
LREC-COLING 2024, pages 5596–5608
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

5596

EFTNAS: Searching for Efficient Language Models in First-Order
Weight-Reordered Super-Networks

J. Pablo Muñoz1, Yi Zheng2, Nilesh Jain1

1Intel Labs, Santa Clara, CA, USA
2Intel Corporation, Beijing, CN

{pablo.munoz, yi.zheng, nilesh.jain}@intel.com

Abstract
Transformer-based models have demonstrated outstanding performance in natural language processing (NLP)
tasks and many other domains, e.g., computer vision. Depending on the size of these models, which have grown
exponentially in the past few years, machine learning practitioners might be restricted from deploying them in
resource-constrained environments. This paper discusses the compression of transformer-based models for
multiple resource budgets. Integrating neural architecture search (NAS) and network pruning techniques, we
effectively generate and train weight-sharing super-networks that contain efficient, high-performing, and compressed
transformer-based models. A common challenge in NAS is the design of the search space, for which we propose
a method to automatically obtain the boundaries of the search space and then derive the rest of the intermediate
possible architectures using a first-order weight importance technique. The proposed end-to-end NAS solution,
EFTNAS, discovers efficient subnetworks that have been compressed and fine-tuned for downstream NLP tasks. We
demonstrate EFTNAS on the General Language Understanding Evaluation (GLUE) benchmark and the Stanford
Question Answering Dataset (SQuAD), obtaining high-performing smaller models with a reduction of more than 5x in
size without or with little degradation in performance.

Keywords: Language Models, Neural Architecture Search, Transformers

1. Introduction

Transformers have driven the recent advancements
in Artificial Intelligence. For instance, they are at
the core of many successful large language mod-
els (LLMs), recently capturing the public’s atten-
tion. However, it is more than large models that
have been successful. Small and medium-sized
transformer-based models power many everyday
artificial intelligence applications. Unfortunately,
these models cannot often be deployed in compute-
constrained environments, e.g., many edge de-
vices, because of their size, computing, or memory
requirements. The attention operator (see Section
2 for details) at the core of Transformers has O(n2)
computational and memory complexity in the input
sequence length, which has motivated research on
how to effectively compress these models using tra-
ditional techniques like pruning, quantization and
neural architecture search (NAS). Another of the
many research paths explores approximations of
the attention operator (Tay et al., 2022) or alterna-
tive architectures, e.g., using Long Convolutions
and strengthening the data-control path of the pro-
posed architectures (Poli et al., 2023).

A standard workflow in Transformer-based archi-
tectures is to have a model trained with a large
dataset and then fine-tune this model for a down-
stream task, e.g., question-answering on a smaller
dataset (Raffel et al., 2020). This paper focuses on
techniques for obtaining efficient and compressed

Transformer-based models using weight-sharing
NAS super-networks that are fine-tuned for a down-
stream task. We demonstrate that super-network-
based NAS is a practical approach to obtaining
smaller, more efficient transformers-based models.
However, NAS solutions are plagued with many
challenges. For instance, designing a good search
space is a challenging task. Another challenge is
related to the effective reordering of weights and the
strategy for sampling subnetworks during training.
This paper tackles these challenges and discusses
the following contributions: A novel approach, EFT-
NAS, for (1) automating the generation of the
NAS search space using unstructured weight im-
portance information, effectively bridging the gap
between unstructured pruning and weight-sharing
super-network elasticity, and (2) improving the
weight arrangement of the super-network, result-
ing in robust super-networks with high-performing
subnetworks that we compare to other approaches
to confirm the benefits of the proposed approach.

This paper is organized as follows: Section 2 pro-
vides a background and related work references
for Transformers, Neural Network Pruning, Knowl-
edge Distillation, and Neural Architecture Search.
Section 3 focuses on the proposed methods for
obtaining high-performing Transformer-based sub-
networks. Section 4 discusses results obtained
with EFTNAS. Section 5 presents some concluding
remarks, and Sections 6 and 7 discuss limitations
and ethical considerations.

5597

2. Related Work

Transformers Since their inception, Transform-
ers (Vaswani et al., 2017) and the attention operator
have become the preferred components of Deep
Learning models and workflows. Transformer-
based models have excelled at natural language
processing (NLP) tasks (Devlin et al., 2019; Liu
et al., 2020; Goyal et al., 2021) and in many other
domains, e.g., image classification (Liu et al., 2021),
image segmentation (Zhang et al., 2023), multi-
modal schemes (Xu et al., 2023). At these models’
core is a stack of Transformers blocks, each with
two main components: the attention mechanism
and a fully connected feed-forward network. The
transformer’s paper by Vaswani et al. adopts scaled
dot-product attention (Equation 1).

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V , (1)

where Q, K, and V are the result of linearly
transforming the input, X, i.e., text embeddings
or the output of the previous Transformer block,
depending on the location of the Transformer block
in the stack, with the weight matrices WQ, WK ,
W V , i.e., Q = XWQ, K = XWK , V = XW V .
dk is the hidden dimensionality for Q and K. The
scaling factor,

√
dk, ensures the Softmax operation

does not saturate. Multiple attention “heads” are
expected to run in parallel, denoted as multi-head
attention (MHA).

MHA(Q,K,V)=Concat(head1, ...,headh)W
O

headi=Attention(QWQ
i ,KWK

i ,V W V
i)

(2)

Following the attention layers, each transformer
block has a feed-forward network (FFN), which
is usually composed of linear projection layers
with an activation function, often the Gaussian
Error Linear Unit (GELU) (Hendrycks and Gimpel,
2016). These components are complemented
with residual connections and layer normalization
operations. The reader can find more details
about the transformer architecture in Vaswani
et al. (2017). Section 3 describes the steps
taken by EFTNAS to design a search space
based on a pre-trained transformer-based model
and add elasticity (defined later) to selected
transformer blocks, resulting in the generation of
weight-sharing super-networks with smaller and
more efficient models, a.k.a. subnetworks.

Neural Network Pruning is a popular method
for compressing neural networks and reducing
their computational complexity. The goal is to
remove parameters without significantly affecting
the model’s final performance (LeCun et al., 1989).

Unstructured pruning works at the parameter level
without any constraints, but it is often difficult
to see its benefits due to the lack of support in
generally available hardware. On the other hand,
structured pruning can be better realized in many
hardware platforms. To determine which elements
to remove or mask (pruning criteria), a common
zeroth-order approach is to use magnitude pruning
and calculate the lp−norm (∥x∥p := (Σn

i=1|xi|p)
1
p ,

where p ≥ 1), and remove the elements with
a value below a threshold. In the case of
Transformer-based models, first-order pruning
methods, e.g., movement pruning (Sanh et al.,
2020) and its extension, block pruning (Lagunas
et al., 2021), have been shown to outperform
traditional magnitude pruning algorithms. We
refer the reader to Blalock et al. (2020) for a
comprehensive survey on pruning algorithms.

Knowledge Distillation A popular technique to
improve the performance of compressed models
is to use a larger model, the teacher, to influence
the training of a smaller model, the student (Hinton
et al., 2015). We compare our approach against
several popular approaches that use knowledge
distillation to obtain high-performing compressed
models. DistilBERT (Sanh et al., 2019) trains a
distilled version of BERT (Devlin et al., 2019) while
removing components and reducing the number of
layers. DistilBERT retains most of BERT’s perfor-
mance while also performing well on downstream
tasks. TinyBERT (Jiao et al., 2020) proposes a
two-stage distillation framework (general and task-
specific) in which the second stage is improved
with data augmentation. TinyBERT improves com-
pared to the results obtained by DistilBERT. MiniLM
(Wang et al., 2020b) focuses on distilling the self-
attention component of the teacher’s last Trans-
former block. This approach is further improved
by introducing multi-head self-attention relations
in MiniLMv2 (Wang et al., 2021). EFTNAS’ sub-
networks compete with the compressed models
obtained from these approaches (Section 4).

Weight-Sharing Super-Networks and Neural Ar-
chitecture Search (NAS) Given a set of possible
neural network architectures (search space), NAS
methods apply search and performance estima-
tion strategies to discover high-performing architec-
tures that are often smaller and more efficient than
human-crafted architectures (Elsken et al., 2019).
Many NAS techniques have been proposed to dis-
cover high-performing architectures (White et al.,
2023). One-shot weight-sharing approaches, e.g.,
(Bender et al., 2018; Cai et al., 2019; Guo et al.,
2020; Liu et al., 2018b,a; Pham et al., 2018; Yu
and Huang, 2019; Cai et al., 2020) have shown
to be effective, avoiding the pitfalls of early NAS

5598

approaches, e.g., training many candidates, either
partially or entirely, from scratch. Several tech-
niques have been proposed to train the generated
super-networks, e.g., Progressive Shrinking (Cai
et al., 2020) and Single Stage (Yu et al., 2020) train-
ing. The automatic generation of weight-sharing
super-networks has been demonstrated by Boot-
strapNAS (Muñoz et al., 2022).

NAS has been used in the past to compress
Transformer-based models, e.g., HAT (Wang
et al., 2020a), demonstrated how to generate
a Transformer-based super-network for machine
translation. NAS-BERT (Xu et al., 2021) produced
a super-network with efficient subnetworks that
were demonstrated using the GLUE benchmark
(Wang et al., 2019). AutoDistil (Xu et al., 2022)
proposes to mitigate the problem of subnetwork in-
terference during training by partitioning the search
space into many subspaces and training a super-
network for each subspace using knowledge distil-
lation. However, researchers are still confronting
the challenges of designing robust search spaces
and improving the robustness of the trained super-
networks. Next, we present EFTNAS, an approach
to automate the generation of the search space
using first-order weight importance information that
can be adjusted based on the target’s resource bud-
get. To further boost the robustness of EFTNAS’
super-networks, the weight importance information
is reused to reorder the super-network weights and
further improve the quality of the super-network.

3. Methodology

Figure 1 illustrates EFTNAS’ stages to obtain com-
pressed high-performing transformer-based mod-
els, a.k.a. subnetworks, for a particular task. In the
following sections, We describe (1) the generation
of the unstructured weight importance mask (Sec-
tion 3.1), (2) a method for the automated generation
of the search space (Section 3.2), (3) training of
the super-network, and the subsequent search for
high-performing subnetworks that achieve a perfor-
mance target for a particular task (Section 3.3).

3.1. From Unstructured Weight
Importance to Structured
Super-Network Elasticity

Previous NAS approaches have used zeroth-order
weight importance, e.g., lp−norm, to sort the
weights of the super-network to allow smaller
subnetworks to benefit from more robust shared
weights (Cai et al., 2020). Empirically (Section
4.3), we observe and demonstrate the benefits of
discarding the zeroth-order approach in favor of
first-order weight importance (Sanh et al., 2020) for
weight-sharing super-networks. There are several

steps to obtain information on weight importance.
For each layer of interest, an importance mask, M,
often a binary mask, is computed using a threshold
τ and a score S, i.e., M = 1(S > τ) (Sanh et al.,
2020; Lagunas et al., 2021). S is computed over
several t forward and backward passes (Equation
3). W are the weights of the layer of interest, L is
the loss function, and αS is a scaling factor for the
movement accumulator, S.

S
(T)
i,j = −αS

∑
t<T

(
∂L

∂W i,j

)(t)

W
(t)
i,j (3)

EFTNAS uses first-order weight importance infor-
mation in two novel ways. First, EFTNAS uses both
the binary mask, M, and the score, S, to automate
the generation of the search space (Section 3.2),
and second, S is analyzed to reorder the weights
received from the pre-trained model before opti-
mizing the generated super-network (Section 3.3).
Next, we discuss EFTNAS’ approach to generating
the NAS search space automatically.

3.2. Automated Design of the Search
Space based on the Desired
Subnetwork Computational
Complexity

A common challenge when using neural architec-
ture search is the design of the search space, i.e.,
the set of possible architectures (subnetworks) that
can be activated, used to update the weights of the
super-network, and then extracted as compressed
models. Additional challenges include determining
the values for other NAS hyper-parameters, e.g.,
the minimum possible width of a layer and the in-
tervals between possible configurations, to name a
few. When we can activate different configurations
in a layer, we say the layer is elastic (Muñoz et al.,
2022).

A naive approach to designing the search space
is to collect all the possible configurations of every
layer with a variable configuration, e.g., different
numbers of heads in the multi-head attention layer.
Using this example, a challenge with this naive ap-
proach is determining the minimum (and maximum)
number of attention heads that should be allowed
or the possible width of the subsequent interme-
diate layers in the feed-forward network. Unfortu-
nately, these naive approaches often result in large
search spaces that are impractical for NAS due
to their immense exploration costs. The problems
are compounded when the NAS solution enters the
search stage for high-performing subnetworks in
subpar search spaces, spending search cycles on
search space regions that might contribute poorly
to the overall objective.

5599

𝑊!

𝑊"

𝑊#

𝑊$%&'(

𝑆!

𝑆"

𝑆#

Unstructured Weight
Importance

Model Weights Automated Search Space Generation

MHA

Weights Reordering

Elastic Block
Bridge the gap between

unstructured pruning and
super-network elasticity

Elastic MHA Importance
𝐼!"#

𝐼))*
Elastic FFN Importance

𝐼+,-

𝐼))*

Elastic attention heads

Elastic
intermediate layer

𝐼+,-

Reorder weights by
attention head

𝐼))*
Reorder weights

by channel

Performance-Aware
Search Space Design

Subnetwork SearchSuper-Network Training

pre-trained
model

Computational complexity

𝐶.!"#𝐶.!$%

FFN

𝑆!

𝑆"

𝑆#

𝑊!

𝑊"

𝑊#

Two-Stage Weight-Sharing One-shot Neural Architecture Search

𝑆$%&'(

𝑆$%&'(

𝑊$%&'(

𝑠𝑡𝑒𝑝

Figure 1: EFTNAS’ end-to-end workflow. Unstructured weight importance information is used to obtain
subnetwork configurations at the boundaries of the desired search space. Next, intermediate subnetworks
are identified depending on the required complexity for the search space, and all subnetwork configurations
are combined, effectively automating the search space generation based on the desired computation
complexity. Weights are reordered, elasticity is enabled, and the super-network is trained. Finally,
high-performing Transformer-based subnetworks are discovered for a variety of performance targets.

Performance-Aware Search Space Design As
detailed in Algorithm 1, EFTNAS first obtains an
importance score, Sm (Equation 3), for the weights
of each layer in a pre-trained model, m. EFTNAS
uses the weight importance information stored in
the binary mask, Mm (obtained from Sm using the
value of a threshold, τ), and the desired compu-
tational complexities, C(amin) and C(amax) (more
details below) to obtain the corresponding sub-
network configurations for the boundaries and
intermediate points of the search space.

At each iteration, EFTNAS searches for the value
of τ that will result in a binary mask, Mm, for the
whole model corresponding to a subnetwork with
computational complexity, c, e.g., a particular mea-
surement in GFLOPs. Other metrics can be used,
e.g., the latency of the subnetwork in a particular tar-
get hardware device. Binary search is an effective
method to find this value quickly, and EFTNAS al-
lows for approximations to speed up the search for
the value of τ . The corresponding subnetwork con-
figuration is stored in a set B. The explored range
for c starts at c = C(amin), the computational com-
plexity of the minimal subnetwork, amin, i.e., the
architectural configuration that satisfies the lower
end of the desired computational complexity range.
EFTNAS continues to find the corresponding N -2
intermediate subnetwork configurations that satisfy
the steps in the required computational complex-
ity until the architectural configuration of amax is
obtained when c = C(amax). Finally, EFTNAS as-
sembles the search space, A, by combining all the
subnetwork configurations in B. Often N <= 5
since we can derive a rich search space with just

a few subnetwork configurations. N must be at
least two since we need at least the subnetwork
configurations for the upper and lower bounds of
the search space.

An important benefit of using first-order weight
importance information when designing the NAS
search space is that EFTNAS can effectively set the
architectural lower and upper bounds of the search
space based on the performance objectives, e.g.,
the desired latency or GFLOPs ranges. A better-
designed and smaller search space reduces the po-
tential interference of subnetworks in regions with
an associated performance outside of the desired
performance target.

3.3. Transformer-based Super-Network

Super-network Generation Given the search
space obtained by Algorithm 1, EFTNAS gener-
ates the super-network. The starting point is a
transformer-based pre-trained model, e.g., BERT
(Devlin et al., 2019). To generate a weight-sharing
super-network, i.e., the abstraction that enables the
activation of smaller subnetworks from a single data
structure, EFTNAS enables elasticity at selected
multi-head attention and intermediate layers of the
subsequent feed-forward networks. In the case
of the multi-head attention layer, EFTNAS allows
the super-network to activate subnetworks with a
different number of heads, as illustrated in Figure 2,
based on the search space design discussed in the
previous section. In the case of the intermediate
layers of the feed-forward network (FFN) after the
attention mechanism, EFTNAS enables variable

5600

Algorithm 1: Automated Generation of the
NAS Search Space

Input: Base model, m
Input: Desired minimum subnet

computational complexity, C(amin)
Input: Desired maximum subnet

computational complexity, C(amax)
Input: Number of configurations per layer,

N
Output: Search space, A

1 /* Obtain importance score Sm

(Equation 3) for all elastic
layer in m. */

2 Sm ← Score(m)
3 step← (C(amax)− C(amin))/(N − 1)
4 B ← ∅
5 for c← C(amin) to C(amax) by step do
6 /* Obtain a new active

subnetwork configuration
by searching for
threshold τ to obtain a
binary mask Mm for m,
s.t., the associated
subnetwork configuration,
a has complexity c.
Mm = 1(Sm > τ) */

7 τ ← BinarySearch(Sm, c)
8 a← SubnetConfig(Mm, τ)
9 B ← B ∪ a

10 end for
11 /* Define search space from

boundaries and
configurations stored in B
*/

12 A ← Combine(B)
13 return A

Linear Linear

Attention headN

Linear Linear
Linear

Scaled Dot-Product Attention

Linear Linear

Linear Linear

Attention head2

Linear

Scaled Dot-Product AttentionAttention head1

Linear Linear Linear

Q K V

Scaled Dot-Product Attention

Concatenate

Linear

…O1 O2 ON

Figure 2: Elastic Number of Attention Heads.

width configurations, as illustrated in Figure 1.
EFTNAS allows amax (the maximal subnetwork)

to be different in its architectural configuration than
the base pre-trained model, m, used for generating
the super-network. That is, EFTNAS has two op-
tions for the upper-end configuration of the search
space: (i) config(amax)← config(m) s.t., at initial-
ization, Cost(m,Dval) ∼= Cost(amax, Dval), both
the pre-trained model, m and the maximal subnet-
work, amax will result in a similar performance on
a validation set, Dval. (ii) C(amax) < C(m), result-
ing in an architectural configuration of amax smaller
than the configuration of m. In this latter case, we
expect amax to have a strong initialization since, as
described next, this subnetwork shares the most
important weights from the pre-trained model.

First-Order Weight-Reordering Before training
the super-network, a standard step in weight-
sharing super-networks is to reorder the weights
inherited from a previous training stage or the pre-
trained model used to generate the super-network.
EFTNAS goes beyond zeroth-order weight impor-
tance approaches used previously in NAS to re-
order the super-network’s weights, using the first-
order importance score, S (Equation 3). At each
elastic linear layer (of the maximal architecture con-
figuration), its weights tensor, W , and its corre-
sponding score tensor, S, have the same shape,
allowing us to calculate the mean of the values in
each column in S to sort W ’s columns. As illus-
trated in Figure 1, we compute importance scores
Sq,Sv, and Sk for each attention head. These
scores allow EFTNAS to reorder the heads within
the multi-head attention layer. In the case of the
feed-forward network that follows multi-head atten-
tion in the transformer block, we obtain the score
Sinter that contains the importance of the channels
in this layer.

A particular consideration has to be made in the
case of the Q and K layers since they should ap-
ply the same permutation to their weights. EFT-
NAS uses the mean of the sum of each corre-
sponding column in these two tensors to sort
them accordingly. After weight reordering, the
pre-trained model, m used to generate the super-
network should have approximately similar perfor-
mance as the weight-reordered model, mw_sorted,
i.e., Cost(m,Dval) ∼= Cost(mw_sorted, Dval) on the
same validation data, Dval. Using the first-order
importance score, S, to reorder the weights of the
super-network gives EFTNAS an additional boost
in the performance of the Pareto frontier of subnet-
works (as shown in the results of Section 4).

Knowledge Distillation To further boost the per-
formance of smaller subnetworks, EFTNAS trains
the super-network with the supervision of the pre-

5601

trained model that was used to generate the super-
network, and with the loss following (Lagunas et al.,
2021), i.e.,

L = αKDLKD + αceLce, (4)

LKD = T 2
∑
i

pti(T)log pti(T)

psi (T)
(5)

pki (T) =
exp(zki /T)∑K
j=1 (zkj /T)

, (6)

where T is a temperature hyperparameter, αce

is the scaling factor for the cross-entropy loss, and
αKD is the scaling factor for the distillation loss.
pti(T) and psi (T) denote the output probability vec-
tor of teacher and student, respectively. zkj is the
k-th value. K represents the number of classes.
Empirically, we have determined that this formula-
tion of knowledge distillation yields good results in
EFTNAS super-networks.

4. Experiments

Setup EFTNAS is implemented on top of Open-
VINO’s Neural Network Compression Framework
(NNCF)1 and its BootstrapNAS solution (Muñoz
et al., 2022), benefiting from its module wrap-
ping functionality. We also patch the Transform-
ers2 repository (Wolf et al., 2019) to enable EFT-
NAS’ elasticity controllers to be called by its Train-
ers. We generate fine-tuned transformer-based
super-networks for natural language processing
(NLP) tasks using the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2019) and the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016). To
train the super-networks, we apply the sandwich
rule (Yu and Huang, 2019). EFTNAS uses AdamW
(Loshchilov and Hutter, 2019) as the default op-
timizer; the batch size varies depending on the
dataset/task, i.e., 32 for GLUE, 16 for SQuADv1.1
and SQuADv2.0.Weight decay is set to 0 for BERT.
The learning rate scheduler uses Cosine Annealing.
Learning rates vary depending on tasks/datasets.
For GLUE and SQuAD, we use values in a range be-
tween 2e-5 and 3e-5. The base model for EFTNAS-
S1 subnetworks is BERT-base, and BERT-medium
for EFTNAS-S2 subnetworks. The search space
has five possible configurations per layer, i.e., N=5
in Algorithm 1. The step in computational com-
plexity is equal to the range of computational com-
plexity divided by N-1. The NLP tasks use 3 to 15
epochs to compute the importance score, S, and
4 to 20 epochs to train the super-network. We use

1https://github.com/openvinotoolkit/nncf
2https://github.com/huggingface

the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb et al., 2002) with 1000 evaluations
to obtain the Pareto frontier of high-performing sub-
networks. The population size is 40 subnetwork
configurations. Figure 3 shows examples of search
progression on several super-networks. We report
the performance of the discovered subnetwork
without any additional fine-tuning after being
extracted from the Pareto front.

6000 8000 10000
GFLOPs

50

55

60

M
cc

CoLA

Input Model

6000 8000 10000
GFLOPs

87

88

89

90

91

92

Ac
cu

ra
cy

MRPC

Input Model

6000 8000 10000
GFLOPs

90.8

91.0

91.2

91.4

Ac
cu

ra
cy

QQP
Input Model

Figure 3: Examples of the search progression using
NSGA-II on several EFTNAS super-networks fine-
tuned for tasks in the GLUE benchmark. We show
1000 subnetwork configurations sampled for each
super-network. Many subnetworks outperform the
input base model in efficiency and accuracy.

For a downstream task t, EFTNAS uses Al-
gorithm 2 to discover the best subnetwork that
achieves the required performance target, e.g.,
computational complexity.

4.1. General Language Understanding
Evaluation (GLUE) Benchmark

As shown in Table 1, EFTNAS’ subnetworks often
outperform other approaches in the comparison, re-
sulting in the best average on the GLUE benchmark
for the development set and a competitive average
on the test set. We compare EFTNAS’ subnetworks
to DistilBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2020), MiniLM (Wang et al., 2020b, 2021),
AutoDistil (Xu et al., 2022), and NAS-BERT (Xu
et al., 2021). Figure 4 illustrates the architectures
discovered by EFTNAS-S1 for each of the tasks.
Figure 5 shows the search space generated for
each task of the GLUE benchmark used to dis-
cover the EFTNAS-S1 subnetwork. Each search
space is obtained using the proposed approach
in Algorithm 1, which derives possible subnetwork
configurations based on the desired computational
complexity of a few selected subnetworks. We use
a maximum of five possible configurations at each
layer.

5602

Model GFLOPs GLUE Avg. MNLI-m QNLI QQP SST-2 CoLA MRPC RTE
Develoment Set
BERTbase (teacher) 11.2 83.3 84.7 91.8 91.0 93.2 59.6 90.4 72.5
DistilBERT6 5.7 78.6 82.2 89.2 88.5 91.3 51.3 87.5 59.9
TinyBERT6 5.7 81.9 84.5 91.1 91.1 93.0 54.0 90.6 73.4
MiniLM 5.7 81.0 84.0 91.0 91.0 92.0 49.2 88.4 71.5
MiniLMv2(6× 768) 5.7 81.7 84.2 90.8 91.1 92.4 52.5 88.9 72.1
EFTNAS-S1 (Ours) 5.7 82.9 84.6 90.8 91.2 93.5 60.6 90.8 69.0
NAS−BERT10 +KD 2.3 74.2 76.4 86.3 88.5 88.6 34.0 79.1 66.6
AutoDistilProxy_S 2.0 79.9 83.2 90.0 90.6 90.1 48.3 88.3 69.4
AutoDistilAgnostic 2.1 79.6 82.8 89.9 90.8 90.6 47.1 87.3 69.0
EFTNAS-S2 (Ours) 2.2 80.5 82.3 88.6 90.4 91.2 52.1 90.1 69.0
Test Set
BERTbase (teacher) 11.2 78.2 84.6 90.5 71.2 93.5 52.1 88.9 66.4
DistilBERT6 5.7 76.8 82.6 88.9 70.1 92.5 49.0 86.9 58.4
TinyBERT6† 5.7 79.4 84.6 90.4 71.6 93.1 51.1 87.3 70.0
MiniLMv2(6× 768) 5.7 77.5 83.8 90.2 70.9 92.9 46.6 89.1 69.2
EFTNAS-S1 (Ours) 5.7 77.7 83.7 89.9 71.8 93.4 52.6 87.6 65.0
EFTNAS-S2 (Ours) 2.2 75.2 82.0 87.8 70.6 91.4 44.5 86.1 64.0

Table 1: Performance comparison on the development and test sets of the GLUE benchmark. We report
Matthews’ correlation coefficient for CoLA and accuracy (%) for the other tasks. † means using data
augmentation.

768 3044 256 2465 256 1891 320 1877 640 1825 384 1790 576 1678 256 1544 256 1223 256 1277 192 345 256 213
576 1708 448 1066 320 1126 768 1102 640 1067 512 2233 448 1048 448 1670 512 3072 448 772 384 609 576 205
384 3072 768 1666 320 1787 192 1791 256 1772 256 1751 768 1709 384 2980 192 1320 192 762 192 348 512 115
320 1585 256 1570 256 1775 256 1717 384 1679 768 2215 768 2786 320 2114 256 1188 192 930 128 1501 128 654
512 949 704 959 320 2733 448 1096 640 2771 768 1774 768 1719 640 1014 576 670 256 436 384 348 320 370
768 2120 704 2097 768 928 768 1494 768 3072 768 787 640 672 512 579 576 409 320 291 384 678 192 308
576 608 576 3072 704 589 768 542 704 576 768 589 768 3072 576 537 704 562 768 453 512 376 640 424

MHA Block FFN Block

MNLI
QNLI
QQP

SST-2
CoLA

MRPC
RTE

Figure 4: Configurations for the architectures of each subnetwork discovered by EFTNAS-S1 for each
task in the GLUE benchmark. Each number represents the width of the module at that position in the
network.

4.2. The Stanford Question Answering
Dataset (SQuAD)

As summarized in Table 2, EFTNAS outperforms
other approaches and discovers a subnetwork,
EFTNAS-S1, with a higher F1-score for both
SQuADv1.1 and SQuADv2.0. We report the
number of parameters to compare with other ap-
proaches with similar model sizes. We also in-
clude the performance of EFTNAS-S2, a signifi-
cantly smaller subnetwork with a minor drop in the
F1-score.

4.3. Ablation Study: Weight Reordering
Strategies

To better understand the importance of the weight
reordering strategy when training a super-network,
Figure 6 compares the Pareto frontiers obtained af-
ter searching on three different super-networks fine-
tuned on four downstream tasks from the GLUE
benchmark. As the figure shows, using the first-
order importance score, S, for weight reordering
the weights of the super-network results in better
Pareto frontiers. In contrast, the L1-norm (as used
in other NAS approaches) tends to degrade the per-
formance of the super-network, performing worse
than without weight reordering in some cases.

4.4. Ablation Study: Varying the Number
of Possible Configurations for Each
Layer

In the main experiments on GLUE (Table 1), EFT-
NAS generates search spaces with a maximum
of five possible width configurations for each layer.
Table 3 describes the effects of using a different
value for the number of possible configurations for
each layer. We experiment using two datasets of
the GLUE benchmark, i.e., The Multi-Genre Natural
Language Inference (MNLI)(Williams et al., 2018)
dataset and the Recognizing Textual Entailment
(RTE) dataset (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009). In both cases, increasing the complexity
of the search space results in subnetworks with
improved performance: EFTNAS-S1 accuracy in
MNLI’s increases from 84.6 to 84.8 and from 69.0
to 70.4 in RTE. As future work, we are interested in
having an in-depth investigation of the trade-off be-
tween search space complexity and the efficiency
of the NAS solution.

5. Conclusion

Weight-sharing neural architecture search (NAS)
super-networks have proven effective at model com-

5603

768,
384,
256

3072,
3044,
2448,
1542

768,
320,
256

3072,
3032,
2465,
1611

768,
384,
256,
192

3072,
3038,
2606,
1891

768,
512,
320

3072,
3026,
2589,
1877

768,
640,
192

3072,
3024,
2564,
1825

768,
576,
384

3072,
2994,
2527,
1790

768,
576,
128

3072,
3002,
2438,
1678

768,
512,
256

3072,
2985,
2318,
1544

768,
640,
256

3072,
2969,
2035,
1223

768,
320,
256

3072,
2664,
1277,
628

768,
192

3072,
1988,
692,
345

768,
256

3072,
1040,
408,
213

768,
640,
576,
512

3072,
2810,
2272,
1708,
1104

768,
448,
320

3072,
2787,
2272,
1716,
1066

768,
512,
384,
320

3072,
2806,
2338,
1776,
1126

768,
704,
576

3072,
2810,
2281,
1740,
1102

768,
640,
576

3072,
2818,
2310,
1714,
1067

768,
704,
512

3072,
2794,
2233,
1637,
1023

768,
704,
576,
448

3072,
2773,
2212,
1642,
1048

768,
512,
448

3072,
2760,
2205,
1670,
1061

768,
576,
512,
448

3072,
2690,
2123,
1548,
984

768,
448,
320

3072,
2568,
1925,
1367,
772

768,
512,
384

3072,
2402,
1751,
1132,
609

768,
640,
576,
512,
448

3072,
2064,
1194,
584,
205

768,
448,
384,
320

3072,
3018,
2460,
1675

768,
256

3072,
3024,
2488,
1666

768,
448,
320

3072,
3020,
2530,
1787

768,
384,
256,
192

3072,
3007,
2549,
1791

768,
512,
256

3072,
3018,
2543,
1772

768,
512,
256

3072,
2982,
2500,
1751

768,
448,
256,
192

3072,
2974,
2452,
1709

768,
384,
256

3072,
2980,
2403,
1590

768,
384,

192, 64

3072,
2936,
2100,
1320

768,
512,
192

3072,
2721,
1524,
762

768,
320,
192

3072,
1957,
756,
348

768,
512

3072,
483,
197,
115

768,
576,
384,
320

3072,
3040,
2727,
2227,
1585

768,
384,
256

3072,
3036,
2712,
2190,
1570

768,
384,
320,
256

3072,
3046,
2795,
2362,
1775

768,
512,
384,
256,
192

3072,
3042,
2791,
2314,
1717

768,
704,
576,
384,
256

3072,
3043,
2764,
2296,
1679

768,
576,
384,
192

3072,
3038,
2768,
2215,
1580

768,
704,
384,
192,
128

3072,
3032,
2786,
2268,
1621

768,
512,
384,
320

3072,
3034,
2694,
2114,
1406

768,
448,
256

3072,
2994,
2506,
1896,
1188

768,
320,
256,
192

3072,
2924,
2236,
1585,
930

768,
128

3072,
2868,
2158,
1501,
828

768,
128, 64

3072,
2812,
1966,
1301,
654

768,
704,
576,
512

3072,
2692,
2134,
1588,
949

768,
704,
448,
320,
256

3072,
2685,
2171,
1609,
959

768,
640,
448,
320

3072,
2733,
2275,
1762,
1110

768,
640,
512,
448

3072,
2788,
2312,
1739,
1096

768,
704,
640

3072,
2771,
2316,
1788,
1158

768,
640

3072,
2797,
2312,
1774,
1062

768

3072,
2797,
2297,
1719,
1028

768,
640,
576

3072,
2762,
2245,
1654,
1014

768,
576,
512,
448

3072,
2487,
1863,
1261,
670

768,
320,
256

3072,
2187,
1469,
928,
436

768,
384

3072,
2037,
1360,
814,
348

768,
384,
320

3072,
1991,
1322,
799,
370

768

3072,
2618,
2120,
1524,
995

768,
704

3072,
2621,
2097,
1520,
930

768

3072,
2632,
2117,
1526,
928

768

3072,
2664,
2127,
1494,
931

768

3072,
2645,
2139,
1456,
872

768,
704,
640

3072,
2574,
2019,
1362,
787

768,
704,
640

3072,
2561,
1955,
1245,
672

768,
704,
640,
512

3072,
2494,
1791,
1117,
579

768,
576,
512

3072,
2391,
1627,

866, 409

768,
640,
512,
320

3072,
2153,
1395,
692,
291

768,
576,
448,
384,
192

3072,
2070,
1324,
678,
300

768,
704,
512,
192

3072,
1925,
1206,
642,
308

768,
576

3072,
2400,
1773,
1159,
608

768,
576,
448

3072,
2426,
1728,
1119,
571

768,
704,
576

3072,
2419,
1755,
1155,
589

768

3072,
2417,
1742,
1108,
542

768,
704

3072,
2449,
1748,
1124,
576

768,
704

3072,
2446,
1768,
1100,
589

768

3072,
2409,
1730,
1078,
568

768,
704,
640,
576

3072,
2426,
1739,
1054,
537

768,
704

3072,
2407,
1670,
1080,
562

768,
704

3072,
2376,
1633,
1000,
453

768,
640,
512

3072,
2247,
1497,
840,
376

768,
704,
640

3072,
1602,
842,
424,
147

MNLI

MHA Block FFN Block

QNLI

QQP

SST-2

CoLA

MRPC

RTE

Figure 5: Search spaces used to discover EFTNAS-S1 for each task in the GLUE benchmark. Each set
of numbers represents the possible width configurations of the module at that position in the network.

Algorithm 2: Discovery and evaluation
of the best subnetwork for a downstream
task, t, based on a desired computational
complexity.

Input: Pre-trained model m
Input: Downstream task t
Input: Desired minimum subnetwork

computational complexity, C(amin)
Input: Desired maximum subnetwork

computational complexity, C(amax)
Input: Desired computational complexity,

Ct

Input: Number of configurations per layer,
N

Output: Best subnetwork configuration, a∗,
and its performance on task t

1 Sm ← ImportanceScore(m)
2 /* Obtain search space using

Algorithm 1 */
3 A ←

SearchSpace(m,C(amin), C(amax), N)
4 Ω← GenerateSuperNetwork(m,A)
5 Ω′ ← ReorderWeights(Ω, Sm)
6 Ω∗ ← Train(Ω′)
7 a∗ ← Search(Ω∗, Ct)
8 /* No additional fine-tuning of

a∗ is required. */
9 return (a∗,Eval(a∗, t))

Model Param.(M) SQuADv1.1 SQuADv2.0

BERTbase (teacher) 85 88.2 78.6
DistilBERT6 42 86.9 -
TinyBERT6 42 87.5 73.4
MiniLM6 42 - 76.4
MiniLMv2(6× 768) 42 - 76.3

EFTNAS-S1 (ours) 42 88.7 78.0
EFTNAS-S2 (ours) 16 86.8 72.9

Table 2: Comparison of the number of parameters
and the F1-score for EFTNAS’ subnetworks and
other approaches on the SQuAD dataset.

Number of possible
configurations per layer MNLI RTE

3 84.6 68.2
5 84.6 69.0
7 84.8 70.4

Table 3: Increasing the number of possible con-
figurations for each layer during the generation of
the search space from 5 to 7 configurations results
in better accuracy (%) for the subnetwork configu-
ration constrained to 5.7 GFLOPs, i.e., EFTNAS-
S1, the MNLI and RTE datasets. However, larger
search spaces significantly impact the cost of super-
network training and subnetwork search.

5604

5000 6000 7000 8000
GFLOPs

45

50

55

60
M

cc

CoLA

Importance Score (S)
Without Reordering
L1-norm

5000 6000 7000 8000
GFLOPs

90

91

92

93

94

Ac
cu

ra
cy

SST-2

Importance Score (S)
Without Reordering
L1-norm

5000 6000 7000 8000 9000 10000
GFLOPs

88

89

90

91

92

Ac
cu

ra
cy

QNLI

Importance Score (S)
Without Reordering
L1-norm

5000 6000 7000
GFLOPs

86

88

90

92

Ac
cu

ra
cy

MRPC

Importance Score (S)
Without Reordering
L1-norm

Figure 6: Comparison of the Pareto frontiers of
sampled subnetworks from three super-networks
trained with different weight-reordering strategies.
Using the importance score, S results in better
Pareto frontiers.

pression and specialization. This paper describes
EFTNAS, an end-to-end NAS solution that gen-
erates robust transformer-based super-networks.
EFTNAS incorporates first-order weight-sharing in-
formation to automatically generate the NAS search
space and reorder the weights of the super-network.
The improved search space considers the desired
range of computational complexity of the result-
ing compressed models, improving the efficiency
of the NAS training and searching stages since
there is no need to explore regions of the search
space that might be detrimental to the final objec-
tive. The result is a Pareto frontier of several high-
performing compressed subnetworks from which
we can extract models for several resource bud-
gets. The memory requirements of EFTNAS sub-
networks can be further reduced by applying other
compression techniques, e.g., quantization, to the
resulting subnetworks. We have left these addi-
tional optimizations outside the scope of this pa-
per. EFTNAS generates robust transformer-based
super-networks. EFTNAS’ models and code are
available at https://github.com/IntelLabs/Hardware-
Aware-Automated-Machine-Learning.

6. Limitations

The methods proposed in this paper have been
demonstrated with smaller language models. It is
an open research problem how EFTNAS could be
efficiently applied to large language models (LLMs).
EFTNAS’ search stage, in particular, requires sig-
nificant time and resources. A potential solution for
these limitations is parameter-efficient fine-tuning
methods (PEFT) that benefit from NAS techniques.
For instance, LoNAS (Muñoz et al., 2024b) has
attempted to combine NAS and PEFT to search

for more efficient LLMs. An improved iteration of
LoNAS, Shears (Muñoz et al., 2024a), explores
NAS in a space of PEFT adapter configurations
using an initial stage that sparsifies and freezes the
base model’s weights.

7. Ethics Statement

Although large language transformer-based mod-
els have achieved significant success lately and
are being integrated into many applications, they
are prone to output false information, potentially
contributing to misinformation. In this paper, we
have focused on a particular approach to optimiz-
ing language models fine-tuned for a target task
so users can deploy them in resource-constrained
environments. However, before deployment, we
suggest implementing the necessary safeguards
to prevent potential harm to others.

Another ethical concern when working with these
models is the large number of resources required
to train or use them for inference. A positive impact
of the approach proposed in this paper is that com-
pressed models have a reduced footprint compared
to their based models. There is work to be done
by the research community to continue reducing
the massive amount of resources that (large) deep
learning models tend to consume.

Acknowledgments

We are grateful to Michael Beale from Intel Labs,
who helped us set up the infrastructure for shar-
ing our models during the review stage and the
final release and guided us through the process of
open-sourcing our compressed models. We also
thank Vui Seng Chua for his feedback and sugges-
tions regarding neural network pruning. We also
thank the anonymous reviewers for their insightful
suggestions, which helped us improve the paper.
Finally, we thank Jinjie Yuan for helping us set up
our models’ repository.

8. Bibliographical References

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic dimensionality explains
the effectiveness of language model fine-tuning.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and
the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Pa-
pers), pages 7319–7328, Online. Association for
Computational Linguistics.

https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568

5605

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising
textual entailment challenge. In Proceedings of
the second PASCAL challenges workshop on
recognising textual entailment, volume 6, pages
6–4. Venice.

Gabriel Bender, Pieter-Jan Kindermans, Barret
Zoph, Vijay Vasudevan, and Quoc V. Le. 2018.
Understanding and simplifying one-shot architec-
ture search. In ICML.

Luisa Bentivogli, Peter Clark, Ido Dagan, and
Danilo Giampiccolo. 2009. The fifth pascal rec-
ognizing textual entailment challenge. In TAC.

Davis W. Blalock, Jose Javier Gonzalez Ortiz,
Jonathan Frankle, and John V. Guttag. 2020.
What is the state of neural network pruning? In
MLSys. mlsys.org.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai
Zhang, and Song Han. 2020. Once for all: Train
one network and specialize it for efficient deploy-
ment. In International Conference on Learning
Representations.

Han Cai, Ligeng Zhu, and Song Han. 2019. Prox-
ylessNAS: Direct neural architecture search on
target task and hardware. In International Con-
ference on Learning Representations.

Minghao Chen, Houwen Peng, Jianlong Fu, and
Haibin Ling. 2021. Autoformer: Searching trans-
formers for visual recognition. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 12270–12280.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather
than generators. In ICLR.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entail-
ment challenge. In Machine Learning Challenges
Workshop, pages 177–190. Springer.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.
2002. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolu-
tionary Computation, 6(2):182–197.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE con-
ference on computer vision and pattern recogni-
tion, pages 248–255. Ieee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training

of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. 2021. An
image is worth 16x16 words: Transformers for
image recognition at scale. In International
Conference on Learning Representations.

Thomas Elsken, Jan Hendrik Metzen, and Frank
Hutter. 2019. Neural architecture search: A sur-
vey. Journal of Machine Learning Research,
20(55):1–21.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recogniz-
ing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entail-
ment and paraphrasing, pages 1–9. Association
for Computational Linguistics.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021. Larger-scale
transformers for multilingual masked language
modeling. arXiv preprint arXiv:2105.00572.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen
Heng, Zechun Liu, Yichen Wei, and Jian Sun.
2020. Single path one-shot neural architecture
search with uniform sampling. In European Con-
ference on Computer Vision, pages 544–560.
Springer.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling bert for natural lan-
guage understanding. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2020, pages 4163–4174, Online. Association for
Computational Linguistics.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster
transformers. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10619–10629, Online and

http://dblp.uni-trier.de/db/conf/mlsys/mlsys2020.html#BlalockOFG20
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829

5606

Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yann LeCun, John Denker, and Sara Solla. 1989.
Optimal brain damage. In Advances in Neu-
ral Information Processing Systems, volume 2.
Morgan-Kaufmann.

Chenxi Liu, Barret Zoph, Maxim Neumann,
Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy.
2018a. Progressive neural architecture search.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018b. Darts: Differentiable architecture search.

Jing Liu, Jianfei Cai, and Bohan Zhuang. 2022.
Focusformer: Focusing on what we need via
architecture sampler.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2020. Roberta: A robustly optimized bert pre-
training approach.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan
Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. 2021. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceed-
ings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In International
Conference on Learning Representations.

J. Pablo Muñoz, Nikolay Lyalyushkin, Yash Akhauri,
Anastasia Senina, Alexander Kozlov, and Nilesh
Jain. 2022. Enabling nas with automated super-
network generation. In Practical Deep Learning
in the Wild, AAAI.

J. Pablo Muñoz, Jinjie Yuan, and Nilesh Jain.
2024a. Shears: Unstructured sparsity with neu-
ral low-rank adapter search. Accessed: 2024-
03-05.

J. Pablo Muñoz, Jinjie Yuan, Yi Zheng, and Nilesh
Jain. 2024b. Lonas: Elastic low-rank adapters
for efficient large language models. In The 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evalua-
tion.

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-
performance deep learning library. In Advances
in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V.
Le, and Jeff Dean. 2018. Efficient neural archi-
tecture search via parameter sharing.

Michael Poli, Stefano Massaroli, Eric Q. Nguyen,
Daniel Y. Fu, Tri Dao, Stephen A. Baccus,
Yoshua Bengio, Stefano Ermon, and Christo-
pher Ré. 2023. Hyena hierarchy: Towards
larger convolutional language models. ArXiv,
abs/2302.10866.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res.,
21(1).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopy-
rev, and Percy Liang. 2016. SQuAD: 100,000+
questions for machine comprehension of text. In
Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing,
pages 2383–2392, Austin, Texas. Association
for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by
fine-tuning.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1631–1642, Seattle,
Washington, USA. Association for Computational
Linguistics.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022. Efficient transformers: A survey.
ACM Comput. Surv., 55(6).

Hugo Touvron, Matthieu Cord, Matthijs Douze,
Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. 2021. Training data-efficient im-
age transformers and distillation through atten-
tion. In Proceedings of the 38th International
Conference on Machine Learning, volume 139

https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/2208.10861
http://arxiv.org/abs/2208.10861
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2112.10878
http://arxiv.org/abs/2112.10878
https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
https://api.semanticscholar.org/CorpusID:257050308
https://api.semanticscholar.org/CorpusID:257050308
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2005.07683
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.1145/3530811
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html

5607

of Proceedings of Machine Learning Research,
pages 10347–10357. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural
Information Processing Systems, volume 30. Cur-
ran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the
Proceedings of ICLR.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020a.
Hat: Hardware-aware transformers for efficient
natural language processing. In Annual Confer-
ence of the Association for Computational Lin-
guistics.

Wenhui Wang, Hangbo Bao, Shaohan Huang,
Li Dong, and Furu Wei. 2021. MiniLMv2: Multi-
head self-attention relation distillation for com-
pressing pretrained transformers. In Findings
of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 2140–2151, Online.
Association for Computational Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020b. MiniLM: Deep
self-attention distillation for task-agnostic com-
pression of pre-trained transformers. In Proceed-
ings of the 34th International Conference on Neu-
ral Information Processing Systems, NIPS’20,
Red Hook, NY, USA. Curran Associates Inc.

Alex Warstadt, Amanpreet Singh, and Samuel R
Bowman. 2018. Neural network acceptability
judgments. arXiv preprint arXiv:1805.12471.

Colin White, Mahmoud Safari, Rhea Sukthanker,
Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. 2023. Neural
architecture search: Insights from 1000 papers.

Adina Williams, Nikita Nangia, and Samuel Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1112–1122.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, and Jamie Brew. 2019. Huggingface’s

transformers: State-of-the-art natural language
processing. CoRR, abs/1910.03771.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin
Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and
Peter Vajda. 2020. Visual transformers: Token-
based image representation and processing for
computer vision.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen.
2022. Structured pruning learns compact and ac-
curate models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1513–
1528.

Dongkuan Xu, Subhabrata Mukherjee, Xiaodong
Liu, Debadeepta Dey, Wenhui Wang, Xiang
Zhang, Ahmed Hassan Awadallah, and Jianfeng
Gao. 2022. Few-shot task-agnostic neural archi-
tecture search for distilling large language mod-
els. In Advances in Neural Information Process-
ing Systems.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian
Li, Tao Qin, and Tie-Yan Liu. 2021. Nas-bert:
Task-agnostic and adaptive-size bert compres-
sion with neural architecture search. In Proceed-
ings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, KDD ’21,
page 1933–1943, New York, NY, USA. Associa-
tion for Computing Machinery.

Peng Xu, Xiatian Zhu, and David A Clifton. 2023.
Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang,
Xiao Chen, and Qun Liu. 2021. Autotinybert: Au-
tomatic hyper-parameter optimization for efficient
pre-trained language models. In Proceedings of
the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 5146–
5157, Online. Association for Computational Lin-
guistics.

Jiahui Yu and Thomas S. Huang. 2019. Univer-
sally slimmable networks and improved training
techniques. CoRR, abs/1903.05134.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel
Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas S. Huang, Xiaodan Song, Ruoming
Pang, and Quoc V. Le. 2020. Bignas: Scaling up
neural architecture search with big single-stage
models. CoRR, abs/2003.11142.

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.48550/ARXIV.2301.08727
https://doi.org/10.48550/ARXIV.2301.08727
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2006.03677
http://arxiv.org/abs/2006.03677
http://arxiv.org/abs/2006.03677
https://openreview.net/forum?id=GdMqXQx5fFR
https://openreview.net/forum?id=GdMqXQx5fFR
https://openreview.net/forum?id=GdMqXQx5fFR
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.18653/v1/2021.acl-long.400
https://doi.org/10.18653/v1/2021.acl-long.400
https://doi.org/10.18653/v1/2021.acl-long.400
http://arxiv.org/abs/1903.05134
http://arxiv.org/abs/1903.05134
http://arxiv.org/abs/1903.05134
http://arxiv.org/abs/2003.11142
http://arxiv.org/abs/2003.11142
http://arxiv.org/abs/2003.11142

5608

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby,
and Lucas Beyer. 2022. Scaling vision transform-
ers. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recogni-
tion (CVPR), pages 12104–12113.

Li Zhang, Jiachen Lu, Sixia Zheng, Xinxuan Zhao,
Xiatian Zhu, Yanwei Fu, Xiang Tao, and Jianfeng
Feng. 2023. Vision transformers: From semantic
segmentation to dense prediction. arXiv.

