
LREC-COLING 2024, pages 995–1008
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

995

Analyzing the Performance of Large Language Models on Code
Summarization

Rajarshi Haldar, Julia Hockenmaier
Department of Computer Science, University of Illinois Urbana-Champaign

{rhaldar2, juliahmr}@illinois.edu

Abstract
Large language models (LLMs) such as Llama 2 perform very well on tasks that involve both natural language and
source code, particularly code summarization and code generation. We show that for the task of code summarization,
the performance of these models on individual examples often depends on the amount of (subword) token overlap
between the code and the corresponding reference natural language descriptions in the dataset. This token overlap
arises because the reference descriptions in standard datasets (corresponding to docstrings in large code bases)
are often highly similar to the names of the functions they describe. We also show that this token overlap occurs
largely in the function names of the code and compare the relative performance of these models after removing
function names versus removing code structure. We also show that using multiple evaluation metrics like BLEU and
BERTScore gives us very little additional insight since these metrics are highly correlated with each other.

Keywords: Natural Language Generation, Neural Language Representation Models, Summarisation

1. Introduction

There is a growing interest in applying NLP tech-
niques to tasks related to automated program un-
derstanding, generation, and retrieval, all of which
promise to improve access to code. Popular tasks
include Code Summarization (translating code into
natural language, e.g. Miceli Barone and Sennrich,
2017), Code Generation, Code Completion, Code
Translation and Natural Language Code Search
(retrieving a code snippet given a natural language
query, e.g. Gu et al., 2018a). There is a practical
need for such systems since the ability to auto-
matically generate code snippets or doc strings or
search large code bases can significantly increase
the productivity of software developers. However,
there is also a growing interest in developing mod-
els and datasets for these tasks within the NLP
community, often driven by an assumption that
code can be seen as a semantic interpretation of
its natural language description.

But while current models show impressive per-
formance, it is still important to analyze how much
understanding these models have of the structure
or semantics of the code. To make their code
more human-readable, software developers often
employ English words in the names of functions,
variables, or data structures. And, although they
did not evaluate the most recent web-scale large
language models, the authors of MCoNaLa (Wang
et al., 2023) showed that the performance of code
generation models drops significantly compared
to English if the input is in Spanish, Japanese, or
Russian.

We, therefore, ask to what extent the large lan-
guage models (LLMs) that are used for tasks like
code generation or summarization actually under-

stand the semantic relation between natural lan-
guage and code, and to what extent they simply
rely on this superficial token similarity. In this paper,
we attempt to address this question by analyzing
the performance of large language models (LLMs)
on code summarization. Our analysis aims to shed
light on the following, more specific questions: (1)
to what extent do the summaries generated by
these models simply consist of tokens that are di-
rectly copied from the code? (2) How much does
model performance depend on the presence of
function names that give away the semantics of
the code? (3) To what extent do these models rely
on the syntactic structure and underlying logic of
the code?

To answer the first research question, we split
the examples from the dataset into different buck-
ets depending on the token overlap between the
code and the description and see how much the
performance varies across those buckets. For the
second and third research questions, we make
several transformations to the code before feeding
it to an LLM. This includes changing or obfuscat-
ing certain function names, and removing the con-
trol structures in the body of the code. We then
examine their impact on code summarization per-
formance. We observe the effect of the code in
standard datasets like CodeXGLUE having infor-
mative function and identifier names with a high
token overlap with their descriptions, and analyze
how this affects model behavior. This token overlap
between the function names and the target sum-
mary makes the task easier. Our experiments1

1The code for this paper will be released
at https://github.com/rajarshihaldar/
analyze-llm-code-summarization

https://github.com/rajarshihaldar/analyze-llm-code-summarization
https://github.com/rajarshihaldar/analyze-llm-code-summarization

996

show that the performance of several state-of-the-
art LLMs is often due to the high string similarity of
the natural language descriptions to the code they
are paired with.

2. Background

2.1. Large Language Models For Code

Applying natural language processing techniques
to source code has produced outstanding results.
Code2vec (Alon et al., 2019) showed that tech-
niques that are used to induce semantic embed-
dings or vectors for natural language input also
work well to represent input code snippets and pre-
dict their semantic properties. DeepCS (Gu et al.,
2018b) showed that by mapping both code and nat-
ural language prompts to embeddings you could
perform retrieval on code. Another breakthrough
was the introduction of sequence-to-sequence
(seq2seq) models for generating comments for a
given input code (Hu et al., 2018a). These initial
models treat code as a sequence of tokens and
were quickly followed by models that account for
the structure of the code through Abstract Syntax
Trees (Zhang et al., 2019a; Wan et al., 2019; Hal-
dar et al., 2020), Graph Neural Networks (Sieper
et al., 2020; Ling et al., 2021; Liu et al., 2021),
and Graph Attention Neural Networks (Wang et al.,
2022a).

Inspired by the success of transformer-
based (Vaswani et al., 2017), pre-trained large
language models (LLMs) like BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019), GPT (Brown
et al., 2020), RoBERTa (Liu et al., 2019), Syn-
CoBERT (Wang et al., 2021a), and T5 (Raffel et al.,
2020) on core NLP tasks, and facilitated by the
availability of large datasets that pair natural lan-
guage with code, e.g. CodeSearchNet (Husain
et al., 2019), LLMs are now commonly used for
tasks that involve source code and natural lan-
guage. CodeBERT (Feng et al., 2020), and its suc-
cessor GraphCodeBERT (Guo et al., 2020), were
two of the initial wave of LLMs trained on paired
natural (NL) and programming language (PL) se-
quences. Soon other LLMs like PLBART (Ahmad
et al., 2021) and CodeT5 (Wang et al., 2021b)
made significant gains in code summarization. At
the same time, models like CodeGen (Nijkamp
et al., 2023) and Codex (Chen et al., 2021) made
gains in code generation.

The current state of the art includes even larger
instruction-tuned models that can perform a wide
variety of tasks including ones related to code-NL,
e.g. GPT-4 (OpenAI, 2023), Llama 2 (Touvron
et al., 2023) and PaLM 2 (Anil et al., 2023). In-
stead of being fine-tuned for a specific task, these
models are trained to respond to a prompt de-

scribing a task followed by an input. This leads
to improved performance on a variety of code-NL
tasks. While GPT-4 has the best performance2,
some researchers have found ways to improve its
output further. For example, leveraging verbal rein-
forcement on an LLM improves its code generation
capabilities (Shinn et al., 2023).

Although current LLMs differ in important details
(size, amount of training data, pre-training regime,
fine-tuning, etc.), they use a form of subword tok-
enization (Kudo and Richardson, 2018; Sennrich
et al., 2016), in which words are split into shorter
strings (e.g. extracts → ext ract s) and underscores
are treated as separators (e.g. from_url → from
_ url), such that the model’s vocabulary consists
of subwords rather than whitespace-delineated to-
kens. Figure 2 shows how even just a function defi-
nition reveals valuable information about the tokens
that are likely to occur in the reference description
when it is tokenized by a subword tokenizer (here,
Llama 2).

2.2. Code Summarization

Code Summarization systems translate code
snippets into automatically generated English sum-
maries that describe what the code does. Given
an input code snippet C , the system has to return
a description D that accurately describes what that
code does. Figure 1 shows an example of code
summarization being performed.

When the task was first introduced, template-
based approaches (Sridhara et al., 2010) requir-
ing expert domain knowledge were used, followed
by information retrieval-based approaches (Eddy
et al., 2013; Rodeghero et al., 2014). In IR-
based approaches, the model would extract the
most relevant tokens from the code to gener-
ate a term-based summary. This did not re-
quire any domain knowledge but the models used
did not show any deep understanding of the
code structure and instead relied on informative
function names and comments to generate sum-
maries. This was followed by early neural ap-
proaches (Iyer et al., 2016), Encoder-decoder
frameworks like (Hu et al., 2018a) and transformer-
based approaches, like PLBART (Ahmad et al.,
2021), Structure-induced Transformers (Wu et al.,
2021), CoTexT (Phan et al., 2021) CodeGPT (Lu

2Although it is unclear what specific data GPT-4 has
been trained on, their training data is likely to include
the code snippets contained in the datasets used in
this paper and data contamination is known to be a
significant factor in the performance of these models on
coding tasks (Narayanan and Kapoor, 2023). Moreover,
GPT-4 is frequently updated behind the scenes based on
the data customers provide. This makes any analyses
on this data non-reproducible. Due to these concerns,
we have not included GPT-4 in our studies.

997

Figure 1: In code summarization, a code snippet
(here, from CodeXGLUE) is given as input to a
model that returns an English description.

et al., 2021), Codex (Chen et al., 2021), and
CodeT5 (Wang et al., 2021b). Recently, these
models have been surpassed by large language
models using decoder-only architectures like PaLM
2 (Anil et al., 2023), GPT-4 (OpenAI, 2023), and
Llama 2 (Touvron et al., 2023).

Benchmark datasets for this task include TL-
CodeSum (Hu et al., 2018b), Funcom (LeClair
et al., 2019), CodeSearchNet (Husain et al., 2019)
and more recently, CodeXGlUE (Lu et al., 2021).

Dataset: CodeXGLUE (Lu et al., 2021) is a stan-
dard benchmark for several code-NL tasks includ-
ing code summarization. It is a filtered subset of
CodeSearchNet (Husain et al., 2019), consisting
of code snippets paired with English descriptions
that are scraped from public open-source GitHub
repositories for Go, Java, JavaScript, PHP, Python,
and Ruby. The description paired with each code
snippet is the first paragraph of the repository. Ex-
amples were filtered out from this dataset if their
code could not be parsed into an abstract syntax
tree, or if their descriptions were not in English,
contained special strings like "http://", were empty,
or not between 3 and 256 tokens in length. Fig-
ure 1 shows an example from the dataset being
used for code summarization. In our experiments,
we use the Python examples from CodeXGLUE,
which contain 251,820 training, 13,914 dev, and
14,918 testing data points.

Metric: BLEU (Papineni et al., 2002) is computed
by matching n-grams between generated sum-
maries and human written summaries. A perfect
match between the two summaries would give a
score of 100%, and a perfect mismatch would give
a score of zero. BLEU-4 is the standard metric for
evaluating code summarization (Shi et al., 2022).
In this case, n-grams are matched up to n = 4.
This matching is done cumulatively: the BLEU
scores for n-grams for values of n = 1 through
4 are computed, and then the mean of these four
scores is computed to get the final score.

It was found that different implementations of
BLEU-4 lead to different results (Shi et al., 2022).
Out of these variants, the sentence BLEU met-
ric based on NLTK (Bird et al., 2009) smoothing
method 4 had the highest correlation with human

Figure 2: Subword tokenization (here performed by
the Llama 2 tokenizer on the first line of the code
and the description) exposes valuable information
about which tokens are present in the description.

evaluation. The scores we report are computed by
the implementation of this method in NLTK 3.8.1.

3. How well do LLMs perform on
Code Summarization?

We now show how some recent LLMs perform
on the standard code summarization dataset,
CodeXGLUE. In this section, we study the extent
to which the generated English summaries contain
tokens that are copied from the subword-tokenized
code. Following this, we examine how prevalent
this token overlap is across the entire dataset. We
further investigate whether the models also follow
the trend of generating summaries with high to-
ken overlap with the input code and whether the
BLEU scores of the generations are impacted by
this overlap. Finally, we inspect which types of to-
kens are more likely to be involved in this overlap,
since the tokens present in function names give
away more information about the function than the
tokens in the body of the function.

After determining the prevalence of high token
overlap in the dataset and its impact on generation
performance, we examine how much LLMs prior-
itize function names over the code structure and
its control flow. We also evaluate how they perform
when given code that has all the control structure
removed, and in an extreme case if we only give
the function definition as input. This will also help
us answer our first two research questions about
how much models leverage function names over
the body of the code and how much models care
about the code syntax and structure. Additionally,
studying the relative performance of multiple LLMs
of different parameter counts on these different
types of input will give us a deeper insight into
what they understand about code. While there
is prior work showing how transformations like
masking function names make code summariza-
tion harder (Sontakke et al., 2022), our work goes
further and performs a deeper qualitative analysis
to see what causes the model to perform well in
the first place.

998

Dataset CodeT5 PaLM 2 Llama 2 (7b) Llama 2 (70b)

CodeXGLUE 17.66 19.23 22.36 22.41

Table 1: BLEU-4 across all models on CodeXGLUE

3.1. Experimental Setup

To examine a wide range of model sizes, we ana-
lyze CodeT5 (220M parameters), PaLM 2 (340B
parameters), and Llama 2 (with 7B and 70B pa-
rameters):

CodeT5: CodeT5 (Wang et al., 2021b) is a pre-
trained encoder-decoder model that uses objec-
tives during pre-training like Identifier Tagging (the
model has to predict whether each token in the
input is an identifier or not) which make it more
suitable for understanding code. It is pre-trained
on CodeSearchNet. It is adapted to multiple down-
stream tasks including code summarization and
code generation through multi-task learning.

PaLM 2: PaLM 2 (Anil et al., 2023) is an LLM
made by Google AI for reasoning tasks, question
answering, classification, translation, and code
summarization. It was pre-trained on a large cor-
pus of parallel multilingual text. As it is proficient
in sequence-to-sequence tasks, we can make it
perform code summarization with the right prompt.

Llama 2: Llama 2 (Touvron et al., 2023) is an
LLM designed by Meta AI that can also be used for
sequence-to-sequence tasks, including an instruct
model that can be asked to perform any task with a
prompt. It comes in three sizes - 7B, 13B and 70B.

While CodeT5 is fine-tuned on this dataset, we
use the other models PaLM 2 and Llama 2 in
inference-only mode with few-shot prompting. We
use the following prompt before each input code
snippet - "Pretend that you are a programmer writ-
ing Python functions. For a given Python function
you have to generate a short documentation de-
scribing what the function does.", along with ten
examples from the dataset to show what kind of
description we are looking for.

3.2. Overall Performance

To analyze these models, we first evaluate them on
code summarization on the standard CodeXGLUE
dataset. Table 1 shows that the BLEU-4 scores of
the models discussed above range from 17.66 for
the 220M-parameter model CodeT5 to 22.41 for
the 70B-parameter Llama 2. The much smaller 7b
parameter version of Llama 2 performs similarly at
22.36, while PalM 2 (340B parameters) achieves a
score of 19.23, between CodeT5 and Llama 2.

3.3. Exploring if LLMs are copying
tokens from code to description

We now analyze if these models are copying to-
kens from the code when generating their sum-
maries. While copying in itself would not be a
design flaw, if there is an instance of widespread
copying, this would indicate that it is possible to
perform well in this task without showing much
understanding of the semantics of the code. We
define our own metric called pcopy , which is the
percentage of tokens (as generated by the corre-
sponding model’s tokenizer) in the description that
was also present in the code.

0% 20% 40% 60% 80% 100%
Fraction of Examples

Reference

Generated

Ty
pe

 o
f D

es
cr

ip
tio

n:
Re

fe
re

nc
e/

Ge
ne

ra
te

d

pcopy

0-20
20-40
40-60
60-80
80-100

(a) CodeT5

0% 20% 40% 60% 80% 100%
Fraction of Examples

Reference

Generated

Ty
pe

 o
f D

es
cr

ip
tio

n:
Re

fe
re

nc
e/

Ge
ne

ra
te

d

pcopy

0-20
20-40
40-60
60-80
80-100

(b) Llama 2 (70b)

Figure 3: Distribution of pcopy in the dataset. Gen-
erated descriptions have much higher pcopy than
Reference descriptions, and Llama 2’s has fewer
issues with copying tokens than CodeT5.

Figure 3 shows the distribution of pcopy in the ref-
erence descriptions written by human developers
(bottom) and in the summaries produced by our
two models (top), CodeT5 and Llama 2. Although
copying is present in the human descriptions in
both models (allowing the model to pick up on it
during training), the models rely on it to a greater
extent, since pcopy skews higher in the generated
summaries. CodeT5 generates descriptions with
much higher copying than Llama 2, but we see
that even in the reference descriptions CodeT5
tokenizer gives much higher overlap than Llama
2. Therefore, it is not just the model but also the
tokenizer that greatly influences the extent to which
this copying strategy is employed.

3.4. Is copying tokens a viable strategy
for summarization?

We see that the models learn to generate sum-
maries by copying tokens from the code, but how
effective is that strategy? For examples with high

999

Overall 0 0-20 20-40 40-60 60-80 80-100
Ranges of pcopy Values Between Reference Desc. and Code

0%

20%

40%

60%

80%

100%

Di
st

. o
f B

LE
U-

4
Sc

or
es

BLEU-4
0
0-10
10-20
20-30
30-40
>40

(a) CodeT5

Overall 0 0-20 20-40 40-60 60-80 80-100
Ranges of pcopy Values Between Reference Desc. and Code

0%

20%

40%

60%

80%

100%

Di
st

. o
f B

LE
U-

4
Sc

or
es

BLEU-4
0
0-10
10-20
20-30
30-40
>40

(b) Llama 2 (70b)

Figure 4: Distributions of BLEU-4 on all test ex-
amples and in different pcopy buckets. In general,
higher pcopy leads to a higher BLEU-4 score.

pcopy in the reference description, a copying strat-
egy should yield higher BLEU scores than for ex-
amples with lower pcopy . To see if this is the case,
we split the test set into buckets based on the refer-
ence descriptions’ pcopy , and plot the distribution of
the model’s BLEU-4 scores in each bucket (Figure
4). Figure 4a shows the results on the smallest
model we have tested, CodeT5, and Figure 4b
shows the results on Llama 2 (70b).

The first bar of the two plots in Figure 4 shows
the overall distribution of BLEU-4 scores. The sub-
sequent bars show the distribution of scores for a
certain pcopy range. For example, the second bar
shows the scores for examples where 0 to 10% of
the tokens in the reference description are present
in the code. We see that in general as pcopy in-
creases, the BLEU-4 scores also increase. How-
ever, this correlation is less pronounced for Llama
2. This shows that both models tend to fall back on
copying tokens from code to the description as a
viable strategy, with the most difficult examples in
the dataset being the ones where pcopy is zero, as
in this bucket, half have a zero BLEU score.

3.5. Which tokens are copied?

We see that copying tokens from the code when
generating descriptions can be a viable strategy.
However, we need to explore which types of tokens
are most likely to be copied. If it is mostly the func-
tion names that are being copied, that suggests

Code
Overlap with Ref.

Overlap with Gen.
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f T
ok

en
s

Overlap Distribution of Token Roles

Token Role
Operator
Constant
Keyword
Comments
Identifier
Function Name

(a) CodeT5

Code
Overlap with Ref.

Overlap with Gen.
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f T
ok

en
s

Overlap Distribution of Token Roles

Token Role
Operator
Constant
Keyword
Comments
Identifier
Function Name

(b) Llama 2 (70b)

Figure 5: Distributions of token types in the overall
CodeXGLUE code, and among the tokens that are
copied to the reference and generated descriptions,
according to the tokenizer and model of Code T5
and Llama 2 (70b)

the model relies most on the function definition and
largely ignores the semantics of the code. We also
want to see what kind of tokens get copied from the
code in the reference descriptions in the dataset.

In Figure 5 we see the distribution of different
token types like function names, identifiers, and
comments for both CodeT5 and Llama 2 (70b).
One main reason for the differences in their dis-
tributions, even in the reference descriptions, is
the fact that they use different tokenizers. For ex-
ample, the function names form a small part of
the code snippets after tokenization by CodeT5 as
seen in the first column in Figure 5a. On the other
hand, the Llama 2 tokenizer (Figure 5b) allows for
function names to be a much bigger part of the
code. This pattern also holds true for the reference
description in the dataset, with function names be-
ing more represented by the Llama 2 tokenizer.
However, when we look at the generated descrip-
tions, we see that CodeT5-generated summaries
have a much higher presence of function names
than Llama 2. This is probably due to fine-tuning,
and CodeT5 learning that the optimal strategy for
generating good summaries is to not only copy to-
kens from the code but to copy tokens from the
function definition of the code. On the other hand,
Llama 2 seems to prefer to rely more on identifiers,
which can also contain useful information about
the code semantics. Llama 2 also seems to better
understand that the keywords in the code, while
important to understand the semantics, are not

1000

supposed to be in the generated description.

4. How do Code Transformations
Affect Performance?

We saw that the performance of LLMs on code
summarization benefits from the high token overlap
between the code and the reference description,
and this overlap occurs primarily due to informa-
tive function names. To see how well they work
when this information is unavailable, and also how
strongly they rely on the internal structure of the
code instead, we make several transformations to
the code in the dataset. We then evaluate the per-
formance of multiple LLMs under these scenarios.

In each transformation, we modify one aspect of
the dataset used for training and evaluation of the
classifier to understand what effect it has on perfor-
mance. For example, the change in performance
when we remove function names will show us how
important function names are to the model’s under-
standing of the code.

4.1. Code Transformations

Each of our four variants applies one transforma-
tion to the code to remove some information. The
corresponding drop in performance indicates the
importance of that information for the task. Figure
6 shows how an original snippet (6a), is affected by
each transformation. We remove comments from
the 32.5% of snippets that have them so that the
models are forced to only look at the code.

Original Function Names: This is the unmodi-
fied code from the dataset (Figure 6a).

Obfuscated Function names: Function names
often have a higher token overlap with the query
than the rest of the code. We obfuscate them by
replacing each character with the next character in
the alphabet (‘a’ by ‘b’, ‘b’ by ‘c’ etc.). This forces
the model to focus on other cues, like comments,
variable names, or the actual structure of the code
like for-loops and if-statements (Figure 6b).

Adversarial Function Names: We replace the
original function name with the name of another
function. Unlike obfuscation, this may mislead the
model. Performance on this variant will tell us how
well the model works when the function name is at
odds with the actual operations performed in the
body of the code (Figure 6c).

No Code Structure: We remove keywords (if,
return etc.), operators (not, >, +), and delimiters
(, , ,, etc.), removing any information about the
underlying logic of the program while keeping the
rest of the code intact (Figure 6d).

No Function Body: We remove the entire body
of the code and leave only the function definition.
Here, we will observe how well the model performs

(a) Original Function Names

(b) Obfuscated Function Names

(c) Adversarial Function Names

(d) No Code Structure

(e) No Function Body

Figure 6: Different transformations of a Python
function in CodeXGLUE

when it only has the function name and its argu-
ments available (Figure 6e).

Examples in these variants will show us what
part of the code LLMs tend to prioritize when given
an input code snippet to analyze.

After computing the performance across multiple
models and datasets, we also investigate how the
models’ performance is affected by the high token
overlap between the code and the reference de-
scriptions. Since this overlap can be exploited by
copying tokens from the code to generate descrip-
tions that look correct even without understanding
the underlying semantics of the code, we explore
how often this occurs. We also look at which parts
of the code the models tend to copy tokens from
most often i.e. function names versus variable
names. Finally, we also looked at how our percep-
tion of the performance of these models is affected
by our choice of similarity-based metrics which
compare the descriptions to a human-generated
docstring, since similarity alone may not be a per-
fect judge of whether a generated description is
good or not.

4.2. Performance on Transformed Code

Table 2 shows the BLEU scores of CodeT5, PaLM
2, and Llama 2 (with 7b and 70b parameters) on

1001

Variant CodeT5 CodeT5 (FT) PaLM 2 Llama 2 (7b) Llama 2 (70b)

Original Function Names 17.66 17.66 19.23 22.36 22.41
Obfuscated Function Names 11.59 14.80 18.72 20.09 21.25
Adversarial Function Names 11.34 13.12 15.69 19.53 21.23
No Code Structure 13.96 16.57 11.92 15.11 18.42
No Function Body 13.94 15.27 11.90 14.93 18.16

Table 2: BLEU-4 across all models and variants

Variant CodeT5 CodeT5 (FT) PaLM 2 Llama 2 (7b) Llama 2 (70b)

Original Function Names 83.95 83.95 84.26 84.34 86.95
Obfuscated Function Names 78.57 81.25 82.28 82.52 84.41
Adversarial Function Names 78.53 80.01 80.81 80.84 84.30
No Code Structure 81.32 82.86 79.36 79.66 83.25
No Function Body 81.14 82.40 79.14 79.72 83.14

Table 3: BERTScores across all models and variants

the different variants,
The first CodeT5 column shows the scores when

the model is only fine-tuned on examples from the
original dataset, whereas the second column (FT)
shows the scores when the model is fine-tuned on
the transformed examples so it knows what kind of
code to expect as input.

Fine-tuning on transformed examples helps
CodeT5. On the transformed variants, the per-
formance of CodeT5 improves significantly after
fine-tuning on examples from those variants, es-
pecially in Obfuscated Function Names. Not all
variants have the same improvement, though. In
Adversarial Function Names, the improvement is
much smaller, suggesting that the presence of in-
correct function names still misleads the model.

Scores drop for the transformed variants. We
see that there is a drop in Obfuscated Function
Names and an even bigger drop in Adversarial
Function Names, suggesting that models struggle
when the function name is hidden and are misled
when given an incorrect function name, showing
how important function names are to the models’
understanding of the code semantics. However,
the drop from Obfuscated to Adversarial is much
higher for CodeT5 and PaLM 2 than Llama 2, show-
ing that these models are more dependent on the
function names. Section 3.5 will show that this may
be explained by the fact that CodeT5 is much more
dependent on the function names than Llama 2.

PaLM 2 and Llama 2 perform worse in No Func-
tion Body and No Code Structure compared to the
other variants, whereas CodeT5 performs better.
This shows that CodeT5 does not mind when given
code that is incomplete or syntactically incorrect,
unlike the larger models. However, despite per-
forming well on these particular variants, CodeT5

is worse overall than Llama 2, showing that fine-
tuning for higher performance on one narrow metric
may not always give the best result.

CodeT5 is better at variants that have invalid
code. No Function Body and No Code Structure
have incomplete and syntactically incorrect code
respectively. CodeT5 performs better at these
variants than the ones where we just modify the
function names. However, the other models per-
form much worse here. This shows that the larger
variants care more about code syntax whereas a
smaller model like CodeT5 looks mostly at func-
tion names. In fact, the largest model in our ex-
periments, PaLM 2, performs the worst at these
variants.

All models get misled by Adversarial Function
Names. While the bigger models like Llama 2
and PaLM 2 perform better on this variant, they are
still prone to be misled. We have shown some ex-
amples where it is obvious that the function name
is wrong but the models still prioritize that over the
semantics in the code. Figure 7 shows an example
where both PaLM 2 and Llama 2 (70b) falter when
the function name is changed.

5. Investigating An Alternative Metric

Although BLEU is a commonly used and well-
established metric, it is very strict because it cap-
tures only exact matches between n-grams. To ad-
dress this, a number of metrics have been recently
developed that instead compute the similarity of
token embeddings returned by a neural model. We
investigate whether using such a metric changes
the main findings from our experiments. We con-
sider BERTScore, which uses BERT (Devlin et al.,
2019) as the neural model.

1002

Figure 7: Examples of Llama 2 (70b) and PaLM 2 generations when given code from Adversarial Function
Names. We see that even these larger models occasionally falter when given misleading function names.
These are in cases where they gave acceptable responses when we made no perturbations in the code

BERTScore (Zhang et al., 2019b) is a
precision/recall-inspired metric that uses a BERT
model to compute token similarities between two
summaries. To compute BERTScore, both sum-
maries are given as input to the BERT model (we
use the base uncased model of DistilBERT (Sanh
et al., 2020)) to get their token embeddings (say
x for reference and x̂ for generated). Then recall
(R) and precision (P) over these embedding se-
quences are computed by considering the maximal
similarity of each reference (candidate) token to
any candidate (reference) token:

R =
1

|x|
∑
xi∈x

max
x̂j∈x̂

xT
i x̂j P =

1

|x|
∑
x̂j∈x̂

max
xi∈x

xT
i x̂j

The final BERTScore is the F1 score (harmonic
mean) of P and R:

BERTScore =
2 · P ·R
P +R

5.1. Overall Performance (BERTScore)

Table 3 shows the BERTScores for each model on
the original test set. This correlates very strongly
with the results in Table 2, with a Pearson Correla-
tion of 0.87 and a Spearman’s Rank Correlation of
0.86 between the 25 pairs of scores.

There is also a high correlation of BLEU and
BERTScores between every pair of reference and
generated descriptions we have in the original
dataset across all models. We get a Pearson Cor-
relation of 0.78 and a Spearman’s Rank Correla-
tion of 0.73. The heatmap in Figure 8 shows this
positive correlation.

However, we observe that BERTScores are over-
all much higher and closer to each other here than
was the case for BLEU scores. This is possibly
due to BERTScore being a more forgiving metric,
and most generations are assigned a very high
BERTScore despite their quality. For example, the
minimum BERTScore assigned to an example is
60, whereas there are several cases that have a
BLEU score of zero.

0 20 40 60 80 100
BLEU Scores

60

70

80

90

100

BE
RT

Sc
or

es

Heatmap of BERTScore vs BLEU Score

0.5 1.0 1.5 2.0 2.5
Percentage of Examples

Figure 8: Heatmap of the BERTScore vs the BLEU-
4 score for all examples in the test set containing
the untransformed code.

Regardless of the metric used, performance gen-
erally increases with increasing the number of pa-
rameters, except Llama 2 outperforming PaLM 2.
However, this increase in performance is not lin-
ear, with Llama 2(7b) being quite close to Llama
2(70b). As for variants, all models see a drop in
performance in Obfuscated Function Names and
an even bigger drop in Adversarial, though the sec-
ond drop is less in Llama 2. And while Llama 2 and
PaLM 2 justifiably underperform when given incom-
plete or incorrect code in No Function Body and
No Code Structure, CodeT5 performance takes a
much smaller hit, especially after fine-tuning.

5.2. Distribution of BERTScores

In Figure 9, we plot the distribution of BERTScores
of all the model outputs on the original test data.
The orange curve is the distribution of BERTScores
between random pairs of reference descriptions
and generated descriptions, and the blue curve
shows the distribution of BERTScores between
the reference descriptions and their corresponding
descriptions.

We see that the median BERTScore even be-

1003

50 60 70 80 90 100
BERTScores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e

Fr
eq

ue
nc

y
Ref × Corresponding Gen
Ref × Random Gen

Figure 9: Distribution of BERTscores between ref-
erence descriptions and their corresponding gener-
ated descriptions, and between reference descrip-
tions and a generated description from another
random example across all models

tween two unrelated descriptions is high, around
75.03. Therefore, even incorrect summaries are
assigned very high BERTScores, and the thresh-
old for good summaries is much higher than that.
The median BERTScore between the reference
descriptions and their corresponding generation
as returned by all models is 84.33, which is more
than 9 points higher, showing that this metric still
shows discernment between related and unrelated
descriptions. In Appendix A.1, we see that BLEU
scores can discern between correct and incorrect
descriptions as well as assign low scores (mostly
zero) to randomly sampled generated descriptions.

Another interesting observation about
BERTScores is that the average BERTScore is
higher between two random generated descrip-
tions than two random reference descriptions
in the dataset, as seen in Figure 10. This tells
us that the model generates descriptions with
less diversity than that present in the dataset. In
Appendix A.1, we see this is also true for BLEU
scores.

6. Conclusion

This paper presented a series of experiments to
gain a deeper insight into what makes current
LLMs effective at code summarization. Section
4 suggests that LLMs often rely on function names
and on shared tokens between the code and the
description compared to the code structure to per-
form well. Relying on token overlap seems to work
well because, at least in the standard datasets for
these tasks, code and the corresponding descrip-
tions often have high token overlap. Our experi-
ments establish a clear trend between the token

50 60 70 80 90 100
BERTScores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e

Fr
eq

ue
nc

y

Ref × Ref
Gen × Gen

Figure 10: Distribution of BERTScores between
two random reference descriptions and two ran-
dom generated descriptions across all models

overlap of the code and descriptions and summa-
rization performance.

We expect other LLM-based models, like
PLBART (Ahmad et al., 2021), and CoText (Phan
et al., 2021) to show similar behavior since we be-
lieve our results point to a feature of this entire
class of models.

The current state of the art also falls short when
the description is in a language other than En-
glish. Wang et al. (2022b) released a benchmark
MCoNaLa, which contains a parallel corpus of
code paired with multiple languages, and showed
that current code generation models perform poorly
for languages like Spanish, Japanese, and Rus-
sian. This may be because there are fewer tokens
in the description that overlap with the code, so a
model cannot learn to take advantage of informa-
tive function names and identifier names.

Finally, we also believe that human evaluation
should be used in conjunction with building more
comprehensive evaluation methodologies for code
summarization, in order to measure the accuracy
and the usefulness of a generated description,
something that similarity-based metrics like BLEU
and BERTScore cannot capture. While there has
been work in that direction (Shi et al., 2022), the
current practice still relies on comparing generated
descriptions with a reference instead of measuring
their actual usefulness to the user.

Acknowledgements

This work is supported by Agriculture and Food
Research Initiative (AFRI) grant no. 2020-67021-
32799/project accession no.1024178 from the
USDA National Institute of Food and Agriculture.

1004

Bibliographical References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. In
Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 2655–2668, Online. Asso-
ciation for Computational Linguistics.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: learning distributed rep-
resentations of code. Proc. ACM Program. Lang.,
3(POPL).

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin
Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bai-
ley, Zhifeng Chen, Eric Chu, Jonathan H.
Clark, Laurent El Shafey, Yanping Huang, Kathy
Meier-Hellstern, Gaurav Mishra, Erica Moreira,
Mark Omernick, Kevin Robinson, Sebastian
Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yu-
jing Zhang, Gustavo Hernandez Abrego, Jun-
whan Ahn, Jacob Austin, Paul Barham, Jan
Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng,
Colin Cherry, Christopher A. Choquette-Choo,
Aakanksha Chowdhery, Clément Crepy, Shachi
Dave, Mostafa Dehghani, Sunipa Dev, Jacob De-
vlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Fein-
berg, Fangxiaoyu Feng, Vlad Fienber, Markus
Freitag, Xavier Garcia, Sebastian Gehrmann,
Lucas Gonzalez, Guy Gur-Ari, Steven Hand,
Hadi Hashemi, Le Hou, Joshua Howland, An-
drea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael
Isard, Abe Ittycheriah, Matthew Jagielski, Wen-
hao Jia, Kathleen Kenealy, Maxim Krikun, Sneha
Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao
Liu, Frederick Liu, Marcello Maggioni, Aroma Ma-
hendru, Joshua Maynez, Vedant Misra, Maysam
Moussalem, Zachary Nado, John Nham, Eric
Ni, Andrew Nystrom, Alicia Parrish, Marie Pel-
lat, Martin Polacek, Alex Polozov, Reiner Pope,
Siyuan Qiao, Emily Reif, Bryan Richter, Parker
Riley, Alex Castro Ros, Aurko Roy, Brennan
Saeta, Rajkumar Samuel, Renee Shelby, Am-
brose Slone, Daniel Smilkov, David R. So, Daniel
Sohn, Simon Tokumine, Dasha Valter, Vijay Va-
sudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong
Wang, Zirui Wang, Tao Wang, John Wieting,
Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue,
Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou,

Slav Petrov, and Yonghui Wu. 2023. Palm 2
technical report.

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models are
few-shot learners. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Brian P. Eddy, Jeffrey A. Robinson, Nicholas A.
Kraft, and Jeffrey C. Carver. 2013. Evaluating
source code summarization techniques: Repli-
cation and expansion. In 2013 21st International
Conference on Program Comprehension (ICPC),
pages 13–22.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A pre-trained model for program-
ming and natural languages. In Findings of
the Association for Computational Linguistics:
EMNLP 2020, pages 1536–1547, Online. Asso-
ciation for Computational Linguistics.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim.
2018a. Deep code search. In 2018 IEEE/ACM
40th International Conference on Software Engi-
neering (ICSE), pages 933–944.

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/3180155.3180167

1005

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim.
2018b. Deep code search. In 2018 IEEE/ACM
40th International Conference on Software Engi-
neering (ICSE), pages 933–944.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2020. Graphcodebert: Pre-
training code representations with data flow.
CoRR, abs/2009.08366.

Rajarshi Haldar, Lingfei Wu, JinJun Xiong, and
Julia Hockenmaier. 2020. A multi-perspective
architecture for semantic code search. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages
8563–8568, Online. Association for Computa-
tional Linguistics.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin.
2018a. Deep code comment generation. In Pro-
ceedings of the 26th Conference on Program
Comprehension, ICPC ’18, page 200–210, New
York, NY, USA. Association for Computing Ma-
chinery.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with
transferred api knowledge. In Proceedings of the
27th International Joint Conference on Artificial
Intelligence, IJCAI’18, page 2269–2275. AAAI
Press.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit,
Miltiadis Allamanis, and Marc Brockschmidt.
2019. CodeSearchNet challenge: Evaluating the
state of semantic code search. arXiv preprint
arXiv:1909.09436.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
and Luke Zettlemoyer. 2016. Summarizing
source code using a neural attention model. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2073–2083, Berlin,
Germany. Association for Computational Linguis-
tics.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent sub-
word tokenizer and detokenizer for neural text
processing. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 66–
71, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alexander LeClair, Siyuan Jiang, and Collin McMil-
lan. 2019. A neural model for generating natural

language summaries of program subroutines. In
Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE ’19, page
795–806. IEEE Press.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning
Pan, Tengfei Ma, Fangli Xu, Alex X. Liu, Chun-
ming Wu, and Shouling Ji. 2021. Deep graph
matching and searching for semantic code re-
trieval. ACM Trans. Knowl. Discov. Data, 15(5).

Shangqing Liu, Xiaofei Xie, Lei Ma, Jingkai
Siow, and Yang Liu. 2021. Graphsearchnet:
Enhancing gnns via capturing global depen-
dency for semantic code search. arXiv preprint
arXiv:2111.02671.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang,
Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang,
Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
A machine learning benchmark dataset for
code understanding and generation. CoRR,
abs/2102.04664.

Antonio Valerio Miceli Barone and Rico Sennrich.
2017. A parallel corpus of python functions and
documentation strings for automated code docu-
mentation and code generation. In Proceedings
of the Eighth International Joint Conference on
Natural Language Processing (Volume 2: Short
Papers), pages 314–319, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Arvind Narayanan and Sayash Kapoor. 2023. Gpt-
4 and professional benchmarks: The wrong an-
swer to the wrong question.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2023. Codegen: An open large
language model for code with multi-turn program
synthesis. ICLR.

OpenAI. 2023. Gpt-4 technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA. As-
sociation for Computational Linguistics.

https://doi.org/10.1145/3180155.3180167
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aisnakeoil.substack.com/p/gpt-4-and-professional-benchmarks
https://aisnakeoil.substack.com/p/gpt-4-and-professional-benchmarks
https://aisnakeoil.substack.com/p/gpt-4-and-professional-benchmarks
http://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

1006

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen,
James Annibal, Alec Peltekian, and Yanfang Ye.
2021. CoTexT: Multi-task learning with code-text
transformer. In Proceedings of the 1st Workshop
on Natural Language Processing for Program-
ming (NLP4Prog 2021), pages 40–47, Online.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. J. Mach. Learn.
Res., 21(1).

Paige Rodeghero, Collin McMillan, Paul W. McBur-
ney, Nigel Bosch, and Sidney D’Mello. 2014. Im-
proving automated source code summarization
via an eye-tracking study of programmers. In
Proceedings of the 36th International Confer-
ence on Software Engineering, ICSE 2014, page
390–401, New York, NY, USA. Association for
Computing Machinery.

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2020. Distilbert, a distilled ver-
sion of bert: smaller, faster, cheaper and lighter.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen,
Shi Han, Hongyu Zhang, Dongmei Zhang, and
Hongbin Sun. 2022. On the evaluation of neural
code summarization. In Proceedings of the 44th
International Conference on Software Engineer-
ing, ICSE ’22, page 1597–1608, New York, NY,
USA. Association for Computing Machinery.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with
verbal reinforcement learning.

Anna Abad Sieper, Omar Amarkhel, Savina Diez,
and Dominic Petrak. 2020. Semantic code
search with neural bag-of-words and graph con-
volutional networks. In SKILL 2020 - Studieren-
denkonferenz Informatik, pages 103–115, Bonn.
Gesellschaft für Informatik e.V.

Ankita Nandkishor Sontakke, Manasi Patwardhan,
Lovekesh Vig, Raveendra Kumar Medicherla,
Ravindra Naik, and Gautam Shroff. 2022. Code
summarization: Do transformers really under-
stand code? In Deep Learning for Code Work-
shop.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni,
Lori Pollock, and K. Vijay-Shanker. 2010. To-
wards automatically generating summary com-
ments for java methods. In Proceedings of the
25th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’10, page
43–52, New York, NY, USA. Association for Com-
puting Machinery.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ran-
jan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sha-
ran Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. 2023.
Llama 2: Open foundation and fine-tuned chat
models.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran
Associates, Inc.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu,
Zhou Zhao, Jian Wu, and Philip S. Yu. 2019.
Multi-modal attention network learning for se-
mantic source code retrieval. In Proceedings
of the 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’19,
page 13–25. IEEE Press.

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou,
Yao Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and
Xin Jiang. 2021a. Syncobert: Syntax-guided
multi-modal contrastive pre-training for code rep-
resentation. arXiv preprint arXiv:2108.04556.

Yu Wang, Yu Dong, Xuesong Lu, and Aoying Zhou.
2022a. Gypsum: learning hybrid representa-
tions for code summarization. In Proceedings
of the 30th IEEE/ACM International Conference

https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2568225.2568247
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.1145/3510003.3510060
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1145/3524610.3527903
https://doi.org/10.1145/3524610.3527903

1007

on Program Comprehension, ICPC ’22, page
12–23, New York, NY, USA. Association for Com-
puting Machinery.

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven C.H. Hoi. 2021b. CodeT5: Identifier-
aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In
Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing,
pages 8696–8708, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou,
Frank F. Xu, and Graham Neubig. 2022b.
Mconala: A benchmark for code generation from
multiple natural languages.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou,
Frank F. Xu, and Graham Neubig. 2023.
MCoNaLa: A benchmark for code generation
from multiple natural languages. In Findings of
the Association for Computational Linguistics:
EACL 2023, pages 265–273, Dubrovnik, Croatia.
Association for Computational Linguistics.

Hongqiu Wu, Hai Zhao, and Min Zhang. 2021.
Code summarization with structure-induced
transformer. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021,
pages 1078–1090, Online. Association for Com-
putational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019. XLNet: Generalized autoregressive pre-
training for language understanding. In Ad-
vances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong
Sun, Kaixuan Wang, and Xudong Liu. 2019a. A
novel neural source code representation based
on abstract syntax tree. In 2019 IEEE/ACM 41st
International Conference on Software Engineer-
ing (ICSE), pages 783–794.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019b. Bertscore:
Evaluating text generation with BERT. CoRR,
abs/1904.09675.

A. Appendix

A.1. Distribution of BLEU Scores

Similar to BERTScores in Section 5.2, we plot the
distribution of BLEU scores between random pairs

0 20 40 60 80 100
BLEU-4 Score

0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

Fr
eq

ue
nc

y

Ref × Corresponding Gen
Ref × Random Gen

Figure 11: Distribution of BLEU scores between ref-
erence descriptions and their corresponding gener-
ated descriptions, and between reference descrip-
tions and a generated description from another
random example across all models and variants

of reference descriptions and generated descrip-
tions, as well as between the reference descrip-
tions and their corresponding descriptions in Fig-
ure 11. We see that unlike BERTscores, generated
summaries that are from a different example are
assigned very low, mostly zero scores. This shows
that BLEU can not only discern between a correct
and incorrect description better than BERTScore
but can also identify an incorrect generation by
assigning it a zero score.

0 10 20 30 40
BLEU-4 Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e

Fr
eq

ue
nc

y

Ref × Ref
Gen × Gen

Figure 12: Distribution of BLEU Scores between
two random reference descriptions and two ran-
dom generated descriptions across all models and
variants

In Figure 12, we see that the distribution of BLEU
scores between two randomly sampled generated
descriptions is higher than those between two ran-
domly sampled reference descriptions, showing
that the models have a problem of producing gen-
erations that are less diverse than the data they

https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://doi.org/10.48550/ARXIV.2203.08388
https://doi.org/10.48550/ARXIV.2203.08388
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675

1008

were trained on. We made a similar observation in
Section 5.2 which shows that the problem persists
independent of the metric used.

	Introduction
	Background
	Large Language Models For Code
	Code Summarization

	How well do LLMs perform on Code Summarization?
	Experimental Setup
	Overall Performance
	Exploring if LLMs are copying tokens from code to description
	Is copying tokens a viable strategy for summarization?
	Which tokens are copied?

	How do Code Transformations Affect Performance?
	Code Transformations
	Performance on Transformed Code

	Investigating An Alternative Metric
	Overall Performance (BERTScore)
	Distribution of BERTScores

	Conclusion
	Appendix
	Distribution of BLEU Scores

