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Abstract

Large Language Models (LLMs) are reported
to hold undesirable attestation bias on infer-
ence tasks: when asked to predict if a premise
P entails a hypothesis H , instead of consid-
ering H’s conditional truthfulness entailed by
P , LLMs tend to use the out-of-context truth
label of H as a fragile proxy. In this paper,
we propose a pipeline that exploits this bias to
do explicit inductive inference. Our pipeline
uses an LLM to transform a premise into a set
of attested alternatives, and then aggregate an-
swers of the derived new entailment inquiries
to support the original inference prediction. On
a directional predicate entailment benchmark,
we demonstrate that by applying this simple
pipeline, we can improve the overall perfor-
mance of LLMs on inference and substantially
alleviate the impact of their attestation bias.1

1 Introduction

Large Language Models (LLMs) are claimed to
possess implicit inductive reasoning ability through
pre-training: from the massive examples they mem-
orized, they draw inference rules and encode them
latently so that they can apply these rules to do
reasoning at test time.

However, recently McKenna et al. (2023a) has
pointed out that LLMs are severely affected by an
attestation bias when performing inference tasks.
Given the question of whether premise P entails
hypothesis H with few-shot examples, an LLM’s
prediction is deeply bound to the hypothesis’ out-
of-context truthfulness, instead of its conditional
truthfulness entailed by the premise. When the
hypothesis H is attested in an LLM’s world knowl-
edge (the LLM believes H to be true), the LLM is
likely to predict the entailment to be true, regardless
of the premise. As a result, LLMs suffer a signifi-

1Codes and data of this paper are available at https://
github.com/waterltyang/EIDI

Figure 1: An example of the explicit inductive infer-
ence pipeline. While direct entailment inquiry gets a
wrong answer, it can be corrected by reasoning on more
alternative examples.

cant performance drop when the entailment labels
disagree with the attestation label of hypothesis H .

Although this is a severe problem limiting LLMs’
performance on non-attested inferences, we argue
that with careful design, this bias can instead be
exploited to improve LLM performance on infer-
ence tasks. We notice a statistically true conclusion:
Given an entailment inquiry P |= H , the attesta-
tion bias is harmful only when the premise P is not
attested. If we control P to always be attested, then
P |= H will naturally share the same truth label
with H on a distributional basis, which dissolves
the negative effects of LLMs’ attestation bias.

Applying this idea, we propose a simple yet ef-
fective Explicit Inductive Inference pipeline with
LLMs. As illustrated in Figure 1, the core idea is
to transform a premise into a set of attested alterna-
tives by replacing the arguments, and to aggregate
the LLM’s predictions on these derived inquiries to
support answering the original question.

We test our pipeline with two LLMs on
Levy/Holt (Levy and Dagan, 2016; Holt, 2019), a
difficult directional predicate inference dataset, and
further analyze the influence of our pipeline against
the models’ attestation bias. The results show that
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our pipeline can improve not only LLM’s overall
performance on predicate inference, but also their
robustness against the attestation bias.

To summarize our contribution, we propose an
easy-to-use inference pipeline that 1) improves
LLMs’ performance on predicate inference, 2) sub-
stantially alleviates negative effects of the LLMs’
attestation bias, and 3) uses LLMs’ own generation
capability without requiring external knowledge.

2 Related Work

LLMs accumulate a bias towards factual knowl-
edge by encoding massive facts during pre-training
(Roberts et al., 2020; Carlini et al., 2022; Yan et al.,
2022). Recently, McKenna et al. (2023a) pointed
out that LLMs suffer from an attestation bias on
inference tasks as a result. Note that the effect of
attestation bias is similar to that of the hypothesis-
only baseline (Poliak et al., 2018), but while the
former is a bias from pre-training, the latter origi-
nates from dataset artifacts in supervised learning.

In other tasks, previous work has mitigated the
bias towards attestation by introducing counterfac-
tual examples (Wang et al., 2022b; Zhou et al.,
2023; Wang et al., 2023) or replacing argument
entities with their type labels (Zhou et al., 2024).
In this paper, we go one step further to show that in
an inference task, we should instead encourage the
models to generate factual alternative examples.

The idea of aggregating multiple versions of
LLMs’ outputs has been explored in prior work.
Wang et al. (2022a) encourage LLMs to generate
multiple reasoning paths for one question, while
Zhou et al. (2022) embody one question with mul-
tiple prompts. In contrast, our method creates se-
mantically different alternative questions, which
serve as extra evidence for an original inquiry.

3 Explicit Inductive Inference

3.1 Task and Definition
The task of this work is to determine the entailment
relation between two binary predicates where both
predicates are contextualized with the same pair of
entities. The input will be in the form of two triples
(s, p, o)− (s, h, o) where s is the subject entity, o
is the object entity, p is the premise predicate, and
h is the hypothesis predicate. There are also cases
in the form of (s, p, o) − (o, h, s) where the two
entities are swapped in position like the example in
Figure 1. Without loss of generality, we describe
our method with inputs in the former format.

The goal is to predict whether the premise triple
entails the hypothesis triple, namely the truth label
of (s, p, o) |= (s, h, o). To use an LLM to predict
entailments, each input triple pair will be wrapped
into a prompt. We mark them as Q[(s, p, o) |=
(s, h, o)] and call them entailment inquiries.

3.2 Exploit the Attestation Bias
As stated in Section 1, the attestation bias of LLMs
can be less detrimental if the premise P is attested
in an entailment inquiry, because the truth label of
P |= H would likely be the same as the attestation
label of H . Besides this, two more insights are
guiding our pipeline design:

1) The label of a predicate entailment inquiry
does not change when the argument entities are
replaced, as long as the substitution entities keep
the same semantic type labels.

2) Factual ̸= Attested. Factual knowledge from
external sources may not be confirmed by LLMs
for being longtail, absent in pre-training data, or
conflicted with out-of-date records. Facts gener-
ated by LLMs, on the other hand, are highly likely
to be recognizable by themselves. Even halluci-
nated generations are acceptable since they are still
attested if not factual.

Based on these understandings, we propose
the Explicit InDuctive Inference (EIDI) pipeline.
Given an entailment inquiry P |= H , our EIDI
pipeline first transforms P into a set of different
attested premises P ′s by replacing the arguments
of P . Then the corresponding set of H ′s is derived,
so that we now have a list of alternative inquiries
P ′ |= H ′. Finally, we explicitly do an inductive
inference on these new inquiries by drawing a con-
cluded entailment prediction from an LLM’s an-
swers to these alternative inquiries.

It is worth mentioning that given P is true, logi-
cally, H is always true if P |= H but not vice versa.
We can only statistically conjecture P |= H if we
observe a high probability of H being true (pre-
dicted by the LLM according to the bias). There-
fore, we encourage the transformation module to
generate a variety of different alternative premise
triples, so that a more reliable conclusion can be
drawn when we aggregate the predictions.

3.3 Explicit Inductive Inference Pipeline
Typing While the label of (medicine X, kills, dis-
ease Y) |= (medicine X, is a cure of, disease Y) is
True, one can not therefore deduce that (Person X,
kills, animal Y) |= (Person X, is a cure of, Animal
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Y). To prevent these errors incited by the ambiguity
of predicates, for each premise triple (s, p, o), we
query the LLM to obtain the entity type label of the
subject and object ts and to. Here we do not prede-
fine a vocabulary for possible type labels since the
purpose is only to disambiguate.

Transformation With these assigned type la-
bels we query the LLM to generate alternative
arguments for the premise predicate. From one
typed premise triple (s, ts, p, o, to), we encour-
age the LLM to generate a list of new attested
triples (s1, p, o1), ..., (sn, p, on) where the substi-
tution entities keep the original types, i.e. any
si still has type ts and any oi still has type to.
These n new premise triples will then be expanded
to n new entailment inqueries Q[(s1, p, o1) |=
(s1, h, o1)], ..., Q[(sn, p, on) |= (sn, h, on)].

Prediction At this point, we input each derived
entailment inquiry Q[(si, p, oi) |= (si, h, oi)] to
the LLM to get their response and corresponding
probability score. Then we take the average score
of these n different scores as our explicit inductive
score for the original entailment inquiry.

4 Experimental Setup

4.1 Datasets

We test our pipeline on the Levy/Holt dataset
(Levy and Dagan, 2016; Holt, 2019), a predicate
entailment dataset where each entry consists of
two triples in the form of (s, p, o) − (s, h, o) or
(s, p, o) − (o, h, s), and a following label shows
whether the premise triple entails the hypothesis
triple. We use the directional portion of this dataset
following prior work (McKenna et al., 2023b; Chen
et al., 2022; Li et al., 2022), as it is a challenging
test focused on the understanding of entailment
beyond bi-directional similarity.

Following McKenna et al. (2023a), we further
analyze how the LLMs’ attestation bias is digested
in our method. We split the Levy/Holt dataset ac-
cording to whether the label of P |= H agrees
with the attestation label (obtained by querying the
LLM) of H for each entry. For 1784 entries in the
directional test set, this yields a 956 : 828 split of
attestation-consistent : attestation-adversarial sub-
sets from querying GPT-3.5, and a similar 997 :
787 split with Llama3.

The substantial size of the attestation-adversarial
subset demonstrates the detrimental effect of attes-
tation bias in real datasets. We report results on

both the directional test set and its two subsets in
Section 5.

4.2 LLMs

We test our method with two LLMs, GPT-3.5 and
Llama3. GPT-3.5 (OpenAI, 2023) is a set of pow-
erful closed-source commercial LLMs. We choose
the GPT-3.5-Turbo version for its widespread use
in the research community. Llama3 (Meta, 2024)
is a SOTA open-source LLM, where we choose
the largest Llama3-70B-instruct version for its op-
timized capacity. Throughout our experiments, we
use greedy decoding for reproducible results.

Our pilot studies on the development set indi-
cate that adding few-shot examples in the predic-
tion module may add extra bias to the model, and
therefore introduce unnecessary considerations on
finding proper examples under each setting. Hence
we choose zero-shot prompts for the prediction
module and one-shot prompts for the transforma-
tion module where the only example is the original
premise. Discussion on prompt selection and a list
of all prompts we use are included in Appendix A.

4.3 Baselines and Metric

We compare EIDI against two baselines. We con-
struct MCQentity baseline by directly wrapping the
original premise and hypothesis with the Multipe-
Choice Question prompt used in our prediction
module, and passing it to the LLM to get an en-
tailment prediction. MCQtype baseline is set up
in the same way where the only difference is that
we first replace the arguments of the predicates by
their entity types. To keep ourselves aligned with
previous work, we use the 48 FIGER types (Ling
and Weld, 2012) as in McKenna et al. (2023a) for
this measure, instead of the LLM-generated types
in Section 3.3.

We draw the precision-recall curve for EIDI and
each baseline by inspecting the final output token
probability of the model’s response. As a result
of the multiple-choice prompt design, returned an-
swers always start with a choice mark where A is
for entailment and B is for non-entailment. For
baseline methods, we score that one token’s prob-
ability. For our EIDI pipeline, we calculate the
average score of the k output tokens’ probabilities.

Following Li et al. (2022); McKenna et al.
(2023a), we calculate the normalized area-under-
curve (AUCnorm) as an indicator of the model’s
performance. This measure describes how much
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Model

Pipeline GPT-3.5 Llama3

MCQentity 23.85 36.66
MCQtype 25.88 35.13
EIDIall 35.52 50.89

EIDI1 31.16 41.85
EIDI2 32.10 46.75
EIDI5 33.41 49.61

Table 1: Overall normalized Area-Under-the-Curve (%)
of our EIDI pipeline and the two baselines on the full
Levy/Holt directional test set. EIDIi inspects only i
alternative inquiries, and EIDIall considers all examples
obtained in the transformation step.

better a model is over a degenerate baseline return-
ing positive answers to every data entry.

5 Results and Discussion

5.1 Overall performance

Table 1 shows the performance of each model on
the directional Levy/Holt test set. With both LLMs,
our EIDIall pipeline gains a significant improve-
ment over the two baseline methods.

The typical value of the size of total generated
examples n is 10 for the EIDIall setting. It can be
observed that the performance of EIDIi steadily
increases along with i, confirming our hypothesis
that with attested P ′s, the more cases of alternative
P ′ |= H ′ generated, the more reliable our pipeline
is. The complete results of all EIDIi settings are
shown in Appendix B.

An interesting observation lies between the per-
formance of the EIDI1 setting and the baselines,
which shows that replacing the original inquiry
with even one self-generated example can improve
the LLMs’ predicate inference performance. The
difference between EIDI1 and MCQtype baseline
also highlights the importance of instantiating at-
tested triples. Since the effect of the attestation
bias is already excluded from the results of the
MCQtype, this proves that the EIDI pipeline is tak-
ing advantage of further exploiting the bias.

5.2 Against the bias

Table 2 compares the performance of each method
on attestation-consistent (cons.) and attestation-
adversarial (adv.) subsets. Measured by the dif-
ference of AUCnorm between the two subsets, our
pipeline reduces the effect of LLMs’ attestation

Model Pipeline cons. adv. diff.

GPT-3.5 MCQentity 82.04 0.00 -82.04
MCQtype 69.40 0.48 -68.92
EIDIall 56.14 9.97 -46.17
EIDI1 53.73 8.95 -44.78

Llama3 MCQentity 81.08 0.01 -81.07
MCQtype 70.25 2.41 -67.84
EIDIall 69.59 23.83 -45.76
EIDI1 63.98 15.66 -48.32

Table 2: AUCnorm (%) on the attestation-bias-split
datasets. The diff. column marks the difference be-
tween results on the attestation-consistent (cons.) and
attestation-adversarial (adv.) subsets.

bias by over 20% from the MCQtype baseline, and
over 35% from the MCQentity baseline in average.

With both LLMs, we observe an AUCnorm of
near 0% in the two baseline settings, demonstrating
the extreme inability of the LLMs to capture the
essential entailment signal against the attestation
bias in a zero-shot setting.

Interesting results appear again under the EIDI1
setting. On GPT-3.5-turbo, it slightly outperforms
the EIDIall setting. But this only happens because
EIDIall setting is doing better on the attestation-
consistent subset, which implies that EIDIall set-
ting is still the choice for best performance, while
EIDI1 is also a strong candidate for scenarios with
limited compute.

These results suggest that our pipeline can be
used to improve LLMs’ general inference perfor-
mance, and especially in attestation-adversarial sce-
narios, e.g. If lions are fed on hay, then lions eat
hay. As a replacement to LLM’s direct inference
prediction, EIDI pipeline can be easily plugged into
frameworks with LLMs to do various downstream
tasks like question answering and KG completion.

6 Conclusions

We propose an explicit inductive pipeline exploit-
ing the attestation bias of LLMs to do more robust
predicate inference. With experiments on the di-
rectional Levy/Holt dataset and its attestation-bias-
split subsets, we have shown that our baseline gains
a significant improvement over LLM’s primary in-
ference performance, and substantially reduces the
performance loss caused by LLMs’ attestation bias.

Without external knowledge, EIDI use LLMs’
own generation to exploit their attestation bias. Our
results suggest that although biases of LLMs are
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usually undesirable obstacles, in some scenarios
they may be tapped for good with careful design.
We advocate for similar ideas to be applied to other
tasks to improve LLM performance in future work.

7 Limitations

In this paper, we demonstrated the performance
of our pipeline by comparing it to two baselines.
Although we intend to exclude prompt engineering
factors from our analysis, it has been widely ac-
cepted that including few-shot examples and other
prompting techniques can guide LLMs to output
better answers. Therefore there could be further
studies on evaluating the effects of using different
prompts in the EIDI pipeline.

Generating alternative inquiries and respectively
doing inferences on them can be computationally
expensive compared to only one determination in
baseline settings. As a result, downstream applica-
tions may find a trade-off between computational
efficiency and better inference performance.

We also tested our pipeline against the frequency
bias that McKenna et al. (2023a) pointed out, and
the results show that the EIDI pipeline amplifies
this bias compared to the baselines due to its choice
of popular entities. We argue that this reaffirms the
challenge in achieving Pareto improvements on
LLM robustness against biases, and leave those
results and discussions to Appendix C.
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A Prompts Selection

Here we list all the prompts that we use in our
experiments.

Typing The purpose of this module is only to dis-
ambiguate the predicates, therefore no vocabulary
of allowed type labels is predefined.

Type the entities in the following triples:

Hitler | was born in | Poland -> a person |
was born in | a country

Hogs | eats | Corn -> an animal | eats | a
food

Aspirin | may reduce the risk of | Cancer
-> a medicine | may reduce the risk of | a
disease

{s} | {p} | {o} ->

Transformation Although we use the word
’fact’, the generated triples are always attested
rather than factual.

Write {n + 1} facts in the form of " {ts}
| {p} | {to}."

- {s} | {p} | {o}.

-

Prediction This is also used for the two base-
lines.

Question:If {s} {p} {o}, then {s} {h}
{o}. Is that true or false?

Choices:

A) True

B) False

Answer:

For prediction module, when an instruction is
required, we use the following one:

Only return one mark A, B or C to an-
swer the question.

B Results on all EIDIi Settings

Table 3 shows the performance of all EIDIi set-
tings. Best performences are reached when all
transformed alternative inquiries are considered.

Model

Pipeline GPT-3.5 Llama3

MCQentity 23.85 36.66
MCQtype 25.88 35.13

EIDI1 31.16 41.85
EIDI2 32.10 46.75
EIDI3 31.47 47.52
EIDI4 32.05 48.60
EIDI5 33.54 49.61
EIDI6 33.41 50.42
EIDI7 34.68 50.13
EIDI8 34.76 50.36
EIDI9 35.28 50.39
EIDI10 35.52 50.01
EIDI11 - 50.52
EIDI12 - 50.89

Table 3: AUCnorm (%) of all EIDIi settings.

C Frequency Bias

We also tested our pipeline on the frequency bias
using the same dataset split measure as that for
attestation bias. The dataset that we use is from
McKenna et al. (2023a)’s work, where we have
972 entries of frequency-consistent input and 220
entries of frequency-adversarial input.

Compared to baselines, the EIDI pipeline intro-
duces extra frequency bias. This is expected since
our transformation module is not designed to alter
the relative frequency of the predicates, and may
have amplified the frequency bias by taking popular
alternative entities generated by the LLMs. This re-
sult reaffirms the challenging nature of directional
inference and the difficulty in improving robustness
against multiple biases at once.

Model Pipeline cons. adv. diff.

GPT-3.5 MCQentity 20.58 29.38 +8.80
MCQtype 24.49 32.93 +8.44
EIDIall 40.66 20.83 -19.83
EIDI1 33.94 18.83 -15.11

Llama3 MCQentity 33.30 47.87 +14.57
MCQtype 31.47 47.19 +15.72
EIDIall 51.97 42.27 -9.70
EIDI1 39.78 35.32 -4.46

Table 4: Normalized area-under-curve(%) on the
frequency-bias-split datasets.
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D Computational Cost

Our experiments on Llama3-70B-Instruct are ap-
plied on two A6000 GPUs. For 1784 entries and
10 alternative inquiries for each entry, the typing
module takes about 3 GPU hour, the transforma-
tion module takes about 100 GPU hours, and the
prediction module takes about 6 GPU hours.
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