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Abstract

Despite progress in automated fact-checking,
most systems require a significant amount
of labeled training data, which is expensive.
In this paper, we propose a novel zero-shot
method, which instead of operating directly
on the claim and evidence sentences, decom-
poses them into semantic triples augmented
using external knowledge graphs, and uses
large language models trained for natural lan-
guage inference. This allows it to generalize
to adversarial datasets and domains that super-
vised models require specific training data for.
Our empirical results show that our approach
outperforms previous zero-shot approaches on
FEVER, FEVER-Symmetric, FEVER 2.0, and
Climate-FEVER, while being comparable or
better than supervised models on the adversar-
ial and the out-of-domain datasets.

1 Introduction

Fact-checking is the task of assessing the truthful-
ness of a claim, and is well-studied across multi-
ple disciplines. Traditionally, journalists perform
such a task manually, which is time-consuming.
More recently, automated fact-checking systems
have become of interest due to the explosion of
(mis)information on social media (Adair et al.,
2017; Hassan et al., 2017). In the NLP community,
fact-checking is typically defined as a task consist-
ing of three stages: claim detection, evidence re-
trieval, and claim verification (Guo et al., 2022). In
particular, verdict prediction assumes the evidence
is retrieved from sources such as Wikipedia or the
web, and aims to predict the verdict of a claim given
the retrieved evidence, often as a three-way clas-
sification task (Thorne et al., 2018a): SUPPORTS,
REFUTES, and NEI (NOT ENOUGH INFO).

Recent work (DeHaven and Scott, 2023) has
achieved strong results on canonical datasets like
FEVER (Thorne et al., 2018a), mostly relying
on supervised approaches. However, concerns

have been expressed on whether these models
learn language’s and the task’s nuances or merely
leverage embedded biases and dataset idiosyn-
crasies. This argument (Gururangan et al., 2018;
Poliak et al., 2018) gains empirical weight when
such high-performing models are tested against ad-
versarial fact-checking datasets such as FEVER-
Symmetric (Schuster et al., 2019) and FEVER
2.0 (Thorne et al., 2019). Their underperfor-
mance (Thorne et al., 2018b) in these adversarial
benchmarks exposes a lack of model robustness.

The narrative of this vulnerability extends to out-
of-domain contexts as well. A pertinent example is
the Climate-FEVER dataset—a platform for veri-
fying real-world climate claims (Diggelmann et al.,
2020). Supervised models, despite their commend-
able performance on the original FEVER dataset,
suffer performance degradation when evaluated on
Climate-FEVER. Additionally, earlier zero-shot
fact-checking approaches (Pan et al., 2021; Wright
et al., 2022) hinge on synthetic data creation for
training purposes. While this data emanates from
factual evidence, it largely adheres to the domain
boundaries of the originating dataset. Such inherent
domain confinement curtails the model’s capacity
for broader generalization.

In this work we propose a zero-shot method uti-
lizing semantic triples and knowledge graphs in
conjunction with pretrained Natural Language In-
ference (NLI) models, and does not require training
data for parameter learning.

In particular, we propose to extract triples from
the claim and the evidence texts to form knowledge
graphs and fill potential gaps in the evidence using
a universal schema model (Riedel et al., 2013) on
Wikidata and Wikipedia. Crucially, our method
refrains from utilizing any annotated or synthetic
training data, sidestepping the pitfalls of biases and
dataset artifacts that can inadvertently be encoded
into models. Additionally, by decomposing the
original claim into triples, our method can harness
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Figure 1: An overview of our zero-shot learning system. By harnessing Wikidata for training the universal schema
model, incorporating on-demand training with evidence triples, and leveraging OpenIE for triple-level inference,
our system achieves enhanced improvements. Label S stands for SUPPORTS and R stands for REFUTES.

the pre-trained NLI model’s strengths more effec-
tively. Both design choices position our approach
to exhibit greater robustness when subjected to ad-
versarial and out-of-domain evaluations.

As shown in Figure 1, we follow a two-stage ver-
ification process: triple-level and claim-level. For
triple-level, we employ NLI models pre-trained
without further fine-tuning on any fact-checking
training dataset, hence a zero-shot setting. For
claim-level verification, we design a simple rule-
based system relying on the triple verification. In
Figure 1, the process involves extracting claim
and evidence sentences to generate triples. Sub-
sequently, the universal schema is applied to ob-
tain additional triples. The NLI model is then em-
ployed to assign triple-level labels, resulting in 2
SUPPORTS, 1 REFUTES, and 1 NEI1. Finally, a
rule-based system is utilized to derive claim-level
verification. In this example, since one claim triple
is refuted, the entire claim is considered refuted.
Note that we are able to use the “gap” triples filled
by the universal schema model to retrieve better
evidence. For example, <Manning, member_of,
Stanford> is needed to verify the claim. However,
such a triple is missing from the evidence triple ex-
traction because the word member is not mentioned
in the evidence. Instead, <Manning, professor_of,
Stanford> is extracted from evidence. Therefore,
with the universal schema model, <Manning, mem-
ber_of, Stanford> will be assigned a high proba-
bility given <Manning, prof_of, Stanford> is ob-
served as evidence, and the gap is filled.

1In the context of our study, the NLI labels have been
appropriately reconfigured to align with the FEVER labels.

We evaluate our approach on the
FEVER (Thorne et al., 2018a), FEVER-
Symmetric (Schuster et al., 2019), FEVER
2.0 (Thorne et al., 2019), and Climate-
FEVER (Diggelmann et al., 2020) datasets.
Our findings show that our system consistently
outperforms zero-shot NLI model baselines by a
margin of approximately 2.5 percentage points
and beats the previous zero-shot approach by
around 3 percentage points on FEVER-Symmetric.
Notably, in contrast to state-of-the-art supervised
methods (DeHaven and Scott, 2023), our ap-
proach exhibits robustness on both adversarial
datasets. When evaluated on the out-of-domain
Climate-FEVER dataset, our method outperforms
the supervised method by a margin exceeding 10
percentage points.

2 Related Work

Recent advances in natural language processing
have highlighted significant challenges associated
with supervised learning models. A prominent
concern is the models’ tendency to learn dataset-
specific biases, often at the expense of genuine
linguistic understanding. For instance, Schuster
et al. (2019) demonstrated the effectiveness of a
claim-only model that classifies each claim in isola-
tion, without the need for associated evidence. The
high performance achieved by their system over
the baseline can be attributed to the idiosyncrasies
inherent in the dataset’s construction. Similarly,
Thorne et al. (2019) highlighted the vulnerability
of several FEVER systems, observing significant
performance declines under adversarial conditions

106



with simple rule-based perturbations. In other tasks
such as NLI, previous works (Poliak et al., 2018;
Gururangan et al., 2018) examined the susceptibil-
ity of neural models to such spurious correlations,
revealing a troubling propensity for models to ex-
ploit unintended, data-specific heuristics. Taken
together, these findings suggest that annotation ar-
tifacts within datasets contain discernible patterns.
Such vulnerabilities underscore the necessity for
more rigorous evaluation mechanisms, thus moti-
vating the introduction of several adversarial fact-
checking evaluation datasets (Guo et al., 2022).

Pan et al. (2021) presented the first work to in-
vestigate zero-shot fact verification, where they
proposed a framework named Question Answering
for Claim Generation (QACG). From any given
evidence, QACG generates SUPPORTS, REFUTES,
and NEI claims. A classifier is then trained using
the generated claims instead of annotated claims,
hence a zero-shot setting. To generate claims,
QACG first produces QA pairs using a Question
Generator fine-tuned on the processed SQuAD
dataset (Zhou et al., 2018). Next, a QA-to-Claim
Model is fine-tuned on the QA2D dataset (Dem-
szky et al., 2018), which converts each QA pair
into a declarative sentence. However, their exper-
iments are limited, using only the gold evidence
to evaluate various zero-shot methods, which is
not practical in a real-world setting. Also, unlike
their work, where training is still performed using
the generated training data, our approach does not
require any training for claim verification.

Knowledge graphs have long been investigated
in NLP, where the first discussions of a graphi-
cal knowledge representation can date back to the
50s (Newell et al., 1959). Since then, many NLP re-
searchers have tried to integrate knowledge graphs
into various NLP tasks, notably language models
with knowledge graphs (Nakashole and Mitchell,
2014; Logan IV et al., 2019; Liu et al., 2020; Wang
et al., 2021a) and many downstream tasks such
as question answering (Liu et al., 2020) and text
classification (Hu et al., 2021). For fact-checking
specifically, Ciampaglia et al. (2015) proposed to
use knowledge graphs to verify simple natural lan-
guage claims, considering fact-checking as a spe-
cial case of link prediction. Their method uses
the subject and object of the claim and then finds
the shortest path between the two entities. If the
claim is true, there should be such a shortest path
(or an edge); otherwise, there should be no short-
est path (nor edge). While the fact that a simple

notation description
C claim
E evidence
Y claim-level label of C
C set of triples extracted from C
E set of triples extracted from E
c c ∈ C
e e ∈ E
ye triple-level label of c predicted by e
y aggregated triple-level label of c

Table 1: Notations used in our fact-checking system

shortest-path computation can assess the truth of
new claims is exciting, this work is limited because
all the factual claims are automatically generated
using triples. Therefore, it does not directly apply
to recent human-generated fact-checking datasets
such as FEVER, as claims in FEVER are much
more complicated.

3 Methodology

As introduced, the verdict prediction step of
claim verification is to predict a label Y ∈
{SUPPORTS, REFUTES, NEI} given a claim C and
its corresponding evidence E , indicating if C is sup-
ported, refuted, or cannot be verified by E . While
we do not use any training data (manually or auto-
matically labeled), we assume a human-annotated
development set is available for fine-tuning hyper-
parameters of our system. In keeping with prior
research, we use the same set of notations and ex-
tend it to include triples. Table 1 contains all the
notations used in the methodology.

Figure 1 illustrates the structure of our system,
which comprises three main steps: Triple Extrac-
tion, Triple-level Verification, and Claim-level Ver-
ification. Additionally, we have integrated an exter-
nal component, the Universal Schema. This section
provides comprehensive insights into each compo-
nent, outlining their functionalities and operations.

3.1 Triple Extraction

A semantic triple consists of three entities: the sub-
ject, the object, and the relation between them. We
denote such a triple as <subj, rel, obj> where all
three entities are natural language words, phrases,
or clauses, and no schema needs to be specified
in advance. Extracting a set of triples from plain
text is called open information extraction (Open
IE) (Yates et al., 2007).
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As illustrated in Figure 1, our system first em-
ploys an OpenIE tool to extract triples from claim C
and evidence E , resulting in a set C of claim triples
and a set E of evidence triples. Note that this step
is back-traceable. For example, for any evidence
triple, we can trace back which evidence sentence it
comes from and which part of that sentence forms
such evidence triple.

3.2 Triple-level Verification
Given a claim triple c and a set of evidence triples
E, triple-level verification predicts a label y ∈
{SUPPORTS, REFUTES, NEI} for this triple. Intu-
itively, any evidence triple may provide signals to
predicting y. Therefore, given c, for each evidence
triple e in E, we utilise an NLI model to predict
a label yp with a softmax score as its probability.
We linearise c and e and concatenate them with
a special separation token: e [SEP] c. For exam-
ple, let c = <Barack Obama, was born in, USA>
and e = <Barack Obama, was born in, Hawaii>,
the input of the NLI model therefore is, ‘Barack
Obama was born in Hawaii [SEP] Barack Obama
was born in USA’. Following previous work, we
map NLP labels to fact-checking labels, namely
ENTAILMENT to SUPPORTS, CONTRADICTION to
REFUTES, and NEUTRAL to NEI.

To filter out less reliable triple-level labels yp, we
set up two thresholds for SUPPORTS and REFUTES

as hyperparameters to cut off labels with low prob-
abilities. The remaining labels are aggregated to
reach a triple-level label y for the claim triple c
using one of the following voting mechanisms:

Max voting takes the label with the overall high-
est probability as the triple-level label.

Majority voting ensures that the label with the
most supporters (i.e., most frequent appearances)
is the triple-level label.

Weighted sampling samples a label according
to the highest probabilities of each label.

Note that if all labels are filtered out, the triple-
level label is NEI because none of the evidence
triple is reliable enough for this claim triple.

3.3 Claim-level Verification
For each claim triple c in C, a triple-level label y is
predicted by the previous step. The final step is to
reach a claim-level label Y from this set of triple-
level labels using the following rule-based system
also used by previous research (Stacey et al., 2022):

• If there exists a y that is REFUTES, then Y is
REFUTES.

• If no y is REFUTES and there exists a y that is
NEI, then Y is NEI.

• Otherwise, Y is SUPPORTS.

3.4 Universal Schema
The challenge of integrating a knowledge graph
with our system stems from the incompatibility
between a pre-determined schema and the unre-
stricted textual information extracted from open
sources. In response, we put forward a solution
that involves the implementation of the universal
schema (Riedel et al., 2013), which acts as an inter-
face between pre-defined symbolic relations such
as those found in knowledge graphs, and uncon-
strained textual relations such as those extracted by
Open IE. Universal schema can be viewed as a ma-
trix that represents the knowledge base, comprising
pairs of entities and relations.

Notably, the original knowledge graph dataset
employed in previous research on Universal
Schema, namely Freebase (Bollacker et al., 2008),
is no longer maintained. Therefore, we under-
took the task of training a novel universal schema
model, utilizing a more contemporary language
model architecture and incorporating data from
Wikidata (Vrandečić and Krötzsch, 2014) and some
corresponding texts from Wikipedia.

Task Definition. Consistent with Riedel et al.
(2013), a fact, or relation instance, is denoted by
the pair rel and <subj, obj>. The goal of a universal
schema model is, by definition, to estimate, for a
given relation rel and a given tuple <subj, obj>,
the probability p(yrel,<subj,obj> = 1) where the
random variable yrel,<subj,obj> represents if <subj,
obj> is in relation rel. In the context of our fact-
checking scenario, we leverage these <subj, rel,
obj> triples to complete missing information.

Objective. To train our model, we adopt Bayesian
Personalized Ranking (BPR) (Rendle et al., 2009).
In this approach, observed true facts are assigned
higher scores compared to both true and false un-
observed facts. This scoring scheme serves as our
optimization objective. Let σ denote the sigmoid
function, θf+ denote the dot product of the latent
representations of a positive (θf− for negative) fact
pair rel and <subj, obj>, then the objective function
is Objf+,f− = −log(σ(θf+ − θf−)).

Integration. Upon successful training of the uni-
versal schema model, it becomes feasible to predict
the probability of a tuple being associated with a
given relation. The integration of this component
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into our fact-checking system involves utilizing the
universal schema model to assign scores to poten-
tial triple candidates for a given set of claim triples
C and supporting evidence triple set E. All possi-
ble combinations of relations in the C and tuples
in the E are considered as triple candidates. The
universal schema model is then used to compute
the probability of each triple candidate being true.
Similar to Section 3.2, a threshold is set to remove
less reliable triple candidates. The triple candidates
with a probability above the threshold are only uti-
lized for triple-level verification if the available
evidence triples are insufficient, i.e. when the label
for the triple-level label y is NEI. In a manner akin
to in-context learning, we also modify the Univer-
sal Schema model during the inference stage, upon
encountering newly observed facts derived from
evidence triples E.

4 Implementation

Evidence Retrieval. To perform document
level retrieval, we adopt the approach proposed
by Hanselowski et al. (2018) For sentence level
retrieval, we aim to demonstrate the effectiveness
of our verification system without relying on any
fact-checking training data. Therefore, we utilize
traditional information retrieval techniques such
as tf-idf weighting. In addition, we incorporate a
semantic score as a weight factor, which is com-
puted using the cosine similarity of embeddings
generated by a neural model called stsb-roberta-
base (Reimers and Gurevych, 2019).2

OpenIE Model. We utilized an AllenNLP reim-
plementation of a BiLSTM sequence prediction
model initially proposed by Stanovsky et al. (2018)
as our Open Information Extraction (OpenIE) tool.
The model can recognize verbs as relations and
add their corresponding subjects and objects as
arguments when given a sentence as input. For in-
stances with more than two arguments, the model
produces a triple for each combination of subjects
or objects. If a relation only has one argument,
known as a unary relation, a placeholder is added
to ensure consistency across all generated triples.

NLI Model. In our experiments, we evaluate the
effectiveness of our system using both base size
and large size pre-trained NLI models. The aim is
to demonstrate that our system consistently outper-

2https://huggingface.co/sentence-transformers/stsb-
roberta-base

forms the NLI baselines. In particular, we lever-
age the RoBERTa base and large models, which
have been pretrained on the MNLI dataset. Both
models follow the standard NLI format of taking
a premise and a hypothesis as input in the format
of "[premise] SEP [hypothesis]", where SEP de-
notes the special separation token. We adhere to
this format throughout our experiments.

Universal Schema Model. We leverage Sentence-
BERT (Reimers and Gurevych, 2019) to obtain
sentence embeddings that serve as latent represen-
tations for both relations and tuples. This approach
allows us to capture the semantic meaning of the
sentences, which is essential for accurately repre-
senting the relations and tuples in our model. The
pre-trained model "all-MiniLM-L6-v2"3 is utilized
in our study, which is based on MiniLM (Wang
et al., 2020). This model has been pre-trained with
a contrastive objective using diverse datasets con-
taining sentence pairs. The cosine similarity is
computed for each possible sentence pair within a
batch, and cross-entropy loss is employed to com-
pare these similarities with the true pairs.

5 Experimental Setup

Dataset. In our evaluation, we employ four
benchmark datasets, FEVER, FEVER-Symmetric,
FEVER 2.0, and Climate-FEVER. FEVER
dataset (Thorne et al., 2018a) comprises 185,445
claims that are created by modifying sentences
from Wikipedia, which are subsequently verified
on Wikipedia without knowing the original sen-
tence they were derived from. On the other
hand, the FEVER-Symmetric dataset is introduced
by Schuster et al. (2019) to address the biases
identified in the original FEVER dataset. This
dataset is constructed with a regularization pro-
cedure to downweigh the giveaway phrases that
cause potential biases. Similarly, the FEVER 2.0
dataset (Thorne et al., 2019) comprises adversarial
examples intentionally created by participants of
the FEVER 2.0 shared task. The task required
teams to generate claims specifically designed
to challenge FEVER-trained models. From this
dataset, we extracted all SUPPORTS and REFUTES

claims, along with their corresponding gold evi-
dence sentences, for our evaluation. The Climate-
FEVER dataset (Diggelmann et al., 2020) is for

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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verification of real-world climate change-related
claims, excluding disputed claims.

To train our universal schema model, we uti-
lize the Wikidata5m dataset (Wang et al., 2021b),
which is a knowledge graph dataset comprising one
million entities. This dataset is particularly suitable
for our purposes, as it includes an aligned corpus,
which we leverage in conjunction with the Ope-
nIE tool to extract open-domain triples. In our ap-
proach, all triples from the Wikidata5m dataset and
the extracted triples the aligned corpus are treated
as positive samples. To generate negative samples
based on a given positive sample, we utilize a ran-
domized approach where we preserve the relation
and generate arbitrary tuples that exist within the
dataset. This approach allows us to create negative
samples that differ from the positive samples while
still being relevant to the original relation.

Hyperparameters. In our experiments, claim veri-
fication does not require model-level hyperparame-
ter tuning since no training is involved. However,
as outlined before, we have a small set of three
thresholds to be adjusted: a threshold for the SUP-
PORTS label at the triple level, a threshold for the
REFUTES label at the triple level, and a thresh-
old for filtering out Universal Schema triple can-
didates.4 We adjusted their values on the FEVER
dataset and did not perform any further adjustments
on FEVER-Symmetric, FEVER 2.0, or Climate-
FEVER. This deliberate choice was made to test
the robustness of our system in handling different
datasets without relying on dataset-specific opti-
mization, an advantage of zero-shot approaches.

Figures 2 illustrates the impact of thresholds on
our system, and that optimizing them is relatively
straightforward as the best settings are clustered
in the region. It is worth noting that the optimal
threshold for REFUTES is considerably higher com-
pared to SUPPORTS, indicating that our system is
more stringent in assigning a triple-level REFUTES

label than SUPPORTS. This difference is justified
by the fact that, as explained in Section 3.3, a sin-
gle refuted claim triple is sufficient to refute the
entire claim, therefore it helps being cautious when
assigning a REFUTES label to claim triples.

4The specifics concerning the hyperparameters of the Uni-
versal Schema model can be found in Appendix A. Note that
the aforementioned thresholds were identified by conducting
a search with a fixed Universal Schema model.

Figure 2: The influence of thresholds on accuracy for
the SUPPORTS (x-axis) and REFUTES (y-axis) with fixed
threshold for Universal Schema triple candidates.

6 Results and Discussion

Our main results are presented in Table 2, where
we compare our system’s performance against the
current state-of-the-art system on FEVER, BEV-
ERS (DeHaven and Scott, 2023), the FEVER-
trained entailment-predictor (Diggelmann et al.,
2020), and QACG (Pan et al., 2021)5. Also, we
conduct additional ablation experiments to demon-
strate the robustness of our system by varying the
weighting factor and voting mechanism.

Finding 1 Our zero-shot approach exhibited en-
hanced robustness against adversarial perturba-
tions and manifested notable out-of-domain effec-
tiveness in contrast to supervised approaches.

As shown in Table 2, our zero-shot method demon-
strates greater resilience against adversarial attacks
compared to supervised methods, providing a sig-
nificant advantage in real-world scenarios where
the presence of misinformation and deceptive tac-
tics can impede the performance of fact-checking
systems.

By abstaining from using training data, our ap-
proach intuitively circumvents these issues and
offers a more robust approach to fact-checking.
Specifically, despite exhibiting lower performance
than supervised systems on the original FEVER
dataset, our models achieved highly competitive
scores on the FEVER-Symmetric dataset, trailing

5We made efforts to establish contact with the authors of
QACG; however, our attempts to elicit a response were unsuc-
cessful. Therefore, a direct comparison with their approach is
not feasible, except for the FEVER-Symmetric dataset, where
they reported performance under the same setting as ours.
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Model FEVER FEVER-Symmetric FEVER 2.0 Climate-FEVER

Accuracy FEVER Score Accuracy Accuracy Accuracy F1

Supervised

BEVERS 80.24 77.70 75.9 63.4 - -
Diggelmann et al. (2020) 77.69 - - - 38.78 32.85

Zero-shot
Random Guess 33.33 - 50.00 50.00 33.33 33.33
QACG - - 77.1 - - -
NLI Model (base) 36.07 31.65 51.74 49.68 - -
NLI Model (large) 58.12 54.38 78.94 70.38 44.37 44.24
Our system (base) 38.56 33.73 56.62 53.28 - -
Our system (large) 60.40 56.79 79.78 72.92 46.71 45.71
Our system (large) + USchema 61.30 57.84 79.78 73.34 46.71 45.71

Table 2: Main results on FEVER (S/R/NEI), FEVER-Symmetric (S/R), FEVER 2.0 (S/R) and Climate-FEVER
(S/R/NEI). BEVERS is the current state-of-the-art system on FEVER and Diggelmann et al. (2020) is the entailment-
predictor based on ALBERT (large-v2). The accuracy on FEVER-Symmetric, FEVER 2.0 and Climate-FEVER
datasets was achieved without fine-tuning, demonstrating the models’ robustness.

Variant ∆ Accuracy

tf-idf +2.28
Cosine similarity +2.11

Max voting +2.05
Majority voting +2.13
Weighted sampling +1.93

Table 3: Improvements of our system over baseline
using different retrieval weighting factor and voting
technique are steady.

the state-of-the-art by only approximately 2 per-
centage points. We attribute this positive outcome
to our system’s utilization of NLI models, which
already demonstrate outstanding performance on
this adversarial dataset. The results obtained on the
FEVER 2.0 dataset align with FEVER-Symmetric
and further strengthen our conclusions.

On Climate-FEVER, the supervised approach
delineated by Diggelmann et al. (2020) achieved
an accuracy of 38.78% and an F1 score of 32.85%.
In comparison, our introduced zero-shot method-
ology showcased enhanced results, achieving an
accuracy rate of 46.71% and an F1 score of 45.71%,
which demonstrated a notable generalization ability.
These findings suggest that our zero-shot method
offers a promising avenue for improved perfor-
mance in out-of-domain tasks.

Finding 2 Our system, utilizing triple-level infer-
ence, consistently improves over the baseline re-
sults irrespective of the NLI model used.

In our experiments, our approach was able to im-

Evidence ∆ Accuracy

Gold + Random +7.93
Gold + Retrieved (tf-idf) +3.74
Retrieved (tf-idf) +2.28

Table 4: Improvements of our system over baseline
using gold evidence vs. retrieved evidence.

prove the performance of both the base size and
large size NLI models by approximately 2.5%.
These consistent improvements suggest that our
approach can continue to benefit from the ongo-
ing progress: as more advanced models are being
developed, our system is expected to demonstrate
even greater accuracy and reliability.

In addition, we performed ablation experiments
to investigate the impact of various weighting fac-
tors and different voting mechanisms, as outlined
in Section 3. The results, presented in Table 3,
demonstrate that our system’s improvements over
the baseline NLI models in Table 2 are consistently
observed across all variants, indicating the reliabil-
ity and robustness of our approach.

Furthermore, we conducted experiments to eval-
uate the effect of evidence quality on claim verifica-
tion, as presented in Table 4. The Gold + Random
method involves using gold-standard evidence for
SUPPORTS and REFUTES claims, while random
evidence is used for NEI claims. The Gold + Re-
trieved method is similar, but uses retrieved evi-
dence instead of random evidence for NEI claims
while still utilizing gold-standard evidence for SUP-
PORTS and REFUTES claims. The results indicate
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Claim The Adventures of Pluto Nash was reviewed by Ron Underwood .

Evidence Sentences

1: The Adventures of Pluto Nash is a 2002 Australian-American
science fiction action comedy film starring Eddie Murphy

-LRB- in a dual role -RRB- and directed by Ron Underwood .
2: Ron “ Thunderwood ” Underwood is a musician and director from Phoenix , Arizona .

...

Evidence Triples <a 2002 Australian - American science fiction action comedy film, starring, Eddie Murphy>
...

USchema Triples <The Adventures of Pluto Nash, directed, by Ron Underwood>
...

Table 5: An example with Universal Schema triples. Due to space limitations, not all sentences and triples for this
example are shown. The table focuses on the most critical ones that effectively demonstrate our points.

that the performance improvements of our system
increases as the quality of evidence improves, sug-
gesting that our zero-shot approach benefits more
from less noisy evidence. This likely due to the
fact that our system relies on a strict set of rules to
classify claims, which may be more sensitive to the
presence of noise in the evidence. Thus, our system
is likely to benefit from the continued development
of better evidence retrieval systems.

Finding 3 Employing the Universal Schema model
provides marginal gains by bridging the gaps be-
tween extracted claim and evidence triples.

The Universal Schema model, despite its modest
gains, contributes to enhancing the overall perfor-
mance of our fact-checking system. In manual
analysis of the results we found that integrating
the Universal Schema model helps our approach
in handling claims involving mutual exclusivity,
resulting in increased accuracy. Mutual exclusivity
denotes a situation in which two or more events
cannot coexist simultaneously. To illustrate this, let
us consider the claim in Table 5 The Adventures
of Pluto Nash was reviewed by Ron Underwood,
initially classified as NOT ENOUGH INFORMA-
TION (NEI) in the absence of the Universal Schema
model. This misclassification originated from the
complexity of the retrieved evidence, which pre-
sented a complex sentence implying that Ron Un-
derwood directed the movie, thereby refuting the
claim. However, extracting the relation needed as
evidence <The Adventures of Pluto Nash, directed
by, Ron Underwood> posed challenges so it was
not extracted. Consequently, due to the absence of
this critical triple, the model erroneously labeled
the claim as NEI. By incorporating the Universal
Schema model, our system successfully recovered
the missing evidence triple, while also recognizing
the inherent mutual exclusivity between assuming

both the director and reviewer roles for the same
movie. As a result, using the Universal Schema
model accurately predicted the REFUTES label.

We also observed that the Universal Schema
model offers limited assistance when applied to
the two adversarial datasets considered. This is
due to the fact that, in both the FEVER-Symmetric
and FEVER 2.0 setting, all the necessary evidence
is provided, unlike real-world scenarios. Con-
sequently, the value provided by the Universal
Schema model, which primarily focuses on fill-
ing gaps, becomes minimal since no gaps exist in
the presence of sufficient evidence.

7 Conclusion

We introduced a novel zero-shot fact-checking
method, translating claims and evidence into se-
mantic triples with external knowledge graphs.
This method surpasses other zero-shot baselines,
impressively without direct FEVER dataset train-
ing. Its resilience is evident, avoiding the typical
performance dips seen in supervised models on
adversarial datasets like FEVER-Symmetric and
FEVER 2.0. Also on the Climate-FEVER dataset,
our approach outshines even supervised counter-
parts, highlighting its generalization prowess. Aug-
mented by pretrained NLI models, our system’s
robustness is further emphasized. As future steps,
we aim to hone model interpretability, examine
diverse knowledge graphs, and test our method’s
versatility on other fact-checking datasets.

Limitations

While our novel zero-shot learning method for
fact-checking with semantic triples and knowledge
graphs has shown promising results, there are sev-
eral limitations that must be noted.

Firstly, our method’s language capabilities have
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been exclusively tested on the English language,
which poses an inherent limitation. Though the
method was not specifically designed and imple-
mented for English, the experiments were solely
conducted using English datasets. Consequently,
the potential effectiveness of our approach with
other languages remains unverified. Differences
in linguistic features and semantic triple structures
across languages might present unique challenges
that we have yet to encounter or address.

Secondly, our approach relies heavily on
Wikipedia as both the source for datasets used in
evaluation and the basis for our knowledge graphs.
While Wikipedia is a vast and continually updated
source of knowledge, its use as the sole source of
data introduces biases and limitations. Wikipedia’s
content is predominantly generated by its user com-
munity, which can lead to the inclusion of inaccura-
cies, cultural biases, or omissions. This limitation
might affect the fact-checking capabilities of our
model, as the reliability of its responses are directly
proportional to the quality and accuracy of the in-
formation within Wikipedia.

Additionally, the reliance on a single source
for data and knowledge graphs constrains the
method’s applicability in fact-checking scenarios
where knowledge outside of Wikipedia’s domain
is required. It may also lead to an overfitting issue,
as the model might be overly tuned to Wikipedia’s
style and structure, limiting its performance when
applied to different or broader sources.

In future work, addressing these limitations
by incorporating support for multiple languages
and expanding the data sources beyond Wikipedia
would be essential steps towards enhancing the ef-
fectiveness and generalizability of our approach.

Ethics Statement

The use of fact-checking datasets and systems has
become increasingly important in combatting mis-
information, and as such, it is necessary to consider
the ethical implications of their use. One of the key
concerns in this regard is the potential for biases in
these datasets. Such biases can arise from various
sources, including the selection and interpretation
of sources, the types of claims being fact-checked,
and the demographic characteristics of the individ-
uals involved. These biases have the potential to
perpetuate stereotypes and reinforce existing power
dynamics, and thus it is the responsibility of re-
searchers to ensure that they use representative and

unbiased datasets to train and evaluate their mod-
els. Transparency regarding any potential biases in
models is also essential, and steps must be taken
to mitigate any negative impact. By addressing
these ethical concerns, researchers can promote the
integrity of fact-checking and contribute to a more
informed and equitable public discourse.
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A Hyperparameters

For the universal schema model, the hyperparam-
eters were manually tuned using the wikidata dev
set, with a batch size of 32, a learning rate of 2e-5,
an Adam epsilon of 1e-8, a weighted decay of 0.01
and a maximum gradient norm of 1.0. The model
was trained for a maximum of 3 epochs, with early
stopping based on the loss observed on the dev set.
Given the large amount of training data and limited
computing resources, we partition the data into sec-
tions of 10000000 randomly shuffled samples to
make the task feasible. Each section is treated as a
separate training batch for our model.
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