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Abstract

In this work, we explicitly show that modern
LLMs tend to generate correct facts first, then
“drift away” and generate incorrect facts later:
this was occasionally observed but never prop-
erly measured. We develop a semantic drift
score that measures the degree of separation
between correct and incorrect facts in gener-
ated texts and confirm our hypothesis when
generating Wikipedia-style biographies. This
correct-then-incorrect generation pattern sug-
gests that factual accuracy can be improved
by knowing when to stop generation. There-
fore, we explore the trade-off between infor-
mation quantity and factual accuracy for sev-
eral early stopping methods and manage to im-
prove factuality by a large margin. We further
show that reranking with semantic similarity
can further improve these results, both com-
pared to the baseline and when combined with
early stopping. Finally, we try calling exter-
nal API to bring the model back to the right
generation path, but do not get positive results.
Overall, our methods generalize and can be ap-
plied to any long-form text generation to pro-
duce more reliable information, by balancing
trade-offs between factual accuracy, informa-
tion quantity and computational cost.

1 Introduction

Differently from the earlier approaches to gener-
ating natural language with explicit content plan-
ning (Mann, 1983; Reiter and Dale, 1997), modern
autoregressive language models make predictions
token-by-token, without pre-established text struc-
ture. One of the consequences of this methodolog-
ical shift is that newer models lack the capabil-
ity of maintaining high-level structure throughout
generation and overly focus on local coherence.
This was noted in the form of repetition (Fu et al.,
2021) and semantic drift (Li et al., 2021).
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The term “semantic drift” emerged to describe
the decrease in text generation quality when in-
creasing generation length and has been classified
as a sub-type of hallucinations (Ji et al., 2023).
Before that, semantic drift (or topic shift) was
briefly mentioned when talking about question
generation (Zhang and Bansal, 2019) and story
generation (Wang et al., 2021; Sun et al., 2020).
In factual evaluation, recent works also mention
a decline in factual accuracy for longer genera-
tions (Min et al., 2023; Qian et al., 2023). While
quality decrease for longer generations hints at
specific order in generation quality (high-quality
first, low-quality later), this ordered behavior has
not been neither formally defined nor thoroughly
studied and measured. In this work, we refer to
“semantic drift” as the strength of the order in gen-
eration quality and, for the first time, provide tools
for understanding this phenomenon.

We propose to measure semantic drift by con-
sidering the change in truthfulness of a sequence
of facts when a model generates a fact-rich text
around a topic. Intuitively, we measure the degree
of separation between correct and incorrect facts
in a paragraph: if the model starts by generating
correct facts and then switches to systematically
generating incorrect ones, we consider this as a se-
mantic drift. To quantify the severity of semantic
drift, we use the FActScore task which provides
correct/incorrect labels for individual facts (Min
et al., 2023). We find that, indeed, several LLL.aMa?2
variants have high semantic drift score: they tend
to generate correct facts first, then “drift away”
from the topic and generate incorrect facts later.

This correct-then-incorrect separation suggests
that factual accuracy can be improved by stop-
ping generation early. We show that even a simple
method that encourages generating EOS leads to
large improvements in factuality. We then propose
to use resample-then-rerank pipelines where for
each sentence, we generate several versions and
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choose the best based on sentence similarity mea-
sures. Compared to the baseline, this improves
factual accuracy by almost 10% (without shorten-
ing texts as with early stopping). This can also
be combined with early stopping and allows for
different informativeness-vs-factuality trade-offs.
Finally, we ask: If the model drifts away during
generation, could it be brought back onto a correct
path by calling an external API? Sadly, this does
not give noticeable improvements (at least, when
working in the previously established settings).
Overall, we:

e formally show that current LLMs tend to gen-
erate facts in a correct-then-incorrect manner;

* based on that, develop methods to improve
factual correctness: simple early stopping
and more complex resample-then-rerank;

* find that API calls help little to none.

Our methods offer a practical compromise, bal-
ancing computation with performance, and build a
foundation for further research. Importantly, they
are directly applicable to any probabilistic auto-
regressive language models.

2 Definition of Semantic Drift

Since the term “semantic” drift has been used with
various meanings, we felt the need for a unifying
definition, which we state below.

Semantic drift describes the phenomenon
wherein generated text diverges from the subject
matter designated by the prompt, resulting in a
growing deterioration in relevance, coherence,
or truthfulness.

Semantic drift results in a loss of three textual
characteristics (see examples in Appendix A):

1. Loss in coherence, which leads to issues with
clarity, logical flow, and self-consistency;

2. Loss in relevance, which refers to the inclu-
sion of irrelevant or redundant content;

3. Loss in truthfulness, which refers to the in-
clusion of hallucinated content or content in-
consistent with world knowledge.

2.1 Semantic Drift Score

To quantify the severity of semantic drift, we de-
fine a new scoring method, semantic drift (SD)
score. To calculate this score for a paragraph P,

k
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Figure 1: A visual example of calculating semantic
drift (SD) score for paragraph P. The position which
best splits the paragraph is k& = 8. The proportion of
supported facts to the left is 0.88 and the proportion of
not-supported facts to the right is 0.78, giving an av-
erage of 0.83. The other positions all have lower SD
scores, therefore the SD score of paragraph P is 0.83.

we take individual atomic facts along with their la-
bels (1 for supported facts and O otherwise). Let NV
be the total number of facts, s; be the label for the
facti € [0, N), and m be a hyperparameter. Then
we define the SD score as:

SD(P) = mélx% . SD (P, k)

0, if(N—k<m)or(k<m)

or (N <2m),

Yise si |, Diny (1=5:)
k N —k

SDn, (P k) =
else.

The position k& at which this maximum is reached
represents the position with highest average be-
tween (1) proportion of supported facts to the left
of position k£ and (2) proportion of not-supported
facts to the right of position k. We will refer to £ as
the drift point. Parameter m controls the range of
k, meaning that we only consider splits that have
more than m facts on either side of k.

Intuitively, we measure the degree of a separa-
tion between correct and incorrect facts in a para-
graph: the SD score is high when a text is largely
correct before the drift point and largely wrong af-
ter (Figure 1). E.g., a paragraph with an SD score
of 1 would have all correct facts first and all the in-
correct facts later. For a paragraph in which facts
are either wrong or correct without any clear sep-
aration, we would expect an SD score around 0.5.

3 Identifying Semantic Drift

In our experiments, we rely on the FActScore task
(Min et al., 2023). This task identifies all aspects
of semantic drift and scores individual facts from a
text as either correct or incorrect. A fact is correct
if it is supported by external knowledge and there-
fore truthful. Since two facts that contradict each
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other cannot be simultaneously correct, correct
facts are also coherent. Moreover, facts are veri-
fied in context, meaning that a fact is correct only
if it is relevant to the context. Appendix A shows
examples of scoring for semantic drift types.

3.1 Setting

Task. The FActScore task focuses on Wikipe-
dia-style biographical passages: they are generally
fact dense, and the individual facts can be reli-
ably verified (Wadden et al., 2020; Thorne et al.,
2018). The task consists of 3 steps: (1) generating
biographical paragraphs for 500 entities, (2) ex-
tracting “atomic facts” from the paragraphs, and
(3) scoring the truthfulness of paragraphs by veri-
fying all atomic facts against a knowledge source.
The FActScore itself is the precision of atomic
facts aggregated over the 500 samples.

Pipeline. We let LLaMa2-70B generate a bio-
graphic paragraph, using the same prompt as Man-
akul et al. (2023): “This is a Wikipedia arti-
cle about [entity]. [entity]”.l Each generated
paragraph is then passed through the FActScore
pipeline to identify and verify atomic facts. We
modify the original FActScore pipeline to rely on
LLaMa2-70B-Chat (rather than InstructGPT) and

validate using human annotations (Appendix B.2).

3.2 Semantic Drift in LLaMa2-70B

For paragraphs generated by LLaMa2-70B, we got
an average SD score of 0.78 when considering all
500 examples and the score of 0.8 when filter-
ing out completely correct and incorrect samples.”
Figure 2 shows the distribution of SD scores.

Semantic drift is high. Semantic drift score
of 0.8 is very high: it means that there is a sig-
nificant separation between correct and incorrect
facts in most paragraphs, and thus model genera-
tions “drift away” at some point during generation.
To ensure that the high semantic drift score is not
just chance, we conduct a statistical significance
test. We estimate the probability that a random
permutation of facts would result in the same SD
score or higher. We find that samples we identified
as drifting have an average probability of <0.02.
For more details, please refer to Appendix B.5.

"Example prompt: “This is a wikipedia article about Bob
Marley. Bob Marley”. The model has to continue generation.

ZFiltered 20 completely incorrect and 21 completely cor-
rect samples, remained with 458 generated paragraphs with
an average of 47 facts per paragraph.
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Drift score
Figure 2: Distribution of Semantic Drift Score (af-
ter filtering) in paragraphs generated by LLaMa2-70B
(sampling: temperature=0.6, top-p=0.9).

Drift starts early. When looking at the number
of correct facts, we noticed that generations are
largely wrong, and the drift starts early. For ex-
ample, only a small portion of paragraphs has at
least 10 correct facts before the first wrong fact (34
paragraphs, < 7%). For 37% of all paragraphs, the
drift point is in the first 10% of facts.

Our observations are reliable. In Appendix B,
we show that decoding strategy and truncation pa-
rameter only slightly impact the SD score (hence,
our observations). We conclude that LLLaMa2-
70B shows statistically significant high SD score
in more than 40% of generated paragraphs.

3.3 Semantic Drift in Other Models

To strengthen our observations, we extend our ex-
periments to other well-established LLMs.

Setting. We consider LLaMa2-70B-Chat (Tou-
vron et al., 2023), Falcon (Almazrouei et al., 2023)
and GPT (OpenAl, 2023). These models are both
text and chat completion models. For text com-
pletion, we use the same prompt as in Section 3.1.
For chat completion, we use “Tell me a bio of ™.

Results. From Table 1 we see that semantic drift
is high for all models. This confirms our hypoth-
esis: models start with correct facts, then “drift
away”. While the GPT models perform consider-
ably better on the FActScore* task, they still have
high SD score and could therefore benefit from our
error mitigation strategies from Section 6.

4 Analysis

Let us now understand the potential causes of se-
mantic drift and analyze LL.aMa2-70B generations
both quantitatively and qualitatively.
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facts No FAct SD
Model /gen | ans- | Score* | Score
wer (%) (%)
Llama2-70B-chat | 50.55 1 41.72 77.06
Falcon-7B 41.84 6 24.64 76.81
Falcon-40B 49.23 4 25.88 | 77.38
text-davinci-003 58.27 2 38.09 | 77.21
GPT 3.5 67.82 1 4596 | 79.49
GPT 4 48.31 1 53.54 | 78.12

Table 1: Results for various models when generating
500 biographical paragraphs. “No answer” is the num-
ber of paragraphs when the model produced no facts.

4.1 Quantitative Analysis

We analyze the distribution of semantic drift by
multiple factors: (i) person popularity, (ii) para-
graph length and drift position, (iii) model scale.

Person popularity. We hypothesize that seman-
tic drift score might be affected by the popular-
ity of a bio’s object in a typical dataset. Figure 3
shows the distribution of SD scores by prevalence
class, from “very rare” to “very frequent”.? We see
that for very frequent entities, the semantic drift
score is distributed normally. As the entities be-
come less frequent, the distribution starts turning
into a bimodal distribution. This could be because
for rare entities, the model either generates a few
facts well and then drifts away (resulting in high
drift score), or has a generally murky knowledge
about the entity and generates both wrong and cor-
rect facts together (resulting in low drift score).

Paragraph length and drift position. We find
no correlation between paragraph length, drift
score and relative drift position. However, we do
note that the distribution of relative drift position
is distinctly U-shaped, with more paragraphs drift-
ing in the first 10% of generated facts than in the
last 10%. We apply truncation as described in Sec-
tion 2.1 and note that the distribution of drift po-
sition is still peaking in the first 10% of generated
facts. For more details, see Appendix B.4.

Model scale. Table 2 shows results for the same
pipeline with two smaller LLaMa2 models. We
find that while increasing parameter size clearly
improves factuality of generated text, all three
model sizes show similar SD scores: semantic
drift is high regardless of scale.

4.0 Popularity

35 very rare
—— rare

3.0 — medium

2.5{ — freq
— very freq

2.0

Density

1.5

1.0

0.5

0.0

0.2 0.4 0.6 0.8 1.0 1.2
Drift score

Figure 3: Semantic drift score density plot for person
popularity classes. LLaMa2-70B.

Num facts No FAct Score* | SD Score
params | /gen | answer (%) (%)
7B 34.80 4 34.77 76.29
13B 33.04 1 39.36 76.83
70B 43.89 1 44.56 78.07

Table 2: FActScore* and SD Score for different model
sizes of LLama2 when generating 500 biographical
paragraphs. “No answer” shows the number of para-
graphs for which the model produces no facts.

4.2 Qualitative Analysis

We looked at examples of biographies generated
by LLaMa2-70B with high SD score and identified
at least three potential categories of semantic drift
(Table 3):

1. Repetition. The clearest and easiest type of
semantic drift happens when the model “gets
stuck” in a loop of identical or similar facts.

2. Making up information. This type of drift
happens when the model can generate a few
correct generic facts (such as occupation), but
makes up all subsequent information.

3. Plausible information. This is perhaps the
most interesting and subtle type of drift. It
happens when the model generates a good
lengthy biographic paragraph, but towards
the end begins adding information which is
indirectly relevant and incorrectly attributes
that information to the subject.

5 Factual Accuracy and Uncertainty

Knowing that the model is largely correct up to
some point (to be precise, the semantic drift point)
and largely wrong after gives us an opportunity to

3The prevalence labels come from the FActScore dataset.
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Drift Type

Examples

Repetition

Suthida is the Queen of Thailand. She is the wife of King Vajiralongkorn. She was born on 3 June 1978.
She is the first wife of King Vajiralongkorn. She was born in Hat Yai, Songkhla, Thailand. She is the
daughter of Saman Bajrasudha and his wife, Nui. She has two brothers and one sister. She is a former
flight attendant. She is a former actress. She is a former model. She is a former beauty queen. She is a
former Miss Thailand. She is a former Miss Universe. She is a former Miss World.

Making up in-
formation

Steve Cummins is a professional rugby league footballer of the 1990s and 2000s. A Great Britain
international representative centre, he has played in the Super League for the Wigan Warriors and the
Warrington Wolves, and in the NRL for the Brisbane Broncos and the Cronulla-Sutherland Sharks.

Plausible
information

Matthew Perry is an American actor and comedian. He is best known for his role as Chandler Bing on the
NBC television sitcom Friends, which ran from 1994 to 2004. Matthew Perry was born in Williamstown,
Massachusetts, on August 19, 1969. His mother, Suzanne Marie Morrison, is a Canadian journalist and
former press secretary to Canadian Prime Minister Pierre Trudeau. His father, John Bennett Perry, is an
American actor and former model. Perry has two older sisters, Caitlin and Emily. Perry was raised in
Ottawa, Ontario, and attended Rockcliffe Park Public School and Ashbury College. He then studied at
the University of Southern California, where he was a member of the Sigma Chi fraternity.

Table 3: Examples of types of semantic drift described in section 4.2. The “Suthida” example gets stuck on a
loop of false facts after the phrase “former flight attendant”. The “Steve Cummins” example shows one correct
fact followed by many made-up ones. We classified the “Matthew Perry” example as plausible information, since
Perry intended to enroll at the University of Southern California; same phrasing for fraternity appears on Perry’s
father’s Wikipedia page; and there was a Phil Perry attending Sigma Chi fraternity.

improve generation quality. Specifically, if we can
detect semantic drift during inference, we can stop
generation (hence, improve its quality) — we will
do this in Section 6. But before that, let us check
whether there are metrics that, during generation,
can indicate that the model is drifting away.
Previous work on alleviating hallucinations for
various NLP tasks, such as machine translation,
abstractive summarization and long-form question
answering, showed that hallucinations are well-
calibrated with model uncertainty (Lin et al., 2022;
Kadavath et al., 2022; Liu et al., 2022; Guerreiro
et al., 2023; Manakul et al., 2023). Here, we check
whether uncertainty metrics correlate well with
factual accuracy; for this, we use all sentences in
the generated paragraphs (4516 sentences in total).

5.1 Considered Uncertainty Metrics

Intrinsic metrics: We consider entropy of token
probability distributions (averaged within a sen-
tence), variance in entropy of token probability
distributions (averaged within a sentence), nega-
tive log likelihood of the sentence. These metrics
were used before in Lin et al. (2022); Manakul
et al. (2023); Liu et al. (2022).

Intrinsic, averaged over samples: to reduce
noise in the metrics above, we sample each sen-
tence 5 times and average the intrinsic uncertainty
metrics over these samples.

Sampling-based (sentence similarity) metrics:
SelfCheck-BERTScore, SelfCheck-MQAG and
SelfCheck-ngram (1, 5 and 10) from (Manakul

et al., 2023). SelfCheck-BERTScore* assigns a
unique score to a sentence, signifying how factual
that sentence is (0 = factual, 1 = non-factual). To
calculate the score, we sample N new paragraphs
for each biography: P;, P> and Py. For each
sentence S, we get the most similar sentence 5;
in each paragraph P;, by considering maximum
BERTScore. The SC-BERTScore is then calcu-
lated as 1— avg[BERTScore(S, S;)]. For more de-
tails, see the original paper (Manakul et al., 2023).

5.2 Results

We find that intrinsic uncertainty metrics have
little correlation with factual accuracy and that
averaging across samples does not improve this.
Differently, sampling-based uncertainty metrics
give much higher correlation scores; highest score
gives SC-BERTScore with a Pearson correlation
coefficient of -0.41 (Appendix C).

6 Mitigating Factual Errors

As we explained above, the presence of seman-
tic drift suggests that factual accuracy can be
improved within the same generated paragraphs
simply by shortening them. Therefore, we first
consider several criteria to stop generation early.
Next, we try resample-then-rerank pipeline, as
well as calling API tools. We compare these meth-
ods through the lens of factuality vs informative-
ness trade-off (Figure 4).

“From here onwards, “SC-BERTScore” for short.
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Method Stop at ‘ facts/gen | MO ‘ K Ac(tf/«:;’ re” R(?.Zﬁ“ ‘ SD( §/;;c)0 " int.FlO[ps*ext.
Baseline max tokens | 4389 | 1 | 44.56 | - | 7807 | lel6 | O
Early stopping
oracle drift point \ 10 \ 1 \ 81.68 \ 41.76 \ 47.94 \ 2el5 \ 0
EOS EOSintop 5 14.47 3 57.96 42.71 74.20 5eld 0
EOS in top 10 5.39 13 70.29 18.90 63.81 lelb 0
SC-BERT SC-BERT incr. >0.7 17.65 1 64.76 58.44 66.87 6el16 3el6
SC-BERT incr. >0.5 13.39 1 67.63 46.30 65.20 6el16 2el6
SC-BERT incr. >0.3 9.66 1 70.24 34.69 61.90 5el6 lel6
Reranking (SC-BERT)
max tokens 40.21 1 53.27 - 74.84 lel7 3el7
SC-BERT incr. >0.7 22.75 1 63.72 67.67 69.15 lel7 lel7
SC-BERT incr. >0.5 17.12 1 67.18 53.69 67.49 9el6 lel7
SC-BERT incr. >0.3 11.64 1 71.11 38.64 63.94 5el16 6el6
API call
one QA call max tokens 42.26 1 43.93 - 80.02 3el6 lelO
00 QA calls max tokens 19.36 54 54.42 - 77.43 lel6 3el0

Table 4: FActScore* and SD score for LLaMa2 70B with generation strategies and early stopping methods from
Section 6, based on eos_top_k, SelfCheck-BERTScore(/N = 3), question answering calls or the oracle @drift point.
Recall shows %correct facts left from baseline. “No ans” shows number of paragraphs (out of 500) with no facts.
“Flops*” approximates the total number of (internal and external) floating point operations.

6.1 Early Stopping

We consider several early stopping methods.

Oracle: at drift point. This method stops gen-
erating at the drift point (Section 2.1). While this
cannot be achieved at inference time (finding the
drift point requires ground truth that is not avail-
able at test time), this method gives us a theoretical
upper bound of factual accuracy for early stopping
methods and a reference point for other methods.

Incentivizing EOS. As a naive baseline, we en-
courage the model to end the generation early by
producing the EOS token whenever this token is in
the top-k predicted tokens.

Using sentence similarity. Inspired by the cor-
relation results between sentence similarity met-
rics and factual accuracy in Section 5.1, we also
consider early stopping based on decline in con-
sistency. For this, we:
Step 1: Compute SC-BERTScore for the origi-
nal generated biographic paragraphs;
Step 2: For each paragraph, calculate the per-
centage of increase in this score from sentence
S; to Sp;
Step 3: If this percentage is more than a thresh-
old T (i.e., consistency declined), stop the gen-
eration right before sentence .5;.

Here, T controls how much information should be
traded for factuality: a low 7" will result in shorter

22500
20000
17500

& 15000

& 12500

#* 10000

Oracle: at drift
eos_top_k

SC-BERT (N=3)
SC-BERT (N=5)
SC-BERT (N=10)
SC-BERT Re-sample
API call

7500 *
5000
2500 ‘ ‘ ‘
0.45 0.55 0.65 0.75 0.85 0.95
FActScore*

Figure 4: Trade-off between informativeness (y-axis)
and factuality (x-axis) for proposed generation strate-
gies; average over 500 biographical paragraphs.

generations with higher factuality. Note also that
SC-BERTScore depends on the number of para-
graph samples N which controls the accuracy of
the scoring. Since using N > 3 does not give no-
ticeable improvements (Figure 4), we use N = 3.

6.1.1 Results: Early Stopping Helps

The results are shown in Table 4. As expected, or-
acle (stopping at drift point) is the best: it has the
highest factuality and the lowest drift score. Other
early stopping methods also improve quality quite
a lot and can achieve over 70% accuracy (vs 44%
for the baseline) and low semantic drift score of
62 (vs 78 for the baseline). Naturally, stopping
early leads to information loss and fewer gener-
ated facts overall. Therefore, we can compare dif-
ferent methods only in settings where, on average,
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they generate the same number of facts. Compar-
ing EOS-in-top-5 with SC-BERTScore (0.5), we
see that SC-BERTScore is better: for roughly the
same number of generated facts per paragraph (13-
14), it gives 10% higher accuracy and lower SD
score. In terms of flops, however, EOS-based stop-
ping is an order of magnitude more efficient.’

6.2 Re-Sample, Then Rerank

In addition to early stopping, SC-BERTScore can
be used in resample-then-rerank pipelines typical
for alleviating hallucinations in machine transla-
tion (Guerreiro et al., 2023; Dale et al., 2023).

Method. For each biography, we generate one
sentence at a time. For each sentence, we gener-
ate 5 options (using same decoding strategy, only
different seeds) and choose the one which (1) has
not appeared before in the paragraph; (2) has min-
imum SC-BERTScore. We generate sentences un-
til no options satisfy condition (1) or we have
reached the maximum number of tokens.

Results. When stopping at the maximum num-
ber of tokens, this approach improves the base-
line by 8.71%. This is expected: similar ap-
proaches improve e.g. machine translation qual-
ity by a large margin (Guerreiro et al., 2023; Dale
et al., 2023). When combining reranking with the
early-stopping, we get same factuality as the cor-
responding early stopping, but with more gener-
ated facts. For example, for the same factuality
of around 67% we generate 13.4 facts with early
stopping (SC-BERT, T" = (0.5) but 17.1 facts when
combining it with reranking. Sadly, this improve-
ment comes with a large increase in flops.

6.3 Calling Question Answering API

In this section, we ask: If the model drifts away
during generation, could it be brought back onto a
correct path by calling an external API?

Method. To answer this question, we use 1-shot
learning to allow LLaMa2-70B asking questions
at inference time (as in Toolformer, Schick et al.
(2023)). The model makes calls to Atlas, which
is a retrieval-augmented model with 11B param-
eters (Izacard et al. (2022), example inference in
Appendix E). We estimated the computation cost

SFor SC-BERTScore stopping, the computation is two-
fold: sampling four paragraphs instead of one and computing
SC-BERTScore (three passes through RoBERTa-Large (Liu
et al., 2019)). This results in an order of magnitude more
flops than the baseline.

Nancy Onyango = B EEES smmsEs

Patricia Cladis _m SEsEEEEEESSSEES =EN

Shigeru Fukudome _m III== EEEEEEEEEEEEE NN

n
Lodewicus du Plessis _m = =I=I ENEEEEEEEEEEEEE
Yuyan

Abdul Halik Hudu

Stephen J. Mackwell mm  SEEEEEEEEEEEEEEESEEEEEEEEE

Ernestine Eckstein ]
m EE

Yuu Watase AN EEEEEEEEEEEEEEEE.
LB L]

0 5 10 15 20 25 30
Fact position

Figure 5: Examples of biographies that were most im-
proved by adding QA calls. Each row represents a bi-
ography with two generated versions (one without QA
calls and one with). Green — correct facts, red — incor-
rect facts, blue — API calls.

in Table 4 by approximating the cost of an API
call as the cost of one pass through the model. We
find that when allowing for multiple calls, genera-
tions are shorter and therefore require fewer passes
through LLaMa2. Therefore, overhead for adding
QA calls is small.

Results: the worst. Surprisingly, using API
calls gives close to no improvement: for similar
number of facts per generation, itis 10% less accu-
rate than other methods. This is largely due to the
model not handling errors of the API. We found
that adding more examples (and examples which
ignore the API return) damaged the performance.
The model makes many unnecessary calls, as it
does not have an understanding of “needing” to
retrieve information, rather it retrieves information
whenever convenient.

Adding calls in a few-shot manner poses a new
challenge for semantic drift. We noticed that after
generating a paragraph, the model would start a
new paragraph about the API call (e.g., “To make
API calls use this method...” or “The API calls
were executed at...”). In addition to being irrele-
vant, this is entirely hallucinated content. Remov-
ing this does not help significantly: it gives the SD
score of 77.43%, which is only marginally lower
than the baseline. For those samples which show
most improvement in factuality, we note that the
drift has been addressed by making many simple
calls on almost every fact (Figure 5).

7 Beyond Biographies

The methods we presented can in principle be ap-
plied to any type of text generation, not just bio-
graphical paragraphs. To showcase these capabili-
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Method Stop at toks/gen Fact Triple QAG ROUGE-L
Score Score Score
Baseline max tokens [ 223.34 [ 19.45 [ 10.57 [ 30.91 [ 4.17
Early stopping
EOS in top 5 60.33 12.72 6.12 36.60 6.88
SC-BERT incr. >0.5 184.84 19.05 10.35 33.06 4.96
Reranking (SC-BERT)
max tokens 189.60 20.79 11.71 36.54 5.04
SC-BERT incr. >0.5 157.67 20.61 11.77 36.68 5.11

Table 5: Factual accuracy for different generation strategies for Llama2-70B, when applied to the task in Section 7,
of generating 5000 Wikipedia articles. Each score represents a measure of factual accuracy of the generated text
with respect to the real Wikipedia article. All scores are calculated using the FactSumm pipeline (Heo, 2021).

ties, we apply them to writing any Wikipedia-style
text. We prompt LLaMa2-70B to generate text
about a topic (“This is a wikipedia article about
topic.”) and pass the generated text through the
FactSumm pipeline (Heo, 2021).

Pipeline. The original goal of the pipeline is to
measure factuality of a summary with respect to
reference text. We re-purpose it to measure fac-
tuality of generated text with respect to the orig-
inal Wikipedia article. We retrieve 5000 English
Wikipedia articles® and calculate mean FactScore,
TripleScore, QAG and ROUGE Score.

Evaluation. FactScore and TripleScore extract
triplets (closed- and open-scheme, respectively)
and score the overlap of these triplets between the
reference and generated texts. For QAG Score, the
module generates question-answer pairs based on
the generated text, attempts to answer the ques-
tions based on the reference text and notes the
number of identical answers. ROUGE calculates
the similarity between the two texts based on n-
grams matches. Together, all these scores paint a
picture of the factuality of the generated text with
respect to the Wikipedia article. We note that none
of these metrics consider recall, but that we pro-
vide the average number of tokens generated per
paragraph as a measure of information quantity.

Results: reranking helps again. Table 5 shows
that, in this more general setting, reranking yields
higher factual accuracy at the cost of a reduction
in generated facts. Therefore, this method has a
positive impact on factual text generation beyond
biographies. Here, we applied different metrics
from FActScore* to assess the same phenomenon,
offering a fresh perspective. Despite the differ-
ent metrics, our methodology remained unaltered.

From Huggingface (2023).

The fact that the presented methods are robust to
various metrics underscores their generality.

8 Additional Related Work

Factual precision. Recent surveys (Wang et al.,
2023; Rawte et al., 2023; Ji et al., 2023) show that
factuality evaluation has mostly been focused on
short-form question answering, and improvements
have largely been based on learning (pre-training,
fine-tuning) or retrieval augmentation. Previous
work (Lee et al., 2022) attempts decoding-time en-
hancements, but reports these alone achieve factu-
ality on-par with greedy decoding and concludes
the need for training enhancements. Concurrent
work (Chuang et al., 2023) contrasts various lay-
ers’ logits. As opposed to SC-BERTScore meth-
ods, this requires access to model’s internals and
changes to inference code; futhermore it is not
evaluated on long-form generation and restricted
to one model class. Unlike other factuality en-
hancements, our methods do not directly fix incor-
rect facts, but use the semantic drift idea to inform
when the model has “ran out of correct facts”.
They can be combined with any others to gener-
ate accurate and relevant text.

Semantic drift. Deng et al. (2022); Cho et al.
(2019) characterize it linguistically via self-
consistency, not truthfulness. Plausible and nat-
urally flowing text would not be identified as drift.

9 Conclusion

By measuring the degree of separation between
the correct and incorrect facts in the generated
texts, we show that LLMs largely generate cor-
rect facts first and incorrect later. This lead us
to methods that improve factual accuracy by stop-
ping generation early. We show that even a simple
method that encourages generating EOS leads to
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large improvements. This can further be improved
by using a resample-then-rerank pipelines where
for each sentence, we generate several versions
and choose the best based on sentence similarity
measures. Overall, our methods offer a practi-
cal compromise, balancing computation with per-
formance, and build a foundation for further re-
search. Importantly, they are directly applicable to
any probabilistic auto-regressive language models.

10 Limitations

Model specifics. We have applied our meth-
ods to LLaMa2-70B model and we trust that in-
centivising the EOS token and the SelfCheck-
BERTScore methods will work similarly well for
other models. However, we note that the thresh-
olds are likely not directly transferable to other
models and that in order to employ similar strate-
gies, model owners will have to tweak the thresh-
olds to figure out the correct numbers for their
case.

Suitable tasks. Even though our methods can be
applied to any long-form text generation task, they
are perhaps most relevant for tasks where factual
accuracy is paramount (such as long form ques-
tion answering or factual text generation). Early-
stopping methods specifically are more suitable
for tasks where generating false information is
more harmful than not generating it (for example
giving false medical advice). Our oracle for early-
stopping removes 92% of incorrect facts from the
generated text, but this comes with the cost of re-
moving 58% of correct facts. These measurements
(as can be seen in appendix F.1) should be used for
individual applications to debate trade-offs.

Textual diversity. As this study is focused on
factually-dense text, we did not take into account
diversity of generated text, which may be rele-
vant for more creative tasks such as story gener-
ation. For early stopping via sentence similarity,
we chose to use SelfCheck-BERTScore which is
sensitive to stylistic variations, as well as factual
variations. However, there is no reason for which
this metric cannot be replaced with other sentence
similarity-metrics which account for style, thus re-
taining the creative factor of text generation.

Automated evaluation. We have used the
FActScore pipeline, which is an automated eval-
uation pipeline for validating truthfulness of facts.

We have validated the pipeline with human anno-
tations (as detailed in Appendix B.2), but as any
automated pipeline it has an error margin. The re-
liability of the pipeline is heavily dependant on the
reliability of its knowledge source, which in this
case is Wikipedia - one of the most commonly-
used, accessible, large-scale, good quality, un-
structured knowledge sources (Lee et al., 2022).

Future direction. One can imagine many pos-
sible avenues of future directions for further un-
derstanding and mitigating semantic drift. For ex-
ample, models could be further fine-tuned specif-
ically to end generation when there is too much
variability in the generation, critique models could
be trained to identify the drift point based on
model’s internal states etc. We hope that with our
work we have sufficiently highlighted the problem
and set the first stepping stones for addressing it.
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A Appendix A

A.1 Coherence, relevance and truthfulness

The definition of semantic drift in Section 2.1
states that the effects of semantic drift can be
noted as a loss in coherence, relevance or truth-
fulness. The FActScore task described in Section
3.1 identifies all three categories of semantic drift
effects. Here, we show examples of each.

Coherence example

Below an example of a generated biography, fol-
lowed by the extracted facts together with their as-
signed labels. Inconsistency in the birth year is

identified as False.

text:

Iggy Azalea (born 7 June 1990) is a
rapper and singer. She was born in
1989.

facts:

Iggy Azalea was born. (True)

Iggy Azalea was born on June 7.

(True)

Iggy Azalea was born on June 7,1990.
(True)

Iggy Azalea. 1s a rapper. (True)
Iggy Azalea is a singer. (True)

She was born. (True)

She was born in 1989. (False)

Incoherence is probably one of the most studied
types of semantic drift so far. Examples from lit-
erature include:
‘*‘She had a large family and lived
with her grandparents In 1933
she gave birth to her first child
In July 1926, many of her friends
attended her funeral’’ (Liu et al.,
2022)
‘*‘Willie had too much stuff. Willie
bought a shed to store all his stuff.
Willie had a hard time putting up
the shed. He called some friends
for help. Willie sold his shed and
and made enough money to pay for the
house.’’ (Wang et al., 2021)

Relevance example

As per our definition, a loss of relevance refers to
the inclusion of irrelevant or redundant content. In
the below example facts which are actually cor-

rect, but irrelevant to the context are labelled False.

text:
Iggy Azalea is a rapper and singer.
Mariah Carey is a singer. Eminem is a

singer. Bob Marley is also a singer.
facts:

Iggy Azalea is a rapper. (True)

Iggy Azalea is a singer. (True)
Mariah Carey exists. (False)

Mariah Carey is a singer. (False)
Eminem is a singer. (False)

Bob Marley is a singer. (False)

Truthfulness example Truthfulness refers to the
objective factuality of information, whether it is
verifiable or not. In the example below, the scorer
picks up on subtle inaccuracies (“Ignorant Art” is

a mixtape, not an album).

text:

Iggy Azalea is a rapper from
Melbourne, Australia. She is known
for her hit single "Fancy" and her
debut album Ignorant Art.

facts:

Iggy Azalea is a rapper. (True)
Iggy Azalea is from Melbourne,

Australia. (True)

Melbourne is a city in Australia
(True) .

She is known for her hit single
"Fancy". (True)

She has a debut album called Ignorant
Art. (False)

"Fancy" is a hit single. (True)
Ignorant Art is a debut album.

(False)

Ignorant Art is an album. (False)

A.2 Potential reasons for semantic drift

Semantic drift is the term for a fairly broad phe-
nomenon and there may be many reasons why it
occurs. Some initial thoughts based on observa-
tions are:

* Ambiguity: Al models may interpret am-
biguous terms or phrases in ways that lead to
a shift in the text’s meaning.

* Loss of context: As text becomes longer, the
model may lose track of the context.

* Digression: The AI model might include
lengthy tangents or irrelevant information
that detracts from the primary topic.

A.3 SD Score and Purity

The SD Score was inspired by purity measures
in classification decision trees and can be seen
as an edge-case calculation of purity. Recall that
classification decision trees are made-up of nodes,
where each node splits the training dataset into
partitions using a criterion function on features of
the data points. For each partition corresponding
to a leaf node, the predicted class is the most com-
mon class in that partition. To find the right deci-
sion tree, we measure the purity of the partitions it
creates.
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In the case of our task, the elements in the
dataset are facts which have one feature: index and
are assigned a class: is_supported. The “decision
tree”” only has one split node (<index) resulting in
two leaf nodes (left-side and right-side). We then
assign class 1 to every data point in the left-side
and class O to every data point in the right-side. It
is important to note that we always assign classes
in this manner, regardless of which class is most
common in the partition.

B Appendix B

B.1 LLaMa2 70B Generation details

We generate a maximum of 500 tokens with
LLaMa2 70B model, with temperature = 0.6
and topp = 0.9. After generation we delete
any unfinished sentences, as we found that the
FActScore atomic fact extractor would hallucinate
new facts when dealing with unfinished sentences.
For analysis we also remove repetition, i.e. if the
last sentence is repeated, then we remove it and
stop generating. Our generated paragraphs have
an average length of 255 tokens.

B.2 FActScore Pipeline for LL.aMa2

We adapt the FActScore pipeline to rely on
LLaMa2. The FActScore pipeline uses Instruct-
GPT to extract atomic facts from input paragraphs.
To do this, the model is given few-shot examples
of atomic fact extraction. We use the same exam-
ples for LLaMa2 70B chat. To validate the per-
formance of LL.aMa2, we compare it against hu-
man annotations provided with the FActScore pa-
per. The annotations consist of 180 paragraphs
with extracted facts. We obtain a Pearson corre-
lation coefficient of 0.94 between scores obtained
from facts extracted by humans and scores ob-
tained from facts extracted by LLaMa2.

B.3 Impact of sampling strategy

As can be seen in Figure 6, there is no consid-
erable difference between the SD score obtained
with greedy as opposed to nucleus sampling. We
do note however, that the greedy-generated para-
graphs tend to be more repetitive.

B.4 Truncation

We define truncation in our particular case as de-
scribed in Section 2.1. We apply it in order to dis-
tinguish cases where the semantic drift high score
is only caused by few samples to either side of the

Greedy decoding Nucleus sampling

120

100
80 (
60

40

.

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Drift score Drift score

Num samples

Figure 6: Comparison of SD score distribution in
LLaMa?2 70B based on decoding strategy.

drift point. We experiment with m € [0, 5] to see
how the distribution of SD score and drift position
are impacted. Results are in Figure 7. We find that
with m = 3, there are 44.89% paragraphs with SD
score >(0.75.

B.5 Statistical significance test

For each paragraph with identified semantic drift
(40% of samples with SD score >= 0.75), we esti-
mate the probability that the assigned SD score is
due to chance. We shuffle the fact labels from the
paragraph 1000 times and calculate the SD score
for each shuffle. We find that, on average, higher
or equal SD score is obtained in less than 0.02%
of shuffles’.

B.6 Semantic drift identified examples

Figure 8 visually shows examples of paragraphs
which display clear cases of semantic drift for var-
ious lengths of the paragraph.

C Appendix C

C.1 Uncertainty metrics correlations

Figure 9 shows the correlation coefficients of all
uncertainty metrics ran for our experiments. As
mentioned in the main paper, the most significant
correlation was for SelfCheck-BERTScore, calcu-
lated over 3 samples.

D Appendix D
D.1 SelfCheck-BERTScore

For methods described in Section 6.1, we con-
ducted more experiments to determine how thresh-
old 7" on the relative increase in SelfCheck-
BERTScore should be chosen and whether it could
be an absolute value threshold, as opposed to a rel-
ative increase value. We also provide more details
for how the paragraph samples were generated.

"https://en.wikipedia.org/wiki/Permutation_test
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Figure 7: Drift position distribution after applying truncation varying the minimum number m of facts on either
side of the potential drift point, as described in Section 2.1.
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Figure 8: Examples of drifting paragraphs generated
with LLaMa2 70B according to their SD score. Each
row represents a paragraph where correct facts are in
green, wrong facts are in red.

D.2 Absolute thresholds for ending
generation

A more naive method for stopping generation us-
ing SelfCheck-BERTScore is to simply threshold
the absolute value of the score and stop generation
whenever the score crosses the threshold. When
applying the method, we found that many biogra-
phies would actually begin with a first sentence
above the threshold, thus resulting in empty para-
graphs for any value of the threshold sufficiently
low to be useful. We show the results of either
keeping or deleting those biographies which begin
above the threshold in Table 7.

An interesting corollary finding is the distribu-
tion of SelfCheck-BERTScore in the first sentence

1.00
avg entr- 0.074 0.13
var entr- 0.092 0.21 0.75
avg nll- -0.13 -0.13
avg x-entr loss (5 sampl)- -0.065 -0.09 050
min x-entr loss (5 sampl)- -0.092 -0.12 025
max x-entr loss (5 sampl)- -0.032 -0.059
var x-entr loss (5 sampl) 0.00

0.2 0.15

SC-Ngram1 avg nll- -0.14 -0.11 ~050
SC-Ngram1 max nll- -0.11 -0.11
SC-Ngram5 avg nll -0.75
SC-Ngram5 max nll
-1.00
Spearman Pearson

Figure 9: Correlation coefficients between all uncer-
tainty metrics and fact accuracy. Calculated over 4516
sentences generated by LLaMa2 70B.

by popularity class of the topic. The paragraphs
which have highest SelfCheck-BERTScore in the
first sentence are those with lower popularity, and
consequently those for which the above method
would not generate any facts (Figure 10).

D.3 Number of sampled paragraphs

The calculation of the SelfCheck-BERTScore
hinges on using N sampled paragraphs. Each sen-
tence in the original paragraph is scored based
on its BERTScore with respect to each sam-
pled paragraph. We experimented with N €
{1,3,5,10,100}. We found only marginal im-
provements for N > 5 and that the improve-
ments are more visible when using smaller 7.
We also experimented with generating N para-
graph samples with a temperature setting of 1. As
the original paper Manakul et al. (2023) suggests,
high temperature should result in more accurate
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SelfCheck-BERTScore. However, we find the im-
provements on temperature = 1 to be marginal
from temperature = 0.6, topp = 0.9.

D.4 Rerank past-early stopping point

One interesting experiment, but which did not
yield satisfactory results, was to use the early-
stopping strategy described in Section 6.1 and
combine it with the reranking strategy from Sec-
tion 6.2 by resampling-and-reranking only past the
early-stopping point. The hope was that we can
extend current paragraphs by adding more correct
facts. We found that we could extend the para-
graphs with an average of 2.12 facts per generated
paragraph, but that this came with a loss of factu-
ality of 1.67%.

E Appendix E
E.1 Inference with API call

Below is an example illustrating the inference
flow for generating text with embedded API
calls. It consists mainly of two prompts: one for
defining how to make the API call and one for
integrating the response of the API call. When
finished with inference step 2, we remove the API
call from the generated text and repeat the same
flow again with the previously generated text as
the new prompt we want to complete.

Prompt 1:

Your task is to add calls to a
Question Answering API to a piece of
text. The questions should help you
get information required to complete
the text. You can call the API by
writing [QA (question)] where question
is the question you want to ask. Here
are some examples of API calls:

Joe Biden was born in [QA (Where was
Joe Biden born?) ]

This is a Wikipedia article about
Napoleon. Napoleon

Inference 1:
was born in [QA (Where was Napoleon
born?) ]

Execute API call.

Prompt 2:

Your task is to complete a piece of
text, by using answers from an API
call. APIs are called by writing

[QA (question) -> answer] where
question is what was sent to the API
and answer is the response. Here are
some examples of texts with API calls:
Joe Biden was born in [QA (Where

was Joe Biden born?) —> Scranton]

Scranton, Pennsylvania.
Napoleon was born in [QA (Where was
Napoleon born?) —-> Ajaccio]

Inference 2:
was born in [QA (Where was Napoleon
born?) -> Ajaccio] Ajaccio, Corsica.

Repeat.

F Appendix F

F.1 Factual precision and recall metrics

Because FActScore is a precision-focused metric,
to get a better idea of the impact of each regen-
eration strategy and each early-stopping strategy,
we provide more metrics in Table 6. The recall on
incorrect facts shows the percentage of incorrect
facts that were present in the original generation,
then removed by the early stopping method.

Incorrect facts | Correct facts
Method Prec. | Rec. Prec. | Rec.
baseline 44.56
oracle 66.39 | 92.47 | 81.68 | 41.76
eos_top_5 61.99 | 75.1 57.96 | 42.71
eos_top_10 58.94 | 93.58 | 70.29 | 18.90
SC-Bert >.7 | 69.03 | 74.44 | 64.76 | 58.44
SC-Bert >.5 | 65.57 | 82.19 | 67.63 | 46.30
SC-Bert >.3 | 62.69 | 88.19 | 70.24 | 34.69
re-rank 53.27
rerank +
SC-Bert >.7 60.35 | 56.07 | 63.72 | 67.67
rerank +
SC-Bert >.5 57.04 | 70.1 67.18 | 53.69
rerank + 54 | 821 |71.11 | 38.64
SC-Bert >.3 ) ) ’
1 API call 43.93
inf API calls 54.42

Table 6: Metrics for incorrect facts, showing preci-
sion (%incorrect facts out of those removed by early
stopping), recall (%incorrect facts removed); and for
correct facts, showing precision (FActScore) and recall
(%remaining correct facts). For each of the generation
strategies, the metrics are calculated with respect to the
base generation.
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Early stopping (threshold 7') | if So > 1T | facts/gen No answer FAct Score* | SD score (%)
(%)
SC-BERTScore >0.8 keep So 28 1 52.73 75.77
SC-BERTScore >0.5 keep So 16.21 1 66.05 66.87
SC-BERTScore >0.2 keep So 21.92 1 62.87 67.63
SC-BERTScore >0.8 delete So 21.26 17 58.07 74.18
SC-BERTScore >0.5 delete So 4.64 272 88.66 66.87
SC-BERTScore >0.2 delete Sp 4 493 92.85 58.64
@drift point n/a 10 1 81.68 47.94

Table 7: Comparing FActScore* and SD score for LLaMa2 70B cutting generation based on SelfCheckBERT
Score threshold 7'. The second column shows behaviour in the case in which the first sentence of the generation
already exceeds threshold 7. “No answer” shows the number of paragraphs (out of the total 500) for which the
model produces no facts.
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Figure 10: Distribution of SelfCheck-BERTScore for
first sentence in paragraph, by popularity of topic.
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