77.0 77.4 59.5 60.9 61.9
M-TRG X 48.4 48.1 49.9 72.6 73.7 73.0 60.5 60.9 61.4
M-TRG+SRC X 47.9 47.0 51.0 74.0 72.9 75.8 61.0 60.0 63.4
SRC→M-TRG X 50.0 46.7 51.0 73.9 72.7 73.5 61.9 59.7 62.2
M-TRG+SRC+HR X 48.4 47.3 49.8 73.4 72.8 75.1 60.9 60.1 62.4

Translate-Test

SRC R 31.8 31.7 32.4 64.4 64.3 64.4 48.1 48.0 48.4
SRC X 30.5 30.3 32.1 62.6 62.4 62.5 46.6 46.4 47.3

Roundtrip-Train-Test

RT+SRC R 30.4 29.7 31.7 61.9 62.1 62.9 46.2 45.9 47.3
RT+SRC X 30.6 30.6 32.3 60.0 59.5 60.3 45.3 45.1 46.3
M-RT+SRC R 30.8 30.8 34.1 59.3 58.7 59.4 45.0 44.7 46.8
M-RT+SRC X 30.4 31.0 32.4 57.6 56.4 58.2 44.0 43.7 45.3
M-RT-Ens-SRC X 34.5 35.4 35.4 57.9 57.3 58.9 46.2 46.3 47.2
M-RT-Ens-HR X 35.4 35.1 37.1 50.2 49.3 50.3 42.8 42.2 43.7

Table 18: Results for translation-based XLT evaluated of Masakha for languages not supported by the translation
model. Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on
translated source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg
(III)). We use XLM-R (X) and RoBERTa (R).
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