
LREC-COLING 2024, pages 477–483
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

477

A Dual-View Approach
to Classifying Radiology Reports by Co-Training

Yutong Han1, Yan Yuan2, Lili Mou1,3

1Dept. Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta
2School of Public Health, University of Alberta

3Canada CIFAR AI Chair, Amii
yhan22@ualberta.ca, yyuan@ualberta.ca, doublepower.mou@gmail.com

Abstract
Radiology report analysis provides valuable information that can aid with public health initiatives, and has been
attracting increasing attention from the research community. In this work, we present a novel insight that the structure
of a radiology report (namely, the Findings and Impression sections) offers different views of a radiology scan. Based
on this intuition, we further propose a co-training approach, where two machine learning models are built upon the
Findings and Impression sections, respectively, and use each other’s information to boost performance with massive
unlabeled data in a semi-supervised manner. We conducted experiments in a public health surveillance study,
and results show that our co-training approach is able to improve performance using the dual views and surpass
competing supervised and semi-supervised methods.
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1. Introduction

Radiology report analysis plays an important role
in patient diagnosis and monitoring (Carlson et al.,
2020; Machitori et al., 2020; Anzai et al., 2023). For
example, brain radiology reports—such as those
derived from magnetic resonance imaging (MRI)
and computed tomography (CT)—are typically in
the form of free text, and can be used to determine
the presence of brain tumors and track their pro-
gression over time. This helps collect surveillance
data for public health initiatives (Yuan et al., 2018).

Machine learning methods have been widely ap-
plied to the radiology domain, as the ever-growing
volume of radiology reports makes it difficult for
humans to label every single one. In early work,
researchers perform manual feature engineering to
construct classifiers such as decision trees (Yadav
et al., 2013) and support vector machines (Grund-
meier et al., 2016). More recently, deep learning
has been a prevailing approach to radiology re-
port analysis, leading to great advancements in
the field. Wood et al. (2020) finetune the BioBERT
model (Alsentzer et al., 2019) for MRI scan classifi-
cation. Smit et al. (2020) use the labels produced
by a traditional rule-based X-ray classifier (Irvin
et al., 2019) to train a BERT model (Devlin et al.,
2019), which outperforms the rule-based classifier.

However, we observe that existing methods do
not make full use of the internal structures of a ra-
diology report, which typically contains a Findings
section and an Impression section. The former
details factual observations made by a radiologist,
whereas the latter synthesizes their findings into
a summary (Ghosh et al., 2023). Our intuition is

that such structural information can provide differ-
ent views of a radiology report and improve the
performance of machine learning systems.

In this paper, we propose a co-training approach
to radiology report analysis, framing the Findings
and Impression sections as two different views.
Specifically, we train two classifiers for Findings
and Impression, respectively. Then, we use one
classifier’s predicted labels to train the other in a co-
training fashion (Blum and Mitchell, 1998), which
makes use of a large unlabeled dataset. These
co-trained classifiers can be combined as an en-
semble (Dietterich, 2000) to make final predictions.
In this way, the model trained on one section is
able to glean information from the other in a semi-
supervised manner. This allows us to make use of
the structure of a typical radiology report as well as
unlabeled data to improve overall performance.

We conducted experiments for a brain tumor
surveillance project in collaboration with Alberta
Health Services (AHS), a Canadian provincial
health agency, where we are provided with de-
identified historical radiology reports of real patients.
The results show that co-training improves each
individual model in a semi-supervised manner, and
that their ensemble is able to further boost the per-
formance. Our entire approach outperforms both
supervised learning based on the small labeled
data and self-train, a competing semi-supervised
method.1

1Code available at: https://github.com/
MANGA-UOFA/Radiology-Cotrain

https://github.com/MANGA-UOFA/Radiology-Cotrain
https://github.com/MANGA-UOFA/Radiology-Cotrain
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2. Related Work

Semi-supervised learning assumes only a small
labeled dataset exists, and takes advantage of mas-
sive, readily available unlabeled data to improve
model performance (Ouali et al., 2020). Two pop-
ular frameworks are self-training and co-training.
In self-training, a model generates pseudo-labels
for the unlabeled data and trains itself (Yarowsky,
1995), whereas in co-training, two models are built
on two views (different input information about a
data sample) and co-train each other (Blum and
Mitchell, 1998). In fact, co-training has been previ-
ously used in various NLP applications. Maveli and
Cohen (2022) use inside-span and outside-span
views to co-train an unsupervised constituency
parser; Wang et al. (2022) use a query view and a
document view to co-train a selective search sys-
tem; and Lang et al. (2022) use two different lan-
guage models’ representations to co-train and im-
prove the performance of a prompting system.

Radiology report analysis has gained traction
in recent years (Karimi et al., 2017; Khanna et al.,
2023), as the textual reports provide rich supple-
mentary information to images (Wood et al., 2020;
Dalla Serra et al., 2022). While an entire report can
be the input to a machine learning system (Drozdov
et al., 2020; Di Noto et al., 2021), researchers have
realized the value of using the section structure
of radiology reports. Peng et al. (2020) use the
Findings section to extract information about lymph
nodes in abdominal MRI reports; Irvin et al. (2019)
use the Impression section to create a rule-based
pathology classifier for chest X-rays. Zhang et al.
(2018) train a text generation system to automat-
ically synthesize an Impression section from the
Findings section.

To the best of our knowledge, we are the first to
propose a co-training method based on Findings
and Impression, as well as to build model ensem-
bles of the two sections.

3. Approach

Formulation. Given a radiology report x, our goal
is to predict a label y ∈ {0, · · · ,K − 1} with K pre-
determined categories. For example, an important
label for brain radiology reports is y ∈ {0, 1}, indi-
cating the absence or presence of a brain tumor.

In this work, we need to tackle a common and
realistic setting for radiology report analysis: we
only have a small set of labeled reports Dl =
{(x(i), y(i))}Li=1, but there exists a large unlabeled
dataset Du = {x(j)}Uj=1.

Our intuition is that a typical radiology report has
internal structures. In Figure 1a, for example, the
report has several sections, namely, History, Tech-
nique, Findings, and Impression. In particular, we

observe that History does not provide the infor-
mation of the current report and that Technique
explains the operational procedure; they are there-
fore not helpful for our task. On the other hand, the
Findings section describes all observations made
by a radiologist, and the Impression section sum-
marizes and interprets the key findings. Thus, we
discard History and Technique in our approach,
but make use of Findings (denoted by xfnd) and
Impression (denoted by ximp) as the two views for
co-training. In other words, the input of a sample
can be represented by x = (xfnd,ximp).

Supervised Initialization. Before co-training,
we first use the small labeled data Dl to ini-
tialize the Findings and Impression classifiers,
Pfnd(y|xfnd;θfnd) and Pimp(y|ximp;θimp). Specifically,
we first train them by finetuning DistilBERT (Sanh
et al., 2019), a small distilled version of the
pretrained language model BERT (Devlin et al.,
2019).2 Take the Findings view as an example: we
apply linear transformation to the final layer’s hid-
den state associated with [CLS], a token prepended
to a sequence for classification. Then, a soft-
max function predicts a probability distribution3 by
P (y|xfnd;θfnd) = softmax(Wfndh[CLS] + bfnd), where
h[CLS] is the [CLS] token’s representation at the last
hidden layer. θfnd is the entire parameter set, includ-
ing softmax-layer parameters (Wfnd and bfnd), as
well as the parameters of the Findings-view model.
The training is accomplished by maximum likeli-
hood estimation with labeled data Dl:

θfnd = argmaxθfnd

∑L

i=1
logP (y(i)|x(i)

fnd;θfnd) (1)

Likewise, we train a classifier Pimp(y|ximp;θimp)
for the Impression view. These supervised clas-
sifiers serve as a good starting point for our co-
training procedure.

Co-Training. The overview of our approach is
presented in Figure 1b. We maintain two classifiers
for Findings and Impression, respectively. Our co-
training approach alternately applies each classifier
to the unlabeled data Du, which produces pseudo-
labels to co-train the other classifier. This process
is repeated for performance improvement.

Consider using the classifier for Findings to co-
train that for Impression. For every unlabeled sam-
ple x(j) in Du, we apply the Findings classifier and
obtain its prediction

ŷ
(j)
fnd = argmaxy P (y|x(j)

fnd;θfnd) (2)

with its predicted probability P (ŷ
(j)
fnd |x

(j)
fnd;θfnd).

2We chose the DistilBERT model because regulations
require that the research has to be conducted within the
server provided by AHS, which has limited memory.

3We slightly misuse the notation that P (y|·) refers to
a probability distribution, where y is a random variable
taking values in {0, · · · ,K − 1} for K-way classification.
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Classifier for             
View 1 Findings

Classifier for        
View 2 Impression

Pseudo-labels Pseudo-labels

Unlabeled Radiology Reports

Labeled Radiology Reports

HISTORY: A clinical history of seizures has been provided.
TECHNIQUE: Sagittal T1, axial FLAIR, axial conventional diffusion, 
axial T2, and postgadolinium sagittal and coronal T1-weighted 
sequences were obtained. 
FINDINGS: The caliber of the ventricular system is within normal limits 
and appears stable. A fairly well-defined lesion which demonstrates 
diminished signal on both T1 and T2-weighted sequences as well as 
questionable restricted diffusion and fairly homogeneous enhancement 
is present involving both gray and white matter (but predominantly 
subcortical white matter) centered within the post central gyrus on the 
left side. … To the extent visualized, the orbits are unremarkable. 
IMPRESSION: A well-defined homogeneous  appearing enhancing
lesion is present centered within the post central gyrus on the left side, 
the etiology of which is uncertain. From an imaging standpoint 
lymphoma is a definite possibility. An intermediate grade glioma is in 
alternate possibility. 

a)                                                                                   b) 

Figure 1: a) A typical radiology report. b) An overview of our co-training approach.

Then, we add high-quality labels to the training
set based on two criteria. First, we select sam-
ples for which the two classifiers agree, in order to
avoid confusion during co-training. That is, we have
ŷ
(j)
fnd = ŷ

(j)
imp, where ŷ

(j)
imp = argmaxy P (y|x(j)

imp;θimp).
Second, we choose the samples with top-k% of the
Findings-predicted probabilities among the agreed
labels. This is based on the intuition that labels
with higher probabilities are more likely to be cor-
rect (Blum and Mitchell, 1998; Yarowsky, 1995),
which further ensures the quality of our pseudo-
labels. Overall, our pseudo-labeled dataset has
the form of D̂fnd = top-k%{(x(j), ŷ

(j)
fnd) : ŷ

(j)
fnd =

ŷ
(j)
imp,x

(j) ∈ Du}, which is merged into the labeled
one as D̂fnd ∪ Dl to train the Impression classifier.

The roles then reverse to re-train the Findings
classifier Pfnd(y|xfnd;θfnd) using the Impression-
predicted pseudo-labels along with the original
small labeled data, given by D̂imp ∪Dl . Co-training
continues in a such a way until validation perfor-
mance peaks.

This framework allows for two views of a radiol-
ogy report: the detailed factual observations in the
Findings section and the concise synthesized infor-
mation in the Impression section. Together, they
can help each other during the co-training process
and improve the classification performance.

Ensemble for Inference. To perform inference,
we combine the co-trained classifiers by an aver-
age ensemble (Dietterich, 2000). Given an unseen
radiology report x∗ = (x∗

fnd,x
∗
imp), we apply both the

Findings and Impression classifiers to the respec-
tive sections and choose the most likely category
based on averaged predicted probabilities:

ŷ∗ = argmaxy
1
2

[
P (y|x∗

fnd;θfnd) + P (y|x∗
imp;θimp)

]
The ensemble approach makes use of the two

views (Findings and Impression) by smoothing out
the noise of the individual classifiers.

Task \ Label 0 1 2
BT 331 537 –
Aggressiveness 331 344 193

Table 1: Label distribution in each task. BT and
Aggressiveness labels do not necessarily agree,
and the number of 331 is a coincidence.

4. Experiments

4.1. Setup

We evaluated our approach for a project collabo-
rated with Alberta Health Services, where the goal
is to improve surveillance for brain tumors with his-
torical textual radiology reports, including both CT
and MRI scans. To reach this goal, the project
focuses on two important labels:
• Brain Tumor (BT): The classification goal is

y ∈ {0, 1} indicating whether the radiology report
suggests there is one or more brain tumors ob-
served in the scan.
• Aggressiveness: Here, the classification goal

is y ∈ {0, 1, 2} referring to non-aggressive, aggres-
sive, or possibly aggressive, respectively. Notice
that the aggressiveness label provides different in-
formation from BT, which can be either aggressive
or non-aggressive; on the other hand, an aggres-
sive label can also be a cancer metastasis (cancer
spread) that has no tumor, e.g., leukemia spread
into the brain (Nguyen et al., 2023).

The dataset contains 868 radiology reports, man-
ually annotated with the above two labels of interest,
as well as 10K unlabeled radiology reports. Each
report has a Findings section and Impression sec-
tion, containing on average 219 and 55 tokens,
respectively. The label distribution of each task is
shown in Table 1. In this paper, we treat the two
labels as independent tasks for the evaluation of
our approach.

Implementation Details. Due to the small
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Setting Row Model BT Aggressiveness
1 Concat 0.8837 (0.8832±0.009) 0.8330 (0.8270±0.019)
2 Findings 0.8825 (0.8833±0.012) 0.7546 (0.7768±0.018)
3 Impression 0.9102 (0.8915±0.013) 0.8445 (0.8549±0.007)

Supervised
(520 labeled

samples) 4 Ensemble (2 + 3) 0.9148 (0.9122±0.007) 0.8676 (0.8646±0.012)
5 Concat (self-train) 0.8952 0.8563
6 Findings (self-train) 0.8906 0.7845
7 Impression (self-train) 0.8860 0.8560
8 Ensemble (6 + 7) 0.9160 0.8802
9 Findings (co-train) 0.8906 0.8399
10 Impression (co-train) 0.9044 0.8621

Semi-Supervised
(+10K unlabeled

samples)

11 Ensemble (9 + 10) 0.9286 0.8848

Table 2: Accuracy on the Brain Tumor (BT) and Aggressiveness classification tasks. “Concat” refers to
training a single model with concatenated Findings and Impression sections (without the section titles) as
the input. For the supervised setting, we trained the model with 5 different seeds, and report the median
and the (mean±standard deviation). Due to limited computing resources, self-training and co-training
settings were run once initialized from the median run of the supervised setting.

dataset, we performed 5-fold cross-validation for ro-
bust evaluation. We split the entire dataset into five
folds, and for the test of each fold (174 samples),
we used three folds for training (520 samples) and
the other fold for validation (174 samples).

We used the AdamW optimizer (Loshchilov and
Hutter, 2019) with a batch size of 16 and a stan-
dard learning rate of 5e-5 (Devlin et al., 2019). Early
stopping was implemented based on validation per-
formance in each co-training round; we set the
number of maximum co-training rounds to be 5,
also early stopped by validation. For the BT task,
the top-50% pseudo-labels were added at each
co-training step, whereas for the Aggressiveness
task, the top-25% were added. We will analyze the
choice of top-k% in §4.2.

4.2. Results

Table 2 shows the main results on the two tasks,
BT and Aggressiveness. Here, the performance is
measured by accuracy, since our dataset is rela-
tively balanced as shown in Table 1.

We first analyze the use of Findings and Im-
pression sections in the supervised setting only
(Rows 1–4). As seen, Impression (Row 3) yields
higher performance than Findings (Row 2), espe-
cially for the Aggressiveness task. This is under-
standable because Impression is a synthesized
summary and better aligns with the actual label.
Concatenation of the two sections, without section
titles (Row 1) does not outperform Impression only
(Row 3), as the Findings section may be of consid-
erable length and confuse the model. Our ensem-
ble approach, even without co-training (Row 4),
achieves consistent improvement on both tasks,
justifying our dual views that make use of the inter-
nal structure of a radiology report.

Then, we performed semi-supervised learning
using 10K unlabeled samples. In addition to our
co-training method, we experimented with a self-

Figure 2: a) Effect of top-k% on co-training perfor-
mance, when fixing the unlabeled dataset size at
10,000. b) Effect of unlabeled dataset size, using
k = 50 for BT and k = 25 for Aggressiveness.

training baseline, where a model uses its own
predictions to boost its performance. In general,
semi-supervised learning (Rows 5–11) outperforms
small-scale supervised learning (Rows 1–4), ex-
cept for a minor inconsistency of Impression on the
BT task. The results verify that massive unlabeled
data can alleviate the data sparsity problem in the
medical domain.

Among semi-supervised learning methods, we
observe that co-training always excels when com-
pared with self-training. For example, our co-
trained Findings classifier (Row 9) improves the
accuracy by 8 points compared with supervised
learning (Row 2) on Aggressiveness, whereas the
self-trained Findings classifier (Row 6) is only im-
proved by 3 points. Our ensemble (Row 11) is able
to further boost the performance and surpasses
the ensemble of supervised counterparts (Row 4).
This indicates that exchanging dual-view informa-
tion by co-training is more powerful than a post hoc
ensemble.

Moreover, our full method (co-training and en-
semble, Row 11) outperforms a naïve application of
DistilBERT to radiology reports (Row 1) by 4.49 and
5.18 percentage points for BT and Aggressiveness,
respectively. This significant jump in performance
further suggests that our approach is effective.

Overall, the experiments convincingly show that
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making use of the Findings and Impression sec-
tions benefit radiology report analysis, and that our
co-training approach is able to strategically exploit
the dual views of the report to gain additional ben-
efits.

Detailed Analyses. In our approach, we choose
top-k% confident samples for co-training, and we
analyzed the effect of the hyperparameter k in Fig-
ure 2a. As seen, a modest k yields highest perfor-
mance, which is reasonable because a smaller k
results in fewer pseudo-labels, whereas a larger k
brings in more noise. Based on the analysis, we
chose k = 50 for BT and k = 25 for Aggressive-
ness.

We also analyzed the role of the unlabeled
dataset size in the co-training process. Figure 2b
shows that the performance is generally improved
with more data, but is not sensitive to the exact num-
ber of samples. We chose 10K unlabeled samples
for co-training in our experiments.

5. Conclusion

In this paper, we propose a co-training approach to
radiology report analysis, where we regard the Find-
ings and Impression sections as dual views of a ra-
diology report. We conducted experiments on two
tasks: Brain Tumor (BT) classification and Aggres-
siveness classification. The experimental results
demonstrate that our co-training method is able to
make use of the dual views with unlabeled data in a
semi-supervised manner, and outperforms different
competing methods. We further provide detailed
analyses of our proposed co-training method.
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Our study involves de-identified patient data and
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location and improve understanding of the cancer
recurrence/progression at the population level.
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