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Abstract

The field of chemistry and Artificial Intelli-
gence (AI) intersection is an area of active re-
search that aims to accelerate scientific discov-
ery. The integration of large language models
(LLMs) with scientific modalities has shown
significant promise in this endeavour. How-
ever, challenges persist in effectively address-
ing training efficacy and the out-of-distribution
problem, particularly as existing approaches
rely on larger models and datasets. In this con-
text, we focus on machine language-molecule
translation and deploy a novel training ap-
proach called contrastive preference optimisa-
tion, which avoids generating translations that
are merely adequate but not perfect. To ensure
generalisability and mitigate memorisation ef-
fects, we conduct experiments using only 10%
of the data. Our results demonstrate that our
models achieve up to a 32% improvement com-
pared to counterpart models. Finally, we intro-
duce a fine-grained, domain-agnostic evalua-
tion method to assess hallucination in LLMs
and promote responsible use.

1 Introduction

The world is facing unprecedented complexity in
the form of global challenges such as climate
change, healthcare, and pandemics. Innovative
scientific solutions are urgently needed to address
these challenges. Chemistry has been at the fore-
front of developing such solutions, pioneering new
drugs (Ferguson and Gray, 2018), creating ad-
vanced materials (Kippelen and Brédas, 2009), or
enhancing chemical processes (Zhong et al., 2023).
However, these frontiers are vast and require the
involvement of Artificial Intelligence (AI) technol-
ogy to navigate them effectively.

Large language models (LLMs) have shown
promising potential for accelerating scientific dis-
covery across various domains, including chem-
istry, biology, and materials science (Zhang et al.,

2023; AI4Science and Quantum, 2023). Exist-
ing work has applied successful paradigms from
natural language processing (NLP) and multi-
modal representation learning to the chemistry do-
main. One common approach involves convert-
ing the inherent three-dimensional structures of
molecules into SMILES, which provide a map-
ping to symbolic character-level representations.
Subsequently, researchers have explored learning
language-molecule representations either in sepa-
rate yet coordinated spaces (Edwards et al., 2022,
2021; Liu et al., 2023a), in a joint space (Liu et al.,
2023b), or through hybrid approaches (Luo et al.,
2023; Christofidellis et al., 2023). In light of the re-
cent significant advancements in the field, none of
the above approaches effectively tackle the inherent
challenges in training such models. Instead, they
rely on sparse or noisy synthetic data, often neces-
sitating exponentially more data than is typically
used in NLP tasks (Edwards et al., 2024).

However, training on larger models and datasets
does not necessarily guarantee higher performance.
A successful paradigm that augments the capa-
bilities of LLMs across multiple NLP tasks is
Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022). Although initially
challenged by issues of slowness and instability,
recent research has addressed many of these chal-
lenges by shifting towards closed-form losses that
operate directly on offline preference data (Rafailov
et al., 2024). RLHF has demonstrated superior per-
formance compared to standard minimising cross-
entropy optimisation approaches.

In this context, we address challenges related to
effectively training robust language models when
integrated with scientific modalities. We deploy a
novel way of training LLMs for language-molecule
translation that avoids generating translations that
are only adequate but not perfect, called contrastive
preference optimisation (CTO) (Xu et al., 2024).
CTO is based on offline preferences instead of su-

22



pervised fine-tuning, mimicking reference transla-
tions. To ensure that our models can effectively
generalise instead of memorising patterns, we con-
duct experiments using only 10% of the L+M-24
dataset (Edwards et al., 2024). Our contributions
have as follows:
• Our models achieve significant performance im-

provements across various evaluation metrics
compared to models trained on extensive in-
distribution and out-of-distribution data (§ 4.4).

• We showcase their robustness through experi-
ments comparing pivot and minor cross-modals.
Our empirical results demonstrate that our mod-
els consistently outperform the leading baseline,
Meditron, which is trained on the entire dataset,
even in agnostic cross-modal scenarios (§ 4.4).

• We propose a fine-grained evaluation method that
is domain-independent, assessing factual con-
sistency in generated captions using a question-
answering evaluation metric and measuring over-
laps of unigrams in generated molecules against
references (§ 3.3). Our analysis shows that our
models achieve improved factual consistency and
character-level unigram overlaps for caption and
molecule generation (§ 4.5).

2 Background

Reinforcement Learning with Human Feedback
(RLHF) optimisation (Ouyang et al., 2022) oper-
ates with a triple dataset D = {x, yw, yl}, where
yw and yl represent preferred and dis-preferred out-
puts, corresponding to input x, such that yw ≻ yl
for x. The probability of yw over yl in pair-
wise comparisons is typically computed using the
Bradley-Terry model (Bradley and Terry, 1952):

p∗(yw ≻ yl|x) = σ(r∗(x, yw)− r∗(x, yl)) (1)

where σ is the logistic function, and r∗ denotes the
reward function that underlies the preferences.

As obtaining the reward directly from a human
would be prohibitively expensive, a reward model
rϕ is trained to act as a surrogate by minimising
the negative log-likelihood of the preference data:

L(rϕ) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)−rϕ(x, yl))]
(2)

Additionally, the Kullback-Leibler (KL) divergence
between the outputs generated by πref and the pa-
rameterised πθ models serves as an additional re-
ward signal, ensuring that the generated responses
closely align with the reference model. Conse-

quently, an optimal model πθ is one that max-
imises:

E(x∈D,y∈πθ)[rϕ(x, y)]−βDKL(πθ(y|x)||πref(y|x))
(3)

where β is the temperature parameter typically ∈
[0.1, 0.5].

RLHF can present challenges due to its inherent
slowness and instability, especially in distributed
settings (Zheng et al., 2024). Recent work has
shifted towards closed-form losses to align LLMs
with human preferences. Here, we experiment with
contrastive preference optimisation that adopts a
closed-form loss for RLHF.

3 Methodology

3.1 Task Formulation
Let (x, y) be a pair of source and target sequences
mapped to X and Y spaces, respectively. We cast
the problem of language-molecule translation as a
cross-modal translation task that operates on offline
preference data D = {x(i), y(i)w , y

(i)
l }Ni=1, where x

is an input, yw are preferred (e.g. human gold
standard) and yl dis-preferred outputs (typically
synthetic, obtained from an appropriate translation
model), and N is the total number of pairs. The
goal is to learn an optimal function f : X ↔ Y
through a model πθ parameterised by θ. We coordi-
nate the two spaces through instructional modelling
to regulate the translation process in both directions.
Specifically, for LMolT, we use instructions for
language-to-molecule and molecule-to-language
translation (see Appx. A).

3.2 Contrastive Preference Optimisation
Contrastive preference optimisation (CTO) (Xu
et al., 2024) addresses challenges stemming from
the inherent limitation in RLHF, as discussed in § 2,
and from the necessity of high-quality data. CTO
is a general approximation of Eq. 3 using a uniform
reference model, which assumes equal likelihood
for all possible generated outputs:

L(πθ;U) = −E(x,yw,yl)∼D[
log σ

(
β log πθ(yw|x)− β log πθ(yl|x)

)]
(4)

where πθ is parameterised model by θ and β hyper-
parameter (please refer § 2). Eq. 4 implies that the
loss is calculated based on how well the generated
translations match this uniform distribution of pos-
sible translations, rather than being biased towards

23



any particular translation. To maintain πθ close to
the preferred data distribution, a behaviour cloning
(BC) (Hejna et al., 2023) regulariser is introduced:

min
θ

L(πθ, U) s.t.

E(x,yw)∼D

[
KL(πw(yw|x)||πθ(yw|x))

]
< ϵ, (5)

Here, ϵ denotes a small positive constant, and KL
signifies the Kullback-Leibler divergence. The reg-
ulariser is enhanced with an additional SFT term
on the preferred data, bolstering the CPO loss as:

LCPO = min
θ

L(πθ, U)︸ ︷︷ ︸
Lprefer

−E(x,yw)∼D[ log πθ(yw|x)]︸ ︷︷ ︸
LNLL

(6)

3.3 Proposed Evaluation Methodology

Prior studies have utilised embedding represen-
tations, for assessing the semantics in chemical-
domain models (Jaeger et al., 2018; Edwards et al.,
2021; Christofidellis et al., 2023). However, these
approaches require domain adaptation for out-of-
distribution data (Edwards et al., 2024) and might
lead to opaque and arbitrary outcomes (Steck et al.,
2024). We address these limitations by introducing
a scalable fine-grained evaluation methodology for
assessing the presence of hallucinations1 in gener-
ated outputs.

Language Evaluation: For molecule-to-
language translation, we deploy the QAFactE-
val (Fabbri et al., 2022) metric to evaluate
the factual consistency of generated captions.
QAFactEval first selects noun phrases and named
entities (NER) from the generated outputs. A
question generation (QG) model then formulates
associated questions, which a question answering
(QA) model addresses based on the reference
text. QAFactEval measures the semantic overlap
between the QA model’s responses and the
selected answers to produce the final metric score.
An example is illustrated in Fig. 1. Here, we
report the semantic overlap, the f1 accuracy
between the QA model and the selected answer,
and answerability, which is the probability of the
question being answered by the reference caption.

1Hallucination in LLMs refers to a phenomenon where the
generated outputs are inaccurate, nonsensical, or contradictory
to the provided factual information.

Reference Caption
It belongs to the orexin receptor modulator class of molecules.

Generated Caption
The molecule is an antiviral.

Selected Answer 
an antiviral

Generated Question
What is the molecule?

QA Output
Orexin receptor modulator

Scores
Overlap: 0.5, f1: 0.0, Is answered: 0.5

Figure 1: A toy example illustrating a factual incon-
sistency between a generated and a reference caption.
The QAFactEval metric selects a noun-phrase answer
from the generated caption. A QG model then gener-
ates an associated question that a QA model answers
based on the reference caption. The scores measure the
semantic overlap between the QA model’s answer and
the selected answer from the generated caption

Molecule Evaluation: For language-to-molecule
translation, we employ the Chr-F metric, an F-score
statistic, to evaluate character n-gram matches be-
tween prediction-reference pairs (Popović, 2015).
This metric assesses the matches in generated
molecules against their references by averaging the
scores of unigram, bigram, and trigram matches. A
higher Chr-F score indicates better performance.

Bias Evaluation: We also calculate the charac-
ter and token length bias in generated-reference
pairs of molecules and captions, respectively, to
investigate potential length bias in the evaluated
LLMs.

4 Experiments

4.1 Data

We conduct experiments on the L+M-24 bench-
mark dataset, which encompasses both molecule
and linguistic modalities (Edwards et al., 2024). It
is divided into four categories, each with significant
applications in small-molecule domain; biomedi-
cal; light and electricity; human interaction and
organoleptics; and agriculture and industry. The
training and validation subsets consist of approxi-
mately 127k and 34k language-molecule pairs, re-
spectively. Here, we utilise 10% of these subsets
for training and validation. To operationalise CTO,
we recreate a triples dataset consisting of preferred
and dis-preferred outputs (see § 2), where the for-
mer are the golden references and the latter are
generated from MolT5 (Edwards et al., 2022). For
evaluation, we randomly selected 3k unseen pairs
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from a distinct dataset provided by the research
group of L+M-24.2

4.2 Bechmark Models
We compare our results with established language-
molecule models as captured in the literature:
• TxtChem-T5 (Christofidellis et al., 2023): A T5

model trained on both linguistic and molecule
modalities with a multi-task objective across vari-
ous datasets, including the CheBI-20 dataset (Ed-
wards et al., 2022), akin to L+M-24.

• Chem-LLM (Zhang et al., 2024): An InternLM2-
Base-7B model, trained on an extensive chem-
ical domain knowledge dataset, with the direct
preference optimisation objective (Rafailov et al.,
2024), achieves results comparable to GPT-4.

• Meditron (Chen et al., 2023): A Meditron-7B
model fine-tuned on the entire L+M-24 for unidi-
rectional language-molecule translation.

• SFT-Meditron: We fine-tune Meditron-7B on a
10% subset of L+M-24 for bi-directional machine
language-molecule translation.

4.3 Experimental Settings
Here, we train Meditron with CTO on a 10% sub-
set of L+M-24. We experiment with both language
and molecule weight initialisation obtained from
Meditron trained on the entire data (Edwards et al.,
2024). We refer to them as CTO-Meditron−−→

Lan.
and CTO-Meditron−−→

Mol.
, respectively. We train the

models with QLoRA (Dettmers et al., 2024). For
evaluation, we adopt established metrics in (Ed-
wards et al., 2022).

4.4 Experiment Results
Table 2 presents a summary of the molecule-
to-language results. We observed a significant
decrease in performance for benchmark models
trained on extensive data with SFT when tested
on out-of-distribution data. Among the baseline
models, Meditron demonstrated the highest per-
formance, likely due to its training on the entire
L+M-24 dataset utilised in our experiments. Train-
ing Meditron with SFT for bi-directional language-
molecule translation has demonstrated neither ef-
fectiveness (see Table 1) nor efficiency (refer to
Appx. B). This suggests that the performance in
our experiments is not dependent on memorised
patterns from Meditron trained on the entire dataset.
In contrast, our models trained with the CTO objec-
tive on only 10% of L+M-24 achieved a remarkable

2Sampling is conducted from a distinct subset.

improvement in performance across diverse eval-
uation metrics, up to 32% compared to Meditron
trained on the entire dataset. This improvement
is consistent, as our model consistently enhances
performance when initialised from agnostic cross-
modals, i.e., CTO-Meditron−−→

Lan
in Table 1.

We observed similar performance patterns for
language-to-molecule translation as reported in Ta-
ble 2. However, even though our model achieved
better performance compared to Meditron when
initialised from agnostic cross-modals, it struggled
to learn molecular patterns (see CTO-Meditron−−→

Mol.
in Table 2). This suggests that language plays a piv-
otal role in the molecule modality. In the future, we
aim to explore more advanced initialised methods
to address this challenge.

4.5 Evaluation Results

Fig. 2 illustrates the evaluation results on the fac-
tual consistency of generated captions against ref-
erences for the molecule-to-language task. CTO-
Meditron−−→

Mol.
, trained on 10% of the available data,

exhibited superior factual consistency, achieving a
semantic overlap of 2.08, f1 accuracy of 0.34, and
answerability of 0.68, compared to 1.34, 0.20, and
0.51, respectively, for Meditron trained on the en-
tire dataset. CTO-Meditron−−→

Lan.
also outperformed

Meditron but showed lower performance than CTO-
Meditron−−→

Mol.
. We attribute this to the model being

initialised by agnostic cross-modals.

Meditron CPO-Meditron-Lan CPO-Meditron-Mol

(A) Semantic overlap

(B) F1 accuracy

(C) Answerability 

Figure 2: Factual consistency in generated captions
against references, assessed through (A) semantic over-
lap, (B) F1 accuracy, and (C) answerability using
QAFactEval (§ 3.3) across various LLMs.
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Model Blue-2 ↑ Blue-4 ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ METEOR ↑
TxtChem-T5 0.08 0.09 0.19 0.06 0.17 0.16
Chem-LLM 0.03 0.00 0.11 0.02 0.09 0.14

Meditron 0.42 0.30 0.63 0.47 0.49 0.54
SFT-Meditron 0.37 0.26 0.54 0.39 0.38 0.60

CTO-Meditron−−→
Lan

0.62 (+0.20) 0.45 (+0.15) 0.67 (+0.03) 0.50 (+0.03) 0.48 (-0.01) 0.62 (+0.08)
CTO-Meditron−−→

Mol
0.74 (+0.32) 0.53 (+0.23) 0.76 (+0.10) 0.56 (+0.09) 0.53 (+0.04) 0.71(+0.17)

Table 1: Molecule-to-language translation results. Arrows next to metrics indicate the higher value the better
performance. Numbers in parentheses show deviations from Meditron trained on the entire dataset.

Model BLEU ↑ Exact ↑ Levenshtein ↓ MACCS FTS ↑ RDK FTS ↑ Morgan FTS ↑ FCD ↓ Validity ↑
TxtChem-T5 0.18 0.00 133.29 0.21 0.10 0.03 37.67 0.58
Chem-LLM 0.04 0.00 732.74 0.00 0.00 0.00 59.44 0.19

Meditron 0.43 0.00 66.16 0.35 0.29 0.19 13.64 0.57
SFT-Meditron 0.30 0.00 186.99 0.70 0.62 0.41 11.14 0.98

CTO-Meditron−−→
Lan.

0.71 (+0.28) 0.00 42.65 (-23.51) 0.78 (+0.43) 0.70 (+0.41) 0.48 (+0.29) 4.19 (-9.45) 1.00 (+0.43)
CTO-Meditron−−→

Mol.
0.52 (+0.09) 0.00 76.95 (+10.43) 0.52 (+0.17) 0.49 (+0.20) 0.37 (+0.18) 27.39 (+13.75) 0.58 (+0.01)

Table 2: Language-to-molecule translation results. Arrows next to metrics indicate whether higher or lower values
denote better performance. Numbers in parentheses show deviations from Meditron trained on the entire dataset.

For the language-to-molecule task, we observed
that both Meditron−−→

Lan.
and Meditron−−→

Mol.
achieved

similar performance in terms of uni-, bi-, and
tri-gram overlaps between generated and refer-
ence pairs, outperforming Meditron (see Fig. 3).
However, when the model was initialized with
known cross-modal weights, i.e., Meditron−−→

Lan.
, it

achieved a slightly increased performance

Meditron CPO-Meditron-Lan CPO-Meditron-Mol

Char-F

Figure 3: Overlaps of n-gram matches between gener-
ated and reference molecules as captured by the char-F
(§ 3.3) score across various LLMs.

For the language-to-molecule task, we observed
that Meditron and Meditron−−→

Mol.
generated signifi-

cantly shorter and longer outputs, respectively (see
Fig. 4). In contrast, Meditron−−→

Lan.
did not exhibit

any length bias, producing outputs similar in length
to the actual ones. Conversely, for the molecule-
to-language task, our models did not show any
significant length bias, while Meditron, trained on
the entire dataset, generated significantly shorter
answers against references.

Meditron CPO-Meditron-Lan CPO-Meditron-Mol

(A) Character-level length deviation between generated and reference molecules.

(B) Token-level length deviation between generated and reference captions.

Figure 4: Length-bias across different LLMs.

5 Conclusion

This work address training efficacy and the out-
of-distribution problem for automatic language-
molecule translation. We train models using only
10% of available data and deploying contrastive
preference optimisation which avoids generating
translations that are merely adequate but not per-
fect. We achieve significant improvement in perfor-
mance when compared with models trained on ex-
tensive in and out-of-the-distribution data. Finally,
we propose a fine-grained, domain-agnostic evalu-
ation method to assess hallucination in LLMs. Our
models show superior factual consistency for cap-
tion generation and character-level unigram over-
laps for molecule generation.
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A Language-molecule Translation
Instructions

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up captions based on your existing
knowledge.
Captions are given against the following input. You
should be as detailed as possible.

### Input: Molecule: {source molecule}
In that molecule, could you formulate a caption
about?

### Response:{target caption}

Figure 5: Instruction for molecule to language transla-
tion, i.e., M → L

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up molecule smile strings based on your
existing knowledge.
Molecule smile strings are given against the
following input. You should be as detailed as
possible.

### Input: Caption: {source caption}
In that caption, could you generate a molecule smile
string?

### Response: {target molecule}

Figure 6: Instruction for language to molecule transla-
tion, i.e., L → M

B Training Effectiveness and Efficiency

Figure 7: Training convergence

Figure 8: Training efficiency

Figure 9: Validation loss
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