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Abstract

While impressive performance has been achieved in image captioning, the limited diversity of the generated captions
and the large parameter scale remain major barriers to the real-word application of these systems. In this work, we
propose a lightweight image captioning network in combination with continuous diffusion, called Prefix-diffusion. To
achieve diversity, we design an efficient method that injects prefix image embeddings into the denoising process of
the diffusion model. In order to reduce trainable parameters, we employ a pre-trained model to extract image features
and further design an extra mapping network. Prefix-diffusion is able to generate diverse captions with relatively less
parameters, while maintaining the fluency and relevance of the captions benefiting from the generative capabilities of
the diffusion model. Our work paves the way for scaling up diffusion models for image captioning, and achieves
promising performance compared with recent approaches.

Keywords: diversity, lightweight, diffusion models
1. Introduction

Image captioning, which combines computer vi-
sion (CV) and natural language processing (NLP),
focuses mainly on producing a description of an im-
age. Existing works on image captioning typically
employ an encoder-decoder architecture (Vinyals

et al., 2015; Anderson et al., 2018; Zhou et al., A herd of sheep grazingina A group of people playing

2020) to generate captions word-by-word. How- grassy field next to a house baseball on a field

ever, such models require large trainable parame- A herd of sheep grazingina A baseball player swinging
yard near a brick building a bat at a ball

ters to bridge the visual and textual representations. : _
By utilizing the powerful representation capability of A group of sheep standing A couple of men playing a

. . in a grassy field ame of baseball
pre-trained models like CLIP(Radford et al., 2021), na gy’ : 9 .
recent methods (Lovenia et al., 2022; Zhu et al., A herd of sheep standing A baseball player holding

behind a wooden house a bat on a field

2022a; Mokady et al., 2021) map visual semantic
information to language space for image captioning.

Although autoregres§ive models. he}ve becgme the Figure 1: The diverse captions generated by Prefix-
typical approach for image captioning, their left-to- diffusion. The model is trained on the COCO

right generative manner leads to cumulative errors.  yataset. More examples will be given in the sup-
Moreover, human-like captions not only maintain plementary material.

fluency and relevance properties, but also contain
diverse wordings and rich expressions.

Recently, the popular diffusion model (Sohl- ing (Nichol et al., 2021; Balaji et al., 2022; Kim et al.,
Dickstein et al.,, 2015), which generates samples  2022: Gal et al., 2022). Nevertheless, the path is

through an iterative denoising process, has pro-  p|ocked by the discreteness of texts and the gap
vided a promising path to generate tokens in paral- | otveen different modals.

lel and inherently increase the diversity of captions. For the continuous diffusion models (Ho et al.,

Diffusion models (Sohl-Dickstein et al., 2015) have . N0 and Dhariwal, 2021; Song et al., 2020).
become an active area of research owing to their . o
. ; they only work on continuous data but yield inferior
ability to generate comparable results with GANs . : . -
results in generating text and image captioning, es-

(Goodfellow et al., 2020) on computer vision tasks. .
The strength of diffusion models trained on vast pecially compared to the results of the autoregres-
sive models. To effectively benefit from continuous

image qatabases has led to an.almost u.biqui.tous diffusion, Diffusion-LM (Li et al., 2022) extends the
fascination among researchers in producing highly the stanéard diffusion process ;Nith an embedding

typical content, such as image generation and edit- step followed by a rounding step, generating the
high-quality text under six control targets. The dis-
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Figure 2: lllustration of Prefix-diffusion. The bottom lies the diffusion process. The reverse process is
defined by pg (z:—1 | ¢, Iimg) and the diffusion model is depicted in the upper dashed box. We use the
frozen CLIP to extract image features and train a lightweight mapping network to connect the image space

and the text space.

creteness of texts has been overcome, whereas
the gap between different modals stays unsolved.
For image captioning with continuous diffusion, it
is a more challenging task, which further requires
the fusion of the image information.

In this paper, we propose a lightweight captioning
model based on the continuous diffusion, namely
Prefix-diffusion. The model tackles three key prob-
lems in image caption generation. Firstly, we utilize
diffusion models to solve the limited diversity of the
generated captions. Noticing that diffusion models
have the powerful generative capabilities but few
research applied them to image captioning. Sec-
ondly, different from image captioning models that
have a large number of parameters and are com-
putationally expensive, our framework saves com-
puting resources with the pre-trained CLIP model
to extract image features. Last but not least, our
method is able to generate more accurate captions
in parallel, since it injects prefix image embeddings
into the denoising process of the diffusion model.
This essentially solves the problem of sequential
error accumulation.

Figure 1 shows the captions generated by Prefix-
diffusion, where the captions accurately describe
the content of the image with fluency. Different
from the method of beam search, our method can
cover all distributions of the training datasets and
generate diverse captions.

The overall contributions of our work are:

* We propose a lightweight method Prefix-

diffusion to generate diverse captions.! Our
work tackles the multi-modal issue for the dif-
fusion model and paves the way for scaling it
up for image captioning.

Prefix-diffusion generates diverse captions in a
variety of forms, which is specifically reflected
in the increase of Dist-3 and vocabulary usage
by 6.3 and 3.1 compared with the baselines,
respectively.

Prefix-diffusion reduces more than 38% train-
able parameters compared with existing CLIP-
based methods(Nukrai et al., 2022; Mokady
et al., 2021), while achieving comparable or
even better results in newer metrics.

2. Related Work

2.1.

The autoregressive models achieve promising per-
formance on image captioning. The next token of
the caption is conditioned on the former tokens. To
generate more neural captions, (Lu et al., 2018)
predicts the slot locations that are explicitly tied to
image regions. GET (Ji et al., 2021) captures a
more comprehensive global representation by us-
ing a novel transformer architecture, to guide the
caption generation. Similarly, (Li et al., 2019; Luo

Image Captioning

! https://github.com/1gs@0/Prefix-diffusion
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et al., 2021) use transformer to leverage the image
information efficiently. Thanks to the powerful multi-
modal representation capability of CLIP (Radford
et al.,, 2021), (Mokady et al., 2021; Galatolo et al.,
2021) take an image embedding as the input which
is encoded by the CLIP visual encoder. Then they
use the GPT-2 (Radford et al., 2019) model to pro-
duce a sequence of words that describe the content
of the input image. But autoregressive models suf-
fer from the limitation of generation speed and the
accumulation of errors.

Non-autoregressive models have recently at-
tracted attention due to their fast inference speed
and generation quality. (Gao et al., 2019) randomly
masks the input sequences with certain ratios to
train a masked language model, and generates
captions parallelly during inference. Considering
non-autoregressive image captioning as a cooper-
ative multi-agent problem, (Guo et al., 2020) pro-
poses a novel counterfactuals-critical multi-agent
learning algorithm to improved the inference speed.
(Fei, 2020) proposes a non-autoregressive image
captioning approach based on the idea of iterative
back modification, which refines the output in a lim-
ited number of steps. To determine the length of
the image caption, (Deng et al., 2020) designs a
non-autoregressive decoder for length-controllable
image captioning.

2.2. Diffusion Model

Diffusion models (Sohl-Dickstein et al., 2015) have
demonstrated impressive capabilities in creative ap-
plications. For text-to-image generation, a task of
generating a corresponding image from a descrip-
tion, (Balaji et al., 2022; Nichol et al., 2021; Rom-
bach et al., 2022; Gu et al., 2022) apply discrete
diffusion models to produce high-resolution images
conditioned on the text prompts. Diffsound (Yang
et al., 2022) proposes a novel decoder based on
the diffusion model to generate high-quality sound.
Similarly, ProDiff (Huang et al., 2022) studies on
diffusion parameterization for text-to-speech and
achieves superior sample quality and diversity. In
the text generation domain, Diffusion-LM (Li et al.,
2022) starts with a sequence of Gaussian noise
vectors and denoises them incrementally into vec-
tors corresponding to words. Diffusion-LM enables
efficient gradient-based methods for controllable
generation, achieving promising results in the new
forms of complex fine-grained control tasks. More-
over, (Gong et al., 2022; Strudel et al., 2022) ex-
tend vanilla diffusion models to learn conditional
text generation.

However, few research applies the diffusion
model to image captioning, because of the cross-
modal challenge and the discreteness of texts. DD-
Cap (Zhu et al., 2022b) adds a network branch to
specifically predict the total token length and design

a concentrated attention mask module to concen-
trate on more informative tokens. To generate more
specific captions, (Kornblith et al., 2023) explore
strategies to guide the image captioning model by
modifying the decoding distribution. Bit Diffusion
(Chen et al., 2022) enables continuous state diffu-
sion models to generate discrete data by utilizing
analog bits and a simple thresholding operation for
decoding. These methods (Xu et al., 2023; Tang
et al., 2024) can be directly modeled by continu-
ous state diffusion models and use the features of
CLIP as a guide. Different from existing methods,
we extend the line of diverse image description by
proposing a lightweight continuous diffusion model,
which is essential but has received little attention
previously.

3. Methodology

As illustrated in Figure 2, we propose Prefix-
diffusion for injecting image features to learn image
captioning. Different from image generating, our
method requires to map discrete texts to a contin-
uous space by a word embedding. For the con-
ditioned image, we first extract its features by the
CLIP image encoder, and then input them to the
mapping network to obtain the prefix image em-
beddings. We then concatenate the prefix image
embeddings and the caption embeddings in the
denoising process of the diffusion model. The con-
catenated vectors are fed into a deep neural net-
work (e.g. BERT(Kenton and Toutanova, 2019) or
the standard transformer). Since our work merely
trains a mapping network and a neural network, the
trainable parameter scale is reduced significantly.

Forward process. Following Diffusion-LM (Li
et al., 2022), we adopt an embedding function
EM B(W) to map a discrete word into a continuous
space. Define a caption W with k& words. Through
the embedding function, we have EMB(W) =
[EMB(wy), ..., EMB(wy)] € R¥*4, where d; is
the dimension of the vector. In our experiments, we
find that the value of d; works well at 48. Reduc-
ing the dimension will decrease the performance,
while increasing the dimension will enlarges the
computational burden.

For the forward process, diffusion models (Ho
et al., 2020; Nichol and Dhariwal, 2021; Song et al.,
2020) add noise progressively to train a sample
according to a variance schedule 5y, ..., 8. The
forward process has no learnable parameters and
we get z; by the following equation:

Ty = /1= Biwi_1 + / Bee (1)

where ¢ ~ N (0,1) and 5, : 0.01 — 0.03 are hy-
perparameters representing the variance schedule
across diffusion steps. We have tried different noise
methods, with the truncation linear noise schedule
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method being the best. We validate this observa-
tion in section 4.3.3.

Reverse process. The reverse process gener-
ates new samples from zp ~ N (0,I). The data
is sampled using the following reverse diffusion
process:

Do (Tt—1 | T4, Limg) =

N (xH; 116 (20 Timg) , 0 (1) 1) 2)

where I;,,, denotes the visual information from
CLIP.

In order to learn the reverse process, neural net-
works are trained to predict 14 and o (¢)* is a fixed
variance.

\/ 1—ay_ VT
Oét( Qg 1)It+ Qi 16tl’0

I; =
Mo (xta ng) 1—ay 1—a,

s 3)
— Q1

)= ———5,. 4
o(t) I—a, (4)
Here we define o, = 1 — 8, and &, = [[ a;. In or-
der to get py, we compute zo with the following
equation:

1
Vai
where Z can be obtained by deep neural networks
(e.g. transformer).

o —

(l‘t —V 1-— o?té) (5)

5: (I)(l‘t,limg,t). (6)

Here @ denotes the neural network which is de-
picted in the dashed box in the Figure 2. Since the
transformer architecture has been shown to out-
perform many other architectures on a wide range
of text generation tasks, we explored two different
transformer architectures as the neural network:
BERT and the standard transformer. Different from
other continuous diffusion approaches, we inject
image features into the transformer architectures.
This process changes the original mean in the cap-
tion space, as illustrated in Figure 3.

In the following, we will explain in detail how to
inject the image information into the model. Firstly
we use CLIP image encoder to encode image and
receive its image features I{mg. Then we train a
mapping network F' on I;mg and obtain the visual
prefix I}, , of length I:

{ Iimg = CLIP(image) @

I = {v;,v;, ...,vg} = F(Limg)

We specifically formulate I, € R!*?% as

mg
! ’ ’ .
{vl, Vg eery vl} for the convenience of subsequent

expression. To save the computation cost, we em-
ploy a simple Multi-Layer Perceptron (MLP) as the

Unconditioned text Image captioning

. —

i#lg ”65 — He

Figure 3: After we concatenate the image features
in the reverse process, the original mean pj, is
changed to g in the caption space. Hence, the un-
conditioned text is converted to an image caption.

mapping network. Through an upsampling network,
a sequence embedding x; has the same dimension

as 11, denoted as {c’l,c;,...,c}c} € RFxd2_ [ s
the length of the caption and d, is the dimension
of the embedding.

Before concatenating the visual prefix embed-
ding and the caption embedding, we add positional

embedding P, and type embedding Ty, to it:

{1,690y} =

/ / / ca ca
{ers ey} + Pog? + 107

(8)

{Ul,’l)g, ...,’Ul} =

’ ’ ’ N o (9)
(o1, v, v} + B + T

The positional embedding indicates the model
where the feature is located, which is essential
information. Similarly, the type embedding tells
the model where the image features lie. Then the
visual prefix and the caption embedding are con-
catenated into a sequence {vy, ..., v, t1, ..., tx }, and
processed by a standard transformer or BERT net-
work:

Y1, Y2, o Y Y 1s oo Yign ) =
Network(concat(vy, ..., v;,¢1, ...

). 9

We split y; and use {y;+1,-..,y1+1} @s the input
of the downsampling, yielding the output x;_; €
R¥*d1 of the diffusion model.

Decoding process. In the decoding process,
we strengthen the similarity of images and captions
with CLIP scores. The benefit of CLIP in the current
work is that it can provide a cosine similarity score
between numerous texts and an image. Utilizing
the CLIP embedding of an image, we calculate
the cosine similarity between the image and the
n candidate captions. We then choose the most
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Method

Common Metrics 1

Similarity Score 1

Diversity 1

B@1 B@3 B@4 M R-L C S CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u
LLaMA-Adapter \ \ 36.2 \ \ 122.2 \ \ \ \ \ \ \
VisionLLM \ \ 32.1 \ \ 114.2 \ \ \ \ \ \ \
BLIP2 \ \ 43.7 \ \ 145.8 \ \ \ \ \ \ \
MTIC 80.8 509 39.1 29.2 586 1312 226 60.3 68.6 94.0 7.9 16.3 8.3
DLCT 81.1 511 392 294 589 1331 228 60.6 69.0 94.1 8.1 171 8.3
Frozen CapDec 683 366 266 252 512 917 183 604 67.8 93.4 8.3 14.9 1.9
cli ClipCap 736 423 311 26.7 544 1058 19.8 60.8 68.6 93.8 113 217 2.6
FeatEre Ours(T) 777 434 308 258 558 106.3 194 634 70.9 932 112 25.9 4.7
Ours(B) 781 442 318 26.6 56.1 109.3 204 63.7 71.2 93.7 127 28.0 5.7

Table 1: The results of image captioning on COCO. For all the metrics, the higher the better. We use
boldface to indicate the best performance. The second best result is underlined. Ours(T) and Ours(B)
use a standard transformer and BERT respectively. The values of vocabulary usage are reported at

percentage (%).

Method Common Metrics 1 Similarity Score 1 Diversity 1
B@1 B@3 M R-L C S  CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u
CapDec 57.6 279 20.0 445 420 143 58.0 61.4 92.8 155 252 1.3
ClipCap 67.0 352 225 49.0 60.8 16.5 60.9 65.0 93.0 209 345 177
Ours(T) 68.7 349 20.1 48.7 538 14.2 61.6 66.3 92.2 23.1 41.0 3.6
Ours(B) 71.0 36.2 21.1 493 614 152 64.7 68.6 92.0 27.6 46.0 4.0

Table 2: The results of image captioning on Flickr30k. For all the metrics, the higher the better. We use
boldface to indicate the best performance. The second best result is underlined.

relevant captions. The similarity is computed as
follows:

Limg - Wii
ui7rlg| : |thzf|

similarity (Iimg, Wiy;) (11)
where I,,,, is the image features extracted by CLIP
and W, is the features of the n candidate cap-
tions. This is a retrieval-base (Ramos et al., 2022;
Zhao et al., 2020) technique that picks the best ap-
propriate caption from a set of candidate captions.
We use this approach based on the advantage of
Prefix-diffusion: our model can generate diverse
captions with different Gaussian noises. We verify
the effectiveness of this retrieval-base method in
section 4.3.3.

4. Experiment

In this section, we conduct quantitative and qualita-
tive experiments to evaluate our approach. We first
introduce the implementation details in subsection
4.1 and 4.2. Then we compare the performance of
our approach with the others on various evaluation
metrics (subsection 4.3.1 and 4.3.2). Finally, the
ablation experiments (subsection 4.3.3) are also
presented to analyze the significance of our design.

4.1. Dataset and Evaluation Metric

We use COCO Lin et al. (2014) and Flickr30k Plum-
mer et al. (2015) as the datasets for image caption-

ing. We split the datasets for training, validation,
and test according to the Karpathy et al (Karpathy
and Fei-Fei, 2015), where the test sets of the two
datasets contain 5000 images and 1000 images
respectively. To evaluate the generalization ability
of our model, we train the model on one dataset
while evaluating on the other.

In this paper, we adopt automatic evaluation to
appraise the generated captions. In addition to
the common metrics and similarity score, we con-
sider two metrics to evaluate the diversity of the
generated captions.

« Common Metrics. Following the com-
mon practice in the literatures, we per-
form evaluation using BLEU(B@N)(Papineni
et al.,, 2002), METEOR(M)(Denkowski and
Lavie, 2014), ROUGE-L(R-L)(Lin and Och,
2004), CIDEr(C)(Vedantam et al., 2015),
SPICE(S)(Anderson et al., 2016).

» Similarity. We evaluate the generation by
newer metrics: CLIP-S and RefCLIPScore
(Ref-CLIP)(Hessel et al., 2021) , BERTScore
(P-Bert)(Zhang et al., 2020), which achieve
higher correlation with human judgmens.

« Diversity. Diversity (Li et al., 2016) is a metric
that evaluates the diversity of the generated
captions. We report Dist-2(D@2) and Dist-
3(D@3) by measuring the diversity of bigrams
and trigrams in the generation.
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Figure 4: The performance effect of the word di-
mension on COCO. We report the metrics of Bleu-1
and CIDEr.

» Vocabulary usage. To analyze the diversity of
the generated captions, according to (Dai et al.,
2018), we compute vocabulary usage(Voc-u),
which accounts for the percentage of words in
the vocabulary that are used in the generated
captions.

4.2. Baseline

We adopt the previous competitive image caption-
ing approaches to serve as the baseline models:

LLM : In order to provide a thorough evalua-
tion, we incorporate benchmarking against LLM,
including LLaMA-Adapter(Zhang et al., 2023), Vi-
sionLLM(Wang et al., 2024) and BLIP2(Li et al.,
2023).

MTIC (Cornia et al., 2020): MITC is a transformer-
based architecture for image captioning. Its image
features extracted are by ResNet (denoted as grid-
based features).

DLCT (Luo etal., 2021): DLCT achieves the com-
plementarity of region and grid features for image
captioning. To extract visual features, DLCT uses
the pretrained Faster-RCNN (Ren et al., 2015).

CapDec (Nukrai et al., 2022): CapDec is a sim-
ple and intuitive approach to learning a captioning
model based on CLIP.

ClipCap (Mokady et al., 2021): ClipCap lever-
ages powerful vision-language pre-trained models
(CLIP) to simplify the captioning process. And we
utilize the MLP mapping network and fine-tunes
the language model. All the hyper-parameters are
set following its original paper.

In the experimental setup, the length of the text is
set in advance as k due to the fact that our model is
non-autoregressive. We choose k& = 24 based on
the specific characteristics of the Coco dataset. To
denote the end of each sample, we use the symbol
'ENDS’. In cases where the length of a sample falls

Human Evaluationt

Method Parameters(M) |
Fluency Sim Div
MTIC 3.65 3.63 3.52 38.44
DLCT 3.70 3.25 3.43 63.04
Capdec 3.53 295 3.29 178.03
ClipCap 3.83 3.38 3.67 155.91
Ours(T) 3.79 3.84 3.95 38.25
Ours(B) 4.07 3.95 4.12 94.83

Table 3: Thr results of human evaluation and the
number of trainable parameters for different meth-
ods.

short, we utilize padding with the symbol 'PAD’ to
ensure consistency in the datasets.

Since CapDec and ClipCap use CLIP to extract
the same image features and freeze CLIP as our
model, we use these methods as the primary base-
lines. We train our model for 200000 steps, with a
batch size of 128. The dimension of word embed-
ding is set to 48 and the diffusion steps 7" = 1000.
All the experiments are run on NVIDIA Tesla V100
GPUs. In the decoding process, we configure
the value of the candidate sentences with n = 5.
Specifically, during the evaluation, we set the de-
noising steps 7' = 50, which greatly reduces the
generation time.

4.3. Results

4.3.1. Image Captioning

We compare Prefix-diffusion to several baselines
with different evaluation metrics, as is shown in
Table 1. Our model outperforms all baselines on
CLIP-S and Ref-CLIP metrics, and achieves com-
parable results on P-Bert score, indicating that the
effectiveness of the continuous diffusion on image
captioning. Not only that, we have a significant im-
provement on some diversity metrics (such as the
D@2 and D@3). Furthermore, Prefix-diffusion cov-
ers the largest percentage of words, observed from
the vocabulary used to generate captions. Itimplies
that captions generated by Prefix-diffusion contain
diverse wordings and rich expressions. Our model
can generate high-quality captions compared with
captioning approaches that extract image feature
with CLIP. Our method exhibits competitive perfor-
mance on various aspects of the COCO dataset,
yet it is crucial to acknowledge the limitations when
contrasted with LLMs benefiting from extensive tex-
tual and visual training data. Prefix-diffusion per-
forms worse than MTIC and DLCT (who not use
freeze features for image captioning) on the com-
mon metrics, partially due to the proven limitations
of word-overlapping-based metrics across various
domains(Hessel et al., 2021; Zhang et al., 2020),
and also because our generation is more diverse
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Method Common Metrics 1 Similarity Score 1 Diversity 1
B@1 B@3 M R-L C S CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u

COCO—= Flickr30k

CapDec 572 239 171 403 303 108 544 58.7 92.1 185 294 1.2

ClipCap 646 293 189 443 444 125 56.5 61.2 925 19.7 327 1.3

Ours(B) 69.5 31.2 19.3 46.6 46.8 13.0 61.2 65.3 91.9 194 37.0 3.0
Flickr30k— COCO

CapDec 441 152 157 364 257 8.6 47.7 51.4 90.4 5.5 10.4 2.0

ClipCap 55.7 23.5 19.2 420 513 122 549 60.0 91.1 113 213 3.5

Ours(B) 57.2 224 175 425 493 113 575 62.8 90.4 13.6 29.9 6.6

Table 4: The results of cross-domain captioning. COCO— Flickr30k means model trained on COCO while
evaluated on Flickr30k, and so is Flickr80k=—- COCO. We use boldface to indicate the best performance.

in expression and correctly describe the visual con-
tent, which can be observed from similarity score
and diversity metrics.

We also conduct experiments on Flickr30k
dataset, as presented in Table 2, from which we can
draw similar conclusions with the COCO dataset.
Our model achieves impressive performance in
the image captioning task compared to the base-
line models. In detail, from the results of diversity
metrics, we notice that the metrics of Dist-3 and
vocabulary usage increase by more than 6.0 and
3.0, respectively. Additionally, we also observe an
improvement of 2.6 and 2.8 in CLIP-S and Ref-
CLIP metrics, respectively. This indicates that the
diffusion model can effectively improve the caption
diversity while ensuring coherence and relevance
in the generated captions. To generate diverse
captions, existing methods tend to generate differ-
ent captions via top-k sampling. Intuitively, such
methods may ignore syntactic diversity and seman-
tic diversity that humans are really interested in.
Unlike existing methods, Prefix-diffusion seeks to
generate multiple captions with rich expressions
from different Gaussian noises. In the process of
gradually predicting noise, we speculate that the
diffusion model introduces small perturbations, re-
sulting in different directions due to the removal
of noise over time. This achieves the goal of text
diversity.

Figure 1 shows the captions generated by Prefix-
diffusion. It is observed that the generated captions
are pretty consistent with the image as well as keep-
ing the qualified fluency. Meanwhile, our model is
able to generate diverse captions that are more like
human-generated. The diversity in generated text
expands the model’'s application scope, making it
more widely applicable across various fields and
industries.

Furthermore, we conduct human evaluation and
report the number of trainable parameters to vali-
date the applicability of our method. As is shown
in Table 3, our model only requires a small num-

ber of model parameters. It brings potential ad-
vantages of saving memory storage space and
computing costs, and thus being much more use-
ful in practice. Unlike the slow generation speed
commonly observed in image generation, our non-
autoregressive approach enables parallel gener-
ation of all tokens instead of a sequential token-
by-token generation method. Consequently, our
method exhibits faster generation speeds. For hu-
man evaluation, we randomly selected 20 samples
and presented them in a shuffled manner to 20
annotators. The annotators rated the fluency, sim-
ilarity(Sim), and diversity(Div) of the captions on
a scale from 1 to 5, with higher scores indicating
better quality. From the human evaluation results,
We can draw similar conclusions with the automatic
evaluation. Our model outperforms the baselines in
diversity while holding better fluency and relevance.

The dimension of word embeddings is an im-
portant hyper-parameter. The higher dimension
leads to more training time and memory usage.
To further study the effect of embedding dimen-
sion in Prefix-diffusion, we conduct experiments
by training with different dimensions. As is shown
in Figure 4, the metrics of Bleu-1 and CIDEr are
improved as the embedding dimension increases.
The reason is that a word embedding becomes
richer with semantic information due to the higher
dimension. However, there is a performance bottle-
neck when we continue to increase the dimension
of word embeddings. It is observed that the per-
formance trends to be stable when the dimension
goes beyond 48.

4.3.2. Cross-domain Captioning

We also conduct experiments on cross-domain cap-
tioning to evaluate the generalization capability of
Prefix-diffusion. The results of the cross-domain
evaluation are shown in Table 4. We train the model
on the dataset of a source domain while evalu-
ating it on another dataset. From the results of
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n Common Metrics 1 Similarity Score 1 Diversity 1
B@1 B@3 M R-L C S CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u
1 772 436 26.0 556 1052 195 604 68.6 93.1 119 264 5.4
5 781 442 266 56.1 1093 204 63.7 71.2 93.7 12.7 28.0 5.7
10 78.3 438 26.6 56.0 109.1 20.3 653 72.2 93.4 13.1 28.8 5.8
15 782 434 265 558 1085 20.3 66.0 72.6 934 134 293 5.9

Table 5: The effect of different values of candidate captions. n = 1 means no cosine similarity calculation

in the decoding process.

Noise Metrics 1
Schedule "pa{ CLIP-S Ref-CLIP P-Bert
Square 70.5 66.8 72.2 92.6
Linear 704 659 71.6 92.3
Cosine 705 665 72.0 925
T-Cosine 725 665 72.3 92.9
T-Linear 78.1 63.7 71.2 93.7

Table 6: The analysis of different noise schedule in
the forward process. T-Linear and T-Cosine means
truncation linear noise schedule and truncation co-
sine noise schedule respectively.

COCO==Flickr30k, Prefix-diffusion achieves ex-
cellent performance over all compared approaches,
with the results on the common metrics being the
best. In addition, it acquires significant improve-
ments on both Dist-3 and vocabulary usage metrics.
This is due to the powerful generative ability of the
diffusion model. When we train on flickr30k while
evaluating on COCO, the results also show that our
approach has strong capability in the cross-domain
scenario. By comparing the two results, we find that
Prefix-diffusion works even better when trained on
a larger dataset, implying the better generalization
ability. We hypothesize that this is due to the fact
that diffusion models can effectively capture key
features in text and learn the distribution patterns
of textual data.

4.3.3. Ablation

We perform the ablation study on the COCO
dataset to quantify the contribution of each module
in Prefix-diffusion.

Table 5 presents the effect on the number of
candidate captions. From the two groups of exper-
iments, n = 1 and n = 5, it can be seen that this
selection strategy improves the performance of im-
age captioning. We observe a significant increase
in the CIDEr metric, which boosts the CIDEr score
from 105.2 to 109.3. It confirms the function of cal-
culating the similarity between the image and the
candidate captions and choosing the highest. But
too many candidate captions lead to a reduction in

the performance of the caption fluency. This is be-
cause we use the CLIP score as the only similarity
selection metric, which may neglect the fluency of
captions.

As presented in Table 6, We investigate the per-
formance of different noise schedules. Observing
the results, we conclude that truncated linear noise
schedule is able to generate more precise and de-
scriptive captions. We also conclude that the se-
mantic information is corrupted by the complicated
noise schedule in the forward process, leading to
a more difficult learning problem in the denoising
process.

5. Conclusion and Future Work

In this paper, we propose a lightweight network
for image captioning in combination with continu-
ous diffusion, called Prefix-diffusion. Experiments
and further analysis demonstrate that it can gen-
erate diverse captions while maintaining the flu-
ency and relevance of the captions. By trained
on one dataset but evaluated on the other, Prefix-
diffusion presents remarkable generalization ability.
Besides, our model requires a small number of
training parameters, which is more applicable in
reality. We also conduct ablation experiments to
show the effect of the selection strategy and noise
schedules. We speculate that in the process of
gradually predicting noise, the diffusion model re-
sults in the diversity of the generated text due to
small perturbations. The empirical results verify
that Prefix-diffusion has powerful generative ability
for image captioning.

For future work, we will continue to explore the
potential impact of diffusion models on image cap-
tioning. Because of the remarkable results of the
diffusion model on image editing, we will continue
to investigate how image features guide step-by-
step text generation, thereby enabling controlled
image captioning. Additionally, an exploration of
how different types of noise affect the model’s out-
put would be a valuable and interesting topic for
further research.
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6. Limitations

As presented in Table 1 and Table 2, though Prefix-
diffusion can generate diverse captions with rela-
tively less parameters, it is inferior to MTIC and
DLCT on the common metrics. But it performs well
on newer metrics which have been shown higher
correlation with human generation. The reason is
that our generated captions have a rich expression
that is inconsistent with the reference text, but still
convey the same underlying semantics. The length
is an important property as it reflects the amount of
information carried by a caption. Since our model
is a non-autoregressive model, we cannot control
the length of the generated text, leading to a less
accurate description of the image.

7. Ethics Statement

Since the proposed Prefix-diffusion can be used to
generate captions. With the advantages of being
accurate, diverse and descriptive, its generation is
more like human-generated. This would benefit im-
age captioning applications on downstream tasks,
such as chatting robots and automatic voice guide
system. On the other hand, the large number of
image captions will make it difficult to distinguish
human-wrote from machine-generated. Hence, ex-
ploring adversarial attacks on image captioning is
necessary. Moreover, excellent captions should
involve a variety of words and rich expressions,
which prevents them from being too dull or tedious.
The diffusion model generates new samples from
different noises. Therefore, Prefix-diffusion can be
used to improve the diversity of the captions.
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