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Abstract

Text generation, a key component in applica-
tions such as dialogue systems, relies on decod-
ing algorithms that sample strings from a lan-
guage model distribution. Traditional methods,
such as top-k and top-π, apply local normalisa-
tion to the model’s output distribution, which
can distort it. In this paper, we investigate the
effect of this distortion by introducing globally-
normalised versions of these decoding meth-
ods. Additionally, we propose an independent
Metropolis-Hastings algorithm to approximate
sampling from globally-normalised distribu-
tions without explicitly computing them. Our
empirical analysis compares the performance
of local and global normalisation across two de-
coding algorithms (top-k and top-π) with var-
ious hyperparameters, using Pythia language
models. Results show that, in most configura-
tions, global decoding performs worse than the
local decoding version of the same algorithms—
despite preserving the distribution’s integrity.
Our results suggest that distortion is an impor-
tant feature of local decoding algorithms.

lowlypalace/global-decoding

1 Introduction

Text generation is increasingly used in everyday ap-
plications, serving as a key component in dialogue
agents like GPT-4 (OpenAI et al., 2024). Given a
pre-trained language model (LM), text generation
typically involves using decoding algorithms,1

which extract a string w from a language model pθ.
In open-ended text generation, these algorithms are
usually stochastic, allowing users to sample strings.
Importantly, the goal of text generation is to pro-
duce high-quality strings, and a string’s quality
does not necessarily align with the probability mass
assigned to it by a model (Holtzman et al., 2020;
Zhang et al., 2021; Meister et al., 2022).

1See Welleck et al. (2024) for a review.
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Figure 1: A simple language model over a four-symbol
alphabet {a, b, c, d} under local and global decoding.
For this model, the probability of ab is higher than ba;
however, the opposite is true for local decoding. In this
example, top-k is 2 and maximum lengths are T = 2.

Over recent years, several decoding algorithms
have been proposed (e.g., top-k, top-π; Fan et al.,
2018; Holtzman et al., 2020; Basu et al., 2021; He-
witt et al., 2022; Meister et al., 2023b). Most of
these methods operate in two steps: (i) they first
prune the model’s output, assigning zero probabil-
ity to a large set of strings, and (ii) they then sam-
ple from this pruned distribution. However, before
sampling, the distribution must be renormalised,
i.e., its values must be adjusted to sum to one.
This renormalisation is typically performed locally
for each context, meaning that each conditional
pθ(· | w<t) is renormalised independently; a pro-
cess known as local normalisation. Importantly,
by renormalising contexts independently, local nor-
malisation can distort distribution pθ (see Fig. 1).
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This paper explores the effects of such distortion
on decoding algorithms. Specifically, we propose
globally-normalised versions of classical decod-
ing methods such as top-k and top-π. Globally-
normalised methods prune the model’s output iden-
tically to the locally-normalised version. However,
instead of renormalising each context separately,
they normalise the entire distribution pθ(·) at once;
a process known as global normalisation. Unlike
local normalisation, global normalisation does not
distort the distribution, allowing us to examine how
distortion affects decoding performance.

However, global normalisation is generally in-
tractable as it requires computing a sum over
an infinite set of strings. To address this issue,
we use a Markov chain Monte Carlo (MCMC)
method to sample strings, adapting the indepen-
dent Metropolis-Hastings (IMH) algorithm to the
decoding setting. As IMH only requires unnor-
malised probabilities, this method allows us to ap-
proximately sample from the globally-normalised
distribution without explicitly computing it.

In our experiments, we compare locally and
globally normalised versions of two decoding algo-
rithms: top-k and top-π. We run these algorithms
on Pythia models (ranging from 70m to 2.8b in
size) with several hyperparameter configurations
(8 settings for each algorithm; with k spanning
from 5 to 10,000 and π from 0.01 to 0.99). Our
results show that globally-normalised methods gen-
erally perform worse than their locally-normalised
counterparts, as evaluated by MAUVE scores. Ad-
ditionally, our results suggest that local normali-
sation leads to longer, less repetitive and overall
higher-quality text. We conclude that the distor-
tion introduced by local decoding is an important
component contributing to its performance.

2 Language Modelling

A language model, denoted as pθ(w) with parame-
ters θ, defines a probability distribution over the set
of all finite strings w = ⟨w1, w2, . . . , w|w|⟩ ∈ Σ∗,
where Σ represents an alphabet of subword units.
These models are generally defined autoregres-
sively as:

pθ(w) =

|w|+1∏

t=1

pθ(wt | w<t) (1)

Here, w|w|+1 represents a special end-of-sequence
symbol (eos /∈ Σ). While pθ(w) represents
a global distribution over Σ∗, the conditionals

pθ(wt | w<t) describe local distributions over an
eos-augmented set of subword units Σ def

= Σ∪{eos}.
Importantly, sampling from pθ(w) is straightfor-
ward, as it reduces to sampling iteratively from
pθ(wt | w<t) until eos is selected.

In practice, users of language models typically
impose a maximum string length T to constrain the
output of pθ. To facilitate the upcoming discussion,
we formally define such T -maxlength language
models here.

Definition 1. A T -maxlength language model is
a LM for which any string w longer than T has a
probability of zero. Formally:

|w| > T =⇒ pθ(w) = 0 (2)

This implies that for any T -length prefix w≤T with
non-zero probability, pθ(eos | w≤T ) = 1.

3 Decoding Algorithms

In this section, we first introduce both local and
global decoding algorithms. We then discuss how
these distributions compare to each other.

3.1 Local Decoding
Most decoding algorithms define a pruning
function D : Σ∗ → P(Σ) which, given a
prefix w<t, returns a subset of Σ to retain in the
distribution.2 Subwords which are not in D(w<t)
are then assigned a probability of zero.3 The
pruning function is used to modify the LM’s output
distribution as follows:

p̂u(w |w<t)= pθ(w |w<t)1{w∈D(w<t)} (3)

Here, 1{·} is an indicator function that returns
1 if the condition holds and 0 otherwise. Thus,
p̂u(w |w<t) represents an unnormalised pruned
distribution, where each subword w /∈D(w<t)
is re-assigned zero probability. A local decoding
algorithm then normalises this distribution as:4

pα(w | w<t) =
p̂u(w | w<t)∑

w′∈Σ p̂u(w′ | w<t)
(4a)

pα(w) =

|w|+1∏

t=1

pα(wt | w<t) (4b)

2P(Σ) refers to the powerset of alphabet Σ.
3Our description of local decoding algorithms is inspired

by the sampling adapters framework (Meister et al., 2023a).
4We assume that D is defined such that the probabilities

are well-defined for all contexts, i.e., ∀w<t ∈ Σ∗, we have∑
w′∈Σ p̂u(w

′ | w<t) > 0.
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where we use subscript α to denote these dis-
tributions as locally normalised. As with the
original model pθ(w), sampling from pα(w) is
straightforward: one can simply iteratively sample
from the conditional pα(· | w<t) at each time
step. Several popular decoding algorithms can
be instantiated by defining the function D. We
provide two examples next.

Definition 2. Top-k decoding (Fan et al., 2018) is
a local decoding algorithm with pruning function:

Dk=k′(w<t) = argmax
D′⊆Σ

∑

w∈D′
pθ(w | w<t), (5)

s.t. |D′| = k′

Definition 3. Top-π decoding (Holtzman et al.,
2020) is a local decoding algorithm with pruning
function:

Dπ=π′(w<t) = argmin
D′⊆Σ

|D′|, (6)

s.t.
∑

w∈D′
pθ(w | w<t) ≥ π′

3.2 Global Decoding

Most decoding algorithms operate over pθ(w) as
described above: they select a subset of strings to
assign zero probability and then re-normalise this
distribution locally. However, this re-normalisation
process can also be done globally instead. We
define global decoding algorithms as:

p̂u(w) =

|w|+1∏

t=1

p̂u(wt | w<t) (7a)

pγ(w) =
p̂u(w)∑

w′∈Σ∗ p̂u(w′)
(7b)

where γ marks this distribution as globally nor-
malised. Unlike local normalisation, global nor-
malisation does not distort the distribution beyond
the pruning process. For any unpruned string, we
have pγ(w) ∝ pθ(w).

3.3 Local vs. Global Decoding

The distributions pγ(w) and pα(w) can differ sig-
nificantly. They might, for instance, rank strings
in the opposite order; given two strings w and w′,
we might have: pγ(w) < pγ(w

′) and pα(w) >
pα(w

′). Moreover, the Kullback-Leibler (KL) di-
vergence between them can be arbitrarily large. We
now prove two theorems about these distributions.

Theorem 1. Let VT be a set that includes all T -
maxlength language models pθ(w) (see Defn. 1).
There exist language models pθ ∈ VT , for which
the top-k and top-π decoding versions pγ(w) and
pα(w) have KLs bounded below as:

sup
pθ∈VT

KL
(
pγ(w) || pα(w)

)
∈ Ω(T ) (8a)

sup
pθ∈VT

KL
(
pα(w) || pγ(w)

)
∈ Ω(T ) (8b)

where Ω represents a lower bound in asymptotic
notation.

Proof. See App. C.

This theorem states that there is at least one
choice of pθ(w) for which the KL between lo-
cal and global decoding distributions grows lin-
early with the maximum string length T . There-
fore, these distributions can differ considerably. In
the next theorem, we also provide an upper bound
for the divergence between the two distributions.

Theorem 2. Let pmin be the minimum probability
retained at each time step by either top-k (whose
pmin = k

|Σ| ) or top-π (whose pmin = π). When
using either of these decoding algorithms, both for-
ward and reverse KLs between pγ(w) and pα(w)
are upper bounded by:

KL
(
pγ(w) || pα(w)

)
≤ T log

1

pmin
, (9a)

KL
(
pα(w) || pγ(w)

)
≤ T log

1

pmin
(9b)

where pθ(w) is a T -maxlength language model.

Proof. See App. D.

This second theorem upper-bounds the KL be-
tween local and global decoding in terms of pmin,
the minimum probability kept by the pruning func-
tion for any context w<t. Notably, top-π typically
uses hyperparameters that result in relatively large
pmin values (e.g., π ∈ [.8, .9, .95]), which may ex-
plain why these settings are preferred—choosing
smaller π could lead to larger distortions. In
contrast, top-k is usually applied with hyperpa-
rameters resulting in smaller pmin values (e.g.,
k ∈ [5, 10, 100]). Could its reduced distortion be
what gives top-π an advantage over top-k? Our ex-
periments aim to explore this and related questions.
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A Note on Prior Work. Previous research has
also explored differences between local and global
normalisation in text generation. For instance,
Goyal et al. (2019) note that—while locally and
globally normalised language models are equally
expressive in general—local normalisation may im-
pose constraints on the strings returned by beam
search. Most similar to our work, Zhang et al.
(2021) introduce a globally normalised version of
temperature sampling and compare it to its locally
normalised version.5 However, their comparison
between global and local decoding is less direct as
they also impose a threshold on the maximum al-
lowable probability of a sampled string. To the best
of our knowledge, this paper is the first to system-
atically compare global and local normalisation in
text generation, focusing on the widely used top-k
and top-π decoding methods.

4 Sampling Strings with Independent
Metropolis–Hastings

As noted in our introduction, sampling strings di-
rectly from pγ(w) is generally intractable. How-
ever, given access to the unnormalised p̂u(w),
Markov chain Monte Carlo algorithms allow us
to approximate this sampling process. Several such
methods exist in the controllable text generation
literature (Miao et al., 2019; Amini et al., 2023;
Forristal et al., 2023; Lew et al., 2023; Du et al.,
2024, inter alia).6 Here, we propose a new ap-
proach based on independent Metropolis-Hastings.
The method proceeds as follows: we first sample
an initial string w(1) from a proposal distribution
pimh(w). Then, over N iterations, we sample new
proposal strings w′ ∼ pimh(w) and decide whether
to accept the new string based on an accept–reject
distribution pimh(✓ |w′,w(n−1)). These steps are
summarised in the following equations:

w′ ∼ pimh(w) (10a)

x ∼ Uniform([0, 1]) (10b)

w(k)=

{
w′ ifx ≤ pimh(✓ |w′,w(n−1))

w(n−1) else
(10c)

Finally, we take string w(N+1) as our sample. No-
tably, if we define the accept–reject distribution as:

pimh(✓ |w′,w)
def
=min

(
1,

p̂u(w
′) pimh(w)

p̂u(w) pimh(w′)

)
(11)

5We note this experiment is only present in the paper’s
arXiv version but not in the HumEval workshop version.

6Non-MCMC-based methods also exist for controllable
text generation (e.g., Yang and Klein, 2021).

def ind_metropolis_hastings(pα, p̂u, N):
pimh = define_accept_reject(pα, p̂u)
w = pα.sample()
for n in range(N):

w′ = pα.sample()
x = random.uniform(low=0.0, high=1.0)
if u ≤ pimh(✓ | w′,w):

w = w′

return w

Figure 2: Pseudo-code for independent Metropolis–
Hastings sampling.

this procedure approximates sampling from
pγ(w)∝ p̂u(w) for large enough N . The conver-
gence rate of IMH depends on how closely pimh(w)
matches pγ(w) (Wang, 2021). As we do not have
direct access to pγ(w), we instead use its locally
normalised version as the proposal distribution:

pimh(w)
def
= pα(w) (12)

We present a pseudo-code of this method in Fig. 2.

A Note on Prior Work. Previous methods in
controlled generation (e.g., Miao et al., 2019) simi-
larly sample strings according to Eq. (10), with
the primary difference being their definition of
pimh(w). These methods are based on Metroplis-
Hastings and define a conditional proposal distribu-
tion pimh(w | w(n−1)). In contrast, we propose an
independent Metropolis-Hastings method for mul-
tiple reasons. First, we can batch sample multiple
strings from pimh(w) simultaneously. Second, we
can compute both p̂u(w) and pimh(w) for a string
in a single pass through the model, and simultane-
ously for multiple strings in a batch. Third, some
choices of decoding algorithms (e.g., top-k with
small k) assign zero probability to most strings in
Σ∗. Depending on the choice of pimh(w | w(n−1))
in prior work, some sequences may become un-
reachable from others, potentially breaking the con-
vergence guarantees of Metropolis-Hastings.

5 Experimental Setup

As discussed above, our experiments are designed
to compare local and global decoding algorithms,
specifically evaluating the effects of local normal-
isation’s distortion on decoding performance. To
achieve this, we generate a set of strings using
pre-trained language models—particularly Pythia
(Biderman et al., 2023)—with either local or global
decoding strategies. Our experimental setup is flex-
ible and can be applied to any local decoding algo-
rithm. For this study, we focus on top-k and top-π
decoding, exploring a broad range of configurations
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for each. Below, we provide details on the key com-
ponents of our experimental design, including the
models we use, decoding algorithm configurations,
IMH hyperparameters and evaluation protocols.

5.1 Models
For our experiments, we use Pythia (Biderman
et al., 2023), a suite of open-source autoregressive
(decoder-only) language models pθ(w). Pythia
models are well-suited for performing scientific ex-
periments with controlled settings—such as study-
ing decoding behaviours and analysing their impact
on open-ended text generation quality. Specifically,
we use pythia-70m, pythia-410m, pythia-1.4b and
pythia-2.8b. All models are run in double precision
to avoid numerical instability.

5.2 Decoding Configurations
As mentioned above, we focus our experiments on
top-k and top-π. We analyse several configurations
of these methods. We study top-k with k ∈ {5,
10, 50, 100, 500, 1000, 5000, 10,000} and we ex-
plore top-π with π ∈ {0.01, 0.05, 0.25, 0.5, 0.75,
0.9, 0.95, 0.99}. Additionally, we run experiments
without applying any pruning strategy, which is
equivalent to running top-k while keeping the en-
tire vocabulary Dk=|Σ| (composed of 50,432 tokens),
or top-π while keeping all probability mass Dπ=1.
This serves as a baseline decoding strategy and cor-
responds to using D(w<t) = Σ in Eq. (3), as no
words are pruned by the decoding algorithm.

5.3 Text Sampling
For text generation, Pythia models require at least
one token in the input context. We use the eos
token as a prompt, which is a common practice
for generating open-ended text continuations. We
generate 100,000 sequences for each pair of model–
decoding configurations. At each time step, tokens
wt are sampled from pθ(· | w<t) until either the
maximum length of T = 512 tokens is reached, or
until the eos token is sampled.

5.4 IMH Hyperparameters
To approximate sampling from pγ(w), we use in-
dependent Metropolis–Hastings. We run IMH al-
gorithm 200 times for each model and decoding
configuration, using independent string samples
for each. Each IMH call is run for N = 500 iter-
ations, thus requiring 100,000 sequences in total
(as 100,000 = 500 · 200). We then select the last
accepted sequence from each IMH call, resulting
in 200 strings approximately sampled from pγ .

5.5 Evaluation Methods

We use MAUVE (Pillutla et al., 2021) to evalu-
ate the model-generated samples when using ei-
ther local or global decoding. This metric mea-
sures the similarity between model-generated text
and human-generated reference text. As human-
generated reference text, we use the test set of the
WebText dataset (Radford et al., 2019). Higher
MAUVE scores imply that model-generated strings
are more similar to the human-generated reference
samples, suggesting higher text quality. MAUVE
scores are reported in Fig. 3, as well as in Tab. 1
(in the appendix).7 Additionally, we compute self-
BLEU scores (Zhu et al., 2018) to measure the
diversity of generated texts. Higher self-BLEU
scores indicate lower diversity, meaning the gen-
erated samples are more similar to each other.
Lower self-BLEU scores thus typically correspond
to higher-quality text. Self-BLEU scores are shown
in Fig. 4, as well as in Tab. 2 (in the appendix).

5.6 Bootstrapping

For each model-decoding configuration, we gener-
ate 100,000 sequence samples. These sequences
are then (i) used to run IMH, producing 200 global
decoding sequences, and (ii) subsampled without
repetition to obtain 200 local decoding sequences.
To compute confidence intervals, we apply boot-
strapping to these samples. Specifically, we re-
sample with replacement from the original 100,000
sequences to create a new set of 100,000 sequences.
This resampling is done 10 times, after which we
generate globally and locally decoded samples us-
ing the bootstrapped sets. We compute evaluation
metrics (MAUVE and self-BLEU) based on these
decoded sequences and report the mean values
along with 95% confidence intervals, derived from
the 10 bootstrapped evaluation runs.

6 Main Results

In this section, we present and analyse our results.
First, we evaluate locally and globally decoded text
using Mauve and self-BLEU metrics. Next, we
examine the distortion caused by local normalisa-
tion and assess the impact of using IMH to sample
from globally-normalised distributions. Lastly, we
provide a qualitative analysis of the generated text.

7Although the values for Dk=|Σ| and Dπ=1.0 differ for local
and global decoding, this is because the sequences for evalua-
tion were sampled independently, even though the decoding
methods coincide for this configuration.
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Figure 3: MAUVE evaluation scores when using local and global decoding with various top-k (Top) and top-π
(Bottom) settings. Results are averaged over 10 runs, and 95% confidence intervals are shown.
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Figure 4: Self-BLEU evaluation scores when using local and global decoding with various top-k (Top) and top-π
(Bottom) settings. Results are averaged over 10 runs, and 95% confidence intervals are shown.

6.1 Decoding Quality

Fig. 3 shows MAUVE scores for both local and
global decoding. As shown in this figure, lo-
cal decoding algorithms generally achieve higher
MAUVE scores across most configurations com-
pared to global decoding algorithms. This implies
that local normalisation produces more human-like
text, with the difference particularly noticeable in
the mid-range settings of top-k or top-π. Notably,
local and global decoding produce equivalent distri-
butions when either k = |Σ|, or π = 1.0. They are
also equivalent when k = 1 or π → 0, where the
pruning process retains only one string. However,
global decoding scores drop rapidly as k < |Σ|
or π < 1.0, while local decoding scores even in-

crease for some models. This suggests that, while
global normalisation preserves the overall distri-
bution, local decoding’s distortion may enhance
text quality rather than degrade it. Our results thus
imply that these distortion artefacts introduced by
local normalisation may improve text coherence
and its resemblance to human-generated text.

6.2 Text Repetitions

Tab. 2 presents self-BLEU scores for text samples
from both local and global decoding algorithms. As
shown, local decoding generally produces more di-
verse text, reflected by its lower self-BLEU scores.
Global normalisation thus appears to lead to less
coherent sequences with higher repetition rates.
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6.3 Impact of Local Normalisation

We now examine the distortion introduced by lo-
cal normalisation, which highlights the differences
between global and local decoding. To do this, we
present the sequence-level local normalisation con-
stants in Fig. 5. These constants are the product of
all subword-level local normalisation constants in
a sequence, defined as:

cα(w)
def
=

|w|∏

t=1

∑

w′∈Σ
p̂u(w

′ | w<t)

︸ ︷︷ ︸
cα(w<t) in Defn. 4

(13)

Since these constants vary across different strings,
they distort the distribution: pα(w) = p̂u(w)

cα(w) ̸∝
pθ(w). Fig. 5 shows that these constants are more
uniform for top-k with large k values (note that
the x-axis have different scales and are logged).8

This suggests that, as discussed in §3.3, locally
normalised distributions with these configurations
are less distorted. Combined with the results in
Fig. 3, our findings suggest that a moderate level
of distortion, may improve decoding performance.

6.4 Effect of IMH Sampling on Decoding

In this section, we examine the impact of IMH
sampling on our results. As discussed in §4, IMH
offers a way to approximately sample from dis-
tribution pγ(w), using only unnormalised scores
p̂u(w). This method is approximate and converges
to the target distribution as the number of iterations
increases (i.e., as N → ∞). On the other hand,
running IMH with N = 1 is equivalent to sam-
pling from the proposal distribution, which in our
case is the local decoding distribution, pα(w). In
Fig. 6, we show how MAUVE scores change with

8Also note that log pα(w) = log p̂u(w)− log cα(w).
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Figure 6: MAUVE Scores as the number of IMH iter-
ations N changes. We evaluate global decoding with
top-k (k = 100) and top-π (π = 0.5). We use 200
strings for each evaluation, except when N = 1000,
in which case we use only 100 strings. Strings were
generated using pythia-2.8b.

the number of IMH iterations used. As this figure
illustrates, increasing N from 1 to 10 significantly
affects the results, but scores stabilise for N > 100.
Therefore, even with approximate samples, we be-
lieve that our overall results are representative of
the global distribution pγ(w).

6.5 A Qualitative Analysis of Sampled Strings

In Tab. 3 (shown in App. A.3), we present sam-
ples generated by global and local decoding using
pythia-1.4b. This table shows qualitative differ-
ences between the texts generated using the two
methods. In the case of local decoding, the text
samples are generally coherent, with well-formed
sentences and logical flow. In contrast, global de-
coding often produces text with irrelevant symbols,
code snippets, or disjointed phrases. Overall, the
text generated by global decoding tends to lack
the coherence and fluency observed in the local
decoding samples.
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Figure 7: Average length of sequences using local and global decoding across top-k (Left) and top-π (Right)
decoding configurations. The length of a sequence represents the number of tokens including eos. Sequences were
generated with pythia-2.8b. Results are averaged over 10 runs, and 95% confidence intervals are shown.
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Figure 8: Log-likelihood of globally decoded samples under the original model’s distribution pθ. We sample
sequences as: w ∼ pγ(w). We then evaluate their log-probabilities as: log pθ(w). Results are averaged over 10 runs.

7 Discussion: Why Local Decoding
Outperforms Global Decoding?

Interestingly, despite the theoretical advantages of
global decoding, local decoding consistently out-
performs it in most scenarios. We now propose
three key reasons for this discrepancy.

First, sequences generated through global de-
coding tend to be shorter on average (see Fig. 7).
As probabilities compound multiplicatively over
the length of a sequence, and are constrained to
values no greater than one, the overall probability
of longer sequences decreases exponentially. In
contrast, local normalisation constants (used to nor-
malise contextual probabilities in local decoding)
are at least one. When compounded, they can thus
lead to exponentially higher probabilities for longer
sequences under pα. As a result, local decoding
thus tends to favour longer sequences when com-
pared to global decoding.

Second, global decoding suffers from the well-
known probability-quality paradox in text gen-
eration (Holtzman et al., 2020; Zhang et al., 2021;
Meister et al., 2022). This paradox states that
the most likely sequences according to a language
model are not always the highest quality ones. In
fact, high-probability sequences frequently include
repetitive or incoherent content. Prior research has
shown, for instance, that maximising likelihood
during decoding, such as in beam search, often
leads to degenerate and repetitive outputs (Holtz-

man et al., 2020). In contrast, stochastic methods
like top-π sampling produce more diverse, human-
like text (Meister et al., 2022). Similarly, Stahlberg
and Byrne (2019) show that beam search often does
not return the most likely string under a language
model, and that these “search errors” improve its
generated text quality. These findings align with
our results, which show that global decoding—by
assigning higher probability to sequences which
are already likely under the original model—tends
to generate less coherent and lower-quality text.9

Lastly, language models often allocate signifi-
cant probability mass to repetitive sequences. Even
under local decoding, small values of k can cause
the model to get stuck in repetitive loops. These
loops typically have high local normalisation con-
stants, as the repetitive continuations tend to be
high probability and are often included top-k set
(i.e., in Dk=k′). In such cases, local decoding ef-
fectively discounts these sequences by adjusting
their probabilities. In contrast, global decoding
does not apply this discount, giving these repeti-
tive sequences a higher chance of being sampled.
This results in less coherent and more repetitive
text under global normalisation.

9In Fig. 8, we show the log-likelihood of globally decoded
sequences evaluated under the original language model’s dis-
tribution pθ . This figure shows that for lower values of k or
π, the likelihoods under pθ are higher. Fig. 9 then shows the
same is true when likelihoods are evaluated using the locally
normalised distribution.
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Figure 9: Log-likelihood of globally decoded samples under the local decoding distribution pα. We sample sequences
as: w ∼ pγ(w). We then evaluate their log-probabilities as: log pα(w). Results are averaged over 10 runs.

8 Conclusion

In this paper, we explored the effects of local and
global normalisation on text generation quality, fo-
cusing on two popular decoding methods: top-k
and top-π. We introduced the concept of global
decoding algorithms and adapted local decoding
algorithms to their global counterparts. Our em-
pirical comparison revealed that, while global de-
coding preserves the original distribution, it often
produces shorter, less coherent and more repeti-
tive text than local decoding. In contrast, local
decoding—despite introducing distortions to the
original distribution—typically results in more co-
herent text. Our findings thus suggest that the dis-
tortion introduced by local decoding algorithms
might be a beneficial feature rather than a flaw.
Future research on decoding algorithms should ex-
plore and evaluate the effects of local normalisation
alongside pruning strategies.

Limitations

As with any research project, our work has the-
oretical and empirical limitations. Theoretically,
the lower bounds presented in §3.3 are asymptotic
and omit key constants required to fully understand
how different decoding algorithms and their hyper-
parameters influence performance. Additionally,
we cannot directly sample from the global decod-
ing distributions and rely on IMH for approximate
sampling. Although we examine the impact of this
choice in our experiments (see Fig. 6), it may still
affect the results. Empirically, our experiments are
limited to Pythia models ranging in size from 70m
to 2.8b. Due to large number of samples required
by our sampling methods and relatively large num-
ber of hyperparameter configurations analysed, we
were limited to using smaller-sized models. As
models continue to improve, global distributions
may become better calibrated, potentially yielding
stronger results. Additionally, we only run experi-

ments in English. Extending this analysis to other
languages is an important next step. Furthermore,
our focus was limited to open-ended text genera-
tion and applying our approach to other natural lan-
guage tasks, such as summarisation, could provide
further insights. Finally, our evaluation primarily
relies on automatic metrics such as MAUVE, and
we do not perform human evaluations. Although
MAUVE scores have been shown to correlate well
with human judgements (Pillutla et al., 2021), they
are not a definitive standard. Human evaluations
would offer a more comprehensive understanding
of the results. Moreover, incorporating other auto-
matic metrics, such as Zipf Coefficient (Holtzman
et al., 2020) and Generation Perplexity (Fan et al.,
2018), could provide a more well-rounded assess-
ment of decoding performance.
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A Detailed Results

A.1 MAUVE Scores

pythia-70m pythia-410m pythia-1.4b pythia-2.8b

MAUVELOCAL MAUVEGLOBAL MAUVELOCAL MAUVEGLOBAL MAUVELOCAL MAUVEGLOBAL MAUVELOCAL MAUVEGLOBAL

Dk=|Σ| 0.484 ± 0.075 0.473 ± 0.152 0.593 ± 0.085 0.634 ± 0.062 0.612 ± 0.085 0.526 ± 0.121 0.587 ± 0.128 0.534 ± 0.072

Dk=5.0 0.058 ± 0.018 0.013 ± 0.004 0.091 ± 0.036 0.017 ± 0.007 0.074 ± 0.037 0.017 ± 0.008 0.075 ± 0.024 0.048 ± 0.011
Dk=10.0 0.082 ± 0.034 0.019 ± 0.002 0.157 ± 0.059 0.073 ± 0.033 0.096 ± 0.037 0.018 ± 0.006 0.084 ± 0.029 0.014 ± 0.004
Dk=50.0 0.299 ± 0.078 0.041 ± 0.009 0.374 ± 0.088 0.047 ± 0.018 0.323 ± 0.073 0.039 ± 0.012 0.288 ± 0.064 0.038 ± 0.018
Dk=100.0 0.374 ± 0.107 0.049 ± 0.017 0.467 ± 0.103 0.047 ± 0.011 0.442 ± 0.109 0.052 ± 0.017 0.377 ± 0.163 0.061 ± 0.017
Dk=500.0 0.453 ± 0.131 0.079 ± 0.03 0.546 ± 0.078 0.112 ± 0.043 0.501 ± 0.061 0.098 ± 0.03 0.474 ± 0.097 0.105 ± 0.04
Dk=1000.0 0.506 ± 0.128 0.1 ± 0.035 0.605 ± 0.068 0.149 ± 0.06 0.566 ± 0.128 0.143 ± 0.058 0.489 ± 0.061 0.154 ± 0.07
Dk=5000.0 0.495 ± 0.109 0.194 ± 0.068 0.652 ± 0.098 0.359 ± 0.13 0.604 ± 0.111 0.379 ± 0.113 0.539 ± 0.121 0.374 ± 0.121
Dk=10000.0 0.538 ± 0.14 0.299 ± 0.051 0.6 ± 0.102 0.53 ± 0.111 0.582 ± 0.138 0.427 ± 0.085 0.515 ± 0.128 0.431 ± 0.096

Dπ=0.01 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0
Dπ=0.05 0.004 ± 0.001 0.004 ± 0.0 0.005 ± 0.001 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0 0.004 ± 0.0
Dπ=0.25 0.015 ± 0.004 0.011 ± 0.005 0.026 ± 0.008 0.014 ± 0.006 0.032 ± 0.017 0.007 ± 0.002 0.03 ± 0.02 0.009 ± 0.001
Dπ=0.5 0.041 ± 0.014 0.019 ± 0.005 0.112 ± 0.039 0.034 ± 0.015 0.14 ± 0.066 0.022 ± 0.007 0.138 ± 0.041 0.014 ± 0.004
Dπ=0.75 0.283 ± 0.054 0.101 ± 0.029 0.478 ± 0.146 0.077 ± 0.023 0.415 ± 0.066 0.033 ± 0.009 0.411 ± 0.09 0.067 ± 0.023
Dπ=0.9 0.464 ± 0.108 0.157 ± 0.055 0.566 ± 0.078 0.113 ± 0.04 0.566 ± 0.132 0.076 ± 0.015 0.507 ± 0.099 0.11 ± 0.037
Dπ=0.95 0.486 ± 0.138 0.19 ± 0.048 0.623 ± 0.073 0.186 ± 0.056 0.575 ± 0.135 0.124 ± 0.041 0.489 ± 0.086 0.169 ± 0.053
Dπ=0.99 0.484 ± 0.107 0.232 ± 0.077 0.595 ± 0.091 0.328 ± 0.138 0.621 ± 0.105 0.291 ± 0.091 0.561 ± 0.132 0.278 ± 0.095
Dπ=1.0 0.484 ± 0.075 0.473 ± 0.152 0.593 ± 0.085 0.634 ± 0.062 0.612 ± 0.085 0.526 ± 0.121 0.587 ± 0.128 0.534 ± 0.072

Table 1: MAUVE evaluation scores when using local and global decoding with various top-k and top-π settings.
Results are averaged over 10 runs, and 95% confidence intervals are shown.

A.2 Self-BLEU Scores

pythia-70m pythia-410m pythia-1.4b pythia-2.8b

BLEULOCAL BLEUGLOBAL BLEULOCAL BLEUGLOBAL BLEULOCAL BLEUGLOBAL BLEULOCAL BLEUGLOBAL

Dk=|Σ| 0.0006 ± 0.0001 0.0005 ± 0.0002 0.0005 ± 0.0002 0.0005 ± 0.0001 0.0005 ± 0.0001 0.0005 ± 0.0002 0.0005 ± 0.0001 0.0005 ± 0.0002

Dk=5.0 0.005 ± 0.0007 0.0164 ± 0.0014 0.0069 ± 0.0007 0.0206 ± 0.0021 0.0066 ± 0.0008 0.0765 ± 0.0101 0.0074 ± 0.0007 0.0325 ± 0.0056
Dk=10.0 0.0037 ± 0.0007 0.0182 ± 0.0041 0.0044 ± 0.0008 0.0079 ± 0.0013 0.0044 ± 0.0003 0.0712 ± 0.0095 0.0047 ± 0.0004 0.1365 ± 0.0145
Dk=50.0 0.0017 ± 0.0004 0.0066 ± 0.0032 0.0016 ± 0.0003 0.0102 ± 0.002 0.0018 ± 0.0004 0.0132 ± 0.0014 0.0018 ± 0.0003 0.033 ± 0.005
Dk=100.0 0.0014 ± 0.0002 0.0109 ± 0.0022 0.0012 ± 0.0003 0.0124 ± 0.0026 0.0014 ± 0.0004 0.0084 ± 0.0022 0.0015 ± 0.0003 0.0137 ± 0.0021
Dk=500.0 0.0008 ± 0.0001 0.0044 ± 0.0008 0.0008 ± 0.0002 0.0045 ± 0.0008 0.0008 ± 0.0001 0.0038 ± 0.0009 0.0009 ± 0.0002 0.0032 ± 0.0008
Dk=1000.0 0.0008 ± 0.0002 0.0042 ± 0.001 0.0006 ± 0.0002 0.0033 ± 0.001 0.0007 ± 0.0001 0.0024 ± 0.0007 0.0008 ± 0.0002 0.0017 ± 0.0005
Dk=5000.0 0.0006 ± 0.0001 0.0008 ± 0.0003 0.0005 ± 0.0002 0.0006 ± 0.0002 0.0005 ± 0.0001 0.0007 ± 0.0002 0.0005 ± 0.0001 0.0007 ± 0.0002
Dk=10000.0 0.0006 ± 0.0001 0.0006 ± 0.0001 0.0005 ± 0.0002 0.0006 ± 0.0001 0.0005 ± 0.0002 0.0006 ± 0.0002 0.0006 ± 0.0002 0.0006 ± 0.0002

Dπ=0.01 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Dπ=0.05 0.3584 ± 0.0104 1.0 ± 0.0 0.4466 ± 0.0128 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Dπ=0.25 0.0135 ± 0.0024 0.0234 ± 0.0045 0.0035 ± 0.0006 0.0268 ± 0.0058 0.0056 ± 0.001 0.2687 ± 0.0218 0.0105 ± 0.0018 0.5187 ± 0.0204
Dπ=0.5 0.002 ± 0.0004 0.0165 ± 0.003 0.0014 ± 0.0003 0.0306 ± 0.0048 0.0016 ± 0.0003 0.0534 ± 0.0116 0.0021 ± 0.0003 0.1093 ± 0.0228
Dπ=0.75 0.0016 ± 0.0002 0.0132 ± 0.0041 0.0012 ± 0.0002 0.0103 ± 0.003 0.0012 ± 0.0001 0.0123 ± 0.0018 0.0013 ± 0.0002 0.0188 ± 0.004
Dπ=0.9 0.001 ± 0.0001 0.0019 ± 0.0004 0.0007 ± 0.0001 0.0026 ± 0.001 0.0009 ± 0.0001 0.0038 ± 0.0008 0.0008 ± 0.0001 0.008 ± 0.0014
Dπ=0.95 0.0007 ± 0.0001 0.0006 ± 0.0002 0.0006 ± 0.0002 0.0011 ± 0.0005 0.0006 ± 0.0001 0.0017 ± 0.0005 0.0008 ± 0.0002 0.004 ± 0.0015
Dπ=0.99 0.0006 ± 0.0001 0.0002 ± 0.0001 0.0005 ± 0.0003 0.0003 ± 0.0001 0.0005 ± 0.0001 0.0005 ± 0.0002 0.0006 ± 0.0001 0.0005 ± 0.0001
Dπ=1.0 0.0006 ± 0.0001 0.0005 ± 0.0002 0.0005 ± 0.0002 0.0005 ± 0.0001 0.0005 ± 0.0001 0.0005 ± 0.0002 0.0005 ± 0.0001 0.0005 ± 0.0002

Table 2: Self-BLEU evaluation scores when using local and global decoding with various top-k and top-π settings.
Results are averaged over 10 runs, and 95% confidence intervals are shown.
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A.3 Samples of Strings

Local Decoding Global Decoding

Dk=|Σ| Xmas is exciting this year with the discovery of the
new Dave.\n \nBelow you can see the new Dave in a

Q:\n \nHow to start VLC using jars from android\n
\nI am trying to start VLC using JPMS provided by
Wizard

Dk=5 Q:\n \nHow to use the new.NET 4.0 framework with
Mono 2.8.7 on Ubuntu 11.10?\n \nHow can I use the
new.NET

\n ##ifndef BOOST_MPL_AUX_TEMPLATE_ARIT
Y_HPP_INCLUDED\n ##define
BOOST_MPL_AUX_TEMPLATE_ARITY_HPP_IN
CLUDED

Dk=10 \n \nI just read about the first time the UW football
team beat Iowa, and I thought it was really cool:

1\n

Dk=50 Hurricane Dorian has left at least 15 dead and hun-
dreds missing in the Bahamas as it approaches the

##ifndef OSQA_CONFIG_H_\n ##define
OSQA_CONFIG_H_\n \n /** @file\n *\n *
Definitions shared by all platforms\n

Dk=100 Tag: politics\n \nOn the afternoon of Wednesday,
May 17th, I joined hundreds of thousands of other
Amer

/*\nCopyright The Kubernetes Authors.\n \nLicensed
under the Apache License, Version 2.0 (the "Li-
cense")

Dk=500 Results of hyperthermic intraperitoneal chemother-
apy versus hyperthermic intraperitoneal chemotherap

<?xml version="1.0" encoding="UTF-8"?>\n <!–
Copyright (C) 2013 The Android Open Source
Project\n \n

Dk=1000 Peace love, Hope and Fasting.\n \nThursday , Novem-
ber 10, 2008\n \nOkay ...A few weeks ago I had an
interest

define("ace/mode/javascript_highlight_rules",["requ
ire","exports","module","ace/lib/oop","ace/mode/t

Dk=5000 West Lafayette\n \nIndiana âĂŹs unexpected first
visit to baseball crowncases its home teamâĂŹs suc-
cess from

\n 624 P.2d 352 (1981)\n 105 Idaho 1002\nSue
HANKS, Plaintiff-Appellant,\nv .\nHARTSDALE
TOWNSHIP, Defendant

Dk=10000 These algorithms have a "signature capture
score"\nof about 3.\n

Beth Cooper\n \nNew York Times best-selling author
Beth Cooper will deliver a lecture on poetry and cul

Dπ=0.01 Q:\n \nHow to get the value of a variable in a func-
tion?\n \nI have a function that is called from a butto

Q:\n \nHow to get the value of a variable in a func-
tion?\n \nI have a function that is called from a butto

Dπ=0.05 This invention relates to a semiconductor device and
a method of manufacturing the same, and more pa

\n ##include "qabstractnetworkmodel.h"\n

Dπ=0.25 The present invention relates to a semiconductor de-
vice and a method of manufacturing the same, and

/*\n * Copyright (c) 2017-2018 THL A29 Limited,
a Tencent company. All Rights Reserved.\n *\n *
License

Dπ=0.5 K. T. P. S. B. P. C.\n \nK . T. P. S. B. P. C. is a small
town in the Indian state of Uttar Pradesh. It

import { IconDefinition, IconPrefix, IconName
} from "@fortawesome/fontawesome-common-
types";\nexport

Dπ=0.75 YAML 1.1\n \%TAG!u! tag:unity3d.com,2011:\n —
!u!21 &2100000\nMaterial :\n serializedVersion: 6\n
m_Objec

export { default as Slider } from ’./Slider’;\n

Dπ=0.9 —\nabstract : ’We investigate the concept of the
infinite divisibility of simple functions using som

Embodiments described herein relate to a device for
testing nerve stimulation therapy for chronic pa

Dk=0.95 Secretary of State Rex Tillerson, Defense Secretary
Jim Mattis, CENTCOM Commander Army Gen.
Lloyd Au

export * from ’./domain.module’;\nexport {
useLinkTo, registerLinkTo } from ’./utils’;\n

Dπ=0.99 Associated Press\n \nSYRACUSE , N.Y. (AP) - A
retired Northeastern University professor has been
ordered

Along the dark, shadowy streets of ChicoMira mov-
ing south on Angioteque, cops have spotted three bro

Table 3: Texts generated with pythia-1.4b using local and global decoding. We present one randomly selected text
for each configuration. The sequences are trimmed to 100 characters for readability.
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B Definitions and Useful Lemma

For mathematical convenience, we now define local and global normalisation constants.

Definition 4. The local normalisation constant (denoted cα : Σ∗ → [0, 1]) is defined as:

cα(w)
def
=
∑

w∈Σ
p̂u(w | w) = p̂u(eos | w) +

∑

w∈Σ
p̂u(w | w) (14)

Definition 5. The global normalisation constant (denoted cγ ∈ [0, 1]) and the context-specific global
normalisation constant (denoted c̃γ : Σ∗ → [0, 1]) are defined as:

cγ
def
=
∑

w′∈Σ∗

|w′|+1∏

t=1

p̂u(w
′
t | w′

<t), c̃γ(w)
def
=
∑

w′∈Σ∗

|w′|+1∏

t=1

p̂u(w
′
t | w ◦w′

<t) (15)

We note that c̃γ(w) can be written recursively as:

c̃γ(w) =
∑

w′∈Σ∗

|w′|+1∏

t=1

p̂u(w
′
t | w ◦w′

<t) (16a)

= p̂u(eos | w) +
∑

w∈Σ
p̂u(w | w)

∑

w′∈Σ∗

|w′|+1∏

t=1

p̂u(w
′
t | w ◦ w ◦w′

<t) (16b)

= p̂u(eos | w) +
∑

w∈Σ
p̂u(w | w) c̃γ(w ◦ w) (16c)

and that cγ = c̃γ(∅), where ∅ denotes an empty string.
Given these constants, we can rewrite local and global decoding algorithms, defined in (4) and (7),

respectively, as:

pα(w) =

|w|+1∏

t=1

p̂u(w | w<t)∑
w′∈Σ p̂u(w′ | w<t)

=

∏|w|+1
t=1 p̂u(w | w<t)∏|w|+1

t=1 cα(w<t)
(17)

pγ(w) =

∏|w|+1
t=1 p̂u(wt | w<t)∑

w′∈Σ∗
∏|w|+1

t=1 p̂u(wt | w<t)
=

∏|w|+1
t=1 p̂u(wt | w<t)

cγ
(18)

We now prove a recursively-defined lower bound on cγ which will be useful later.

Lemma 1. The global normalisation constant’s value is lower bounded by:

cγ ≥
(
min
w∈Σ∗

cα(w)

)T (
min
w∈ΣT

c̃γ(w)

)
(19)

Proof. We start this proof by lower bounding the context-specific global normalisation constant with a
local normalisation constant’s value:

c̃γ(w) = p̂u(eos | w) +
∑

w∈Σ
p̂u(w | w) c̃γ(w ◦ w) (20a)

≥ p̂u(eos | w) +
∑

w∈Σ
p̂u(w | w)

(
min
w∈Σ

c̃γ(w ◦ w)
)

(20b)

≥
(
p̂u(eos | w) +

∑

w∈Σ
p̂u(w | w)

) (
min
w∈Σ

c̃γ(w ◦ w)
)

(20c)

= cα(w) min
w∈Σ

c̃γ(w ◦ w) (20d)
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We can now recursively expand this lower bound:

c̃γ(w) ≥ cα(w) min
w∈Σ

c̃γ(w ◦ w) (21a)

≥ cα(w) min
w1∈Σ

(
cα(w ◦ w1) min

w2∈Σ
c̃γ(w ◦ w1 ◦ w2)

)
(21b)

≥ cα(w) min
w1∈Σ

(
cα(w ◦ w1) min

w2∈Σ

(
cα(w ◦ w1 ◦ w2) min

w3∈Σ
c̃γ(w ◦ w1 ◦ w2 ◦ w3)

))
(21c)

≥ cα(w) min
w1∈Σ

(
cα(w ◦ w1) · · · (21d)

min
wT−1∈Σ

(
cα(w ◦ w1 ◦ · · · ◦ wT−1) min

wT∈Σ
c̃γ(w ◦ w1 ◦ · · · ◦ wT−1 ◦ wT )

))

= min
w1∈Σ

(
· · · min

wT−1∈Σ

(
(21e)

cα(w) cα(w ◦ w1) · · · cα(w ◦ w1 ◦ · · · ◦ wT−1) min
wT∈Σ

c̃γ(w ◦ w1 ◦ · · · ◦ wT−1 ◦ wT )

))

= min
w′∈ΣT−1

(
T−1∏

t=0

cα(w ◦w′
≤t) min

wT∈Σ
c̃γ(w ◦w′ ◦ wT )

)
(21f)

(21g)

Finally, we get the bound above by noting that minw′′∈Σ c̃γ(w ◦w′ ◦ w′′) ≤ minw′′∈ΣT c̃γ(w ◦w′′) and
cα(w ◦w′

≤t) ≤ minw′′∈Σ∗ cα(w ◦w′′):

c̃γ(w) ≥ min
w′∈ΣT−1

(
T−1∏

t=0

cα(w ◦w′
≤t) min

wT∈Σ
c̃γ(w ◦w′ ◦ wT )

)
(22a)

≥ min
w′∈ΣT−1

(
T−1∏

t=0

min
w′′∈Σ∗

cα(w ◦w′′)

)(
min

w′′∈ΣT
c̃γ(w ◦w′′)

)
(22b)

=

(
min

w′′∈Σ∗
cα(w ◦w′′)

)T (
min

w′′∈ΣT
c̃γ(w ◦w′′)

)
(22c)

Replacing c̃γ(w) with cγ = c̃γ(∅) completes the proof.

C Proof of Lower-bound on Maximum Divergence between Global and Local
Distributions (Thm. 1)

Theorem 1. Let VT be a set that includes all T -maxlength language models pθ(w) (see Defn. 1). There
exist language models pθ ∈ VT , for which the top-k and top-π decoding versions pγ(w) and pα(w) have
KLs bounded below as:

sup
pθ∈VT

KL
(
pγ(w) || pα(w)

)
∈ Ω(T ) (8a)

sup
pθ∈VT

KL
(
pα(w) || pγ(w)

)
∈ Ω(T ) (8b)

where Ω represents a lower bound in asymptotic notation.

Proof. This proof follows trivially from Lemmas 2 and 3 below.

Lemma 2. Let VT be a set including all T -maxlength language models pθ(w) (see Defn. 1). There exist
language models pθ ∈ VT , whose decoding versions pγ(w) and pα(w) have a reverse KL bounded below
by:

sup
pθ∈VT

KL(pα(w) || pγ(w)) ∈ Ω(T ) (23)
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Proof. We prove this by construction. Let Σ = {a, b, c1, ..., c|Σ|−2} and pθ(w) be defined such that:

pθ(w) =





x w = a

(1− x) 1
|Σ|

T−1
w ∈ b ◦ ΣT−1

0 else

(24)

where, when applied to sets, ◦ represents elementwise concatenation, i.e., b ◦ ΣT−1 = {b ◦w′ | w′ ∈
ΣT−1}. We can get a lower bound for this LM’s reverse KL as:

KL(pα(w) || pγ(w)) =
∑

w∈Σ∗
pα(w) log

pα(w)

pγ(w)
(25a)

= E
w∼pα(w)

[
log

cγ∏|w|+1
t=1 cα(w<t)

]
(25b)

= log cγ + E
w∼pα(w)

[
log

1
∏|w|+1

t=1 cα(w<t)

]
(25c)

= log cγ +
∑

w∈b◦ΣT−1

pα(w) log
1

∏|w|+1
t=1 cα(w<t)

(25d)

= log



x+

∑

w∈b◦ΣT−1

(1− x)
1

|Σ|
T−1

︸ ︷︷ ︸
≥0




︸ ︷︷ ︸
cγ

+(1− x) log
1

∏T+1
t=1 cα(w<t)

(25e)

≥ log x+ (1− x) log
1

cα(∅)︸ ︷︷ ︸
=1

·∏T
t=2 cα(w<t) · cα(w)︸ ︷︷ ︸

=1

(25f)

= log x+ (1− x) log
1

∏T
t=2 cα(w<t)

(25g)

= log x+ (1− x)
T∑

t=2

log
1

cα(w<t)
(25h)

= log x+ (1− x) (T − 1) log
1

cα(w<t)
∈ Ω(T ) (25i)

The suppθ∈VT
KL(pα(w) || pγ(w)) is greater or equal to this LM’s KL, and so is also bounded below.

This completes the proof.

Lemma 3. Let VT be a set including all T -maxlength language models pθ(w) (see Defn. 1). There exist
language models pθ ∈ VT , whose decoding versions pγ(w) and pα(w) have a forward KL bounded
below by:

sup
pθ∈VT

KL(pγ(w) || pα(w)) ∈ Ω(T ) (26)

Proof. We now prove this by construction for top-k, but note that a similar proof applies for top-π. Let
Σ = {a, b, c1, ..., c|Σ|−2} and pθ(w) be defined such that:

pθ(w) =





xT w = a1 ◦ a2 ◦ · · · ◦ aT
xt (1− x) 1

|Σ|
T−t−1

w ∈ a1 ◦ · · · ◦ at ◦ bt+1 ◦ ΣT−t−1

0 else

(27)
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Further, let 1 > x > k
|Σ| . First, we simplify the value of the global normalisation constant for this model:

cγ =
∑

w′∈Σ∗

|w′|+1∏

t=1

p̂u(w
′
t | w′

<t) (28a)

=

|a1:T |+1∏

t=1

p̂u(a | a1:t−1) (28b)

+
∑

w∈a1:i◦b◦ΣT−i−1

((
i∏

t=1

p̂u(at | w<t)

)
p̂u(bt | w≤i)

(
T+1∏

t=i+1

p̂u(wt | w<t)

))

= xT +
∑

w∈a1:i◦b◦ΣT−i−1

xi (1− x)
1

|Σ|
T−i−1 T+1∏

t=1

1{wt ∈ D(w<t)} (28c)

= xT +

T−1∑

i=0

xi (1− x)
1

|Σ|
T−i−1

kT−i−1 (28d)

= xT + (1− x)
k

|Σ|
T−1 T−1∑

i=0

(
x |Σ|
k

)i (28e)

= xT + (1− x)
k

|Σ|
T−1 1− (x |Σ|

k )T

1− x |Σ|
k

(28f)

Now, we simplify the value of Ew∼pγ(w)

[
log
∏|w|+1

t=1 cα(w<t)
]
:

E
w∼pγ(w)


log

|w|+1∏

t=1

cα(w<t)




=
∑

w∈Σ∗
pγ(w) log

|w|+1∏

t=1

cα(w<t) (29a)

=
∑

w∈a1:i◦b◦ΣT−i−1

pγ(w) log

|w|+1∏

t=1

cα(w<t) (29b)

=
∑

w∈a1:i◦b◦ΣT−i−1

xi (1− x) 1
|Σ|

T−t−1

cγ
log

|w|+1∏

t=1

cα(w<t) (29c)

=

∑
w∈a1:i◦b◦ΣT−i−1 xi (1− x) 1

|Σ|
T−t−1

log
∏|w|+1

t=1 cα(w<t)

cγ
(29d)

=
(1− x) k

|Σ|
T−1 ∑T−1

i=0 (x |Σ|
k )i log

∏|w|+1
t=1 cα(w<t)

cγ
(29e)

=

(1− x) k
|Σ|

T−1 ∑T−1
i=0 (x |Σ|

k )i log




i∏

t=1

cα(w<t)

︸ ︷︷ ︸
=1

∏T
t=i+1 cα(w<t) cα(w<T+1)︸ ︷︷ ︸

=1




cγ
(29f)

=
(1− x) k

|Σ|
T−1 ∑T−1

i=0 (x |Σ|
k )i log

∏T
t=i+1

k
|Σ|

cγ
(29g)
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=
(1− x) k

|Σ|
T−1 ∑T−1

i=0 (x |Σ|
k )i(T − i) log k

|Σ|
cγ

(29h)

=
(1− x) k

|Σ|
T−1

(∑T−1
i=0 (x |Σ|

k )i(T + 1)−∑T−1
i=0 (x |Σ|

k )i(i+ 1)
)
log k

|Σ|
cγ

(29i)

=

(1− x) k
|Σ|

T−1
(
(T + 1)

1−(
x |Σ|
k

)T

1−x |Σ|
k

− T (
x |Σ|
k

)T+1−(T+1)(
x |Σ|
k

)T+1

(1−x |Σ|
k

)2

)
log k

|Σ|

cγ
(29j)

=

(1− x) k
|Σ|

T−1
(
(T + 1)

1−x |Σ|
k

−(
x |Σ|
k

)T+(
x |Σ|
k

)T+1

(1−x |Σ|
k

)2
− T (

x |Σ|
k

)T+1−(T+1)(
x |Σ|
k

)T+1

(1−x |Σ|
k

)2

)
log k

|Σ|

cγ
(29k)

=

(1− x) k
|Σ|

T−1
(

(
x |Σ|
k

)T+1−(T+1)
x |Σ|
k

+T

(1−x |Σ|
k

)2

)
log k

|Σ|

cγ
(29l)

Note that the KL we are interested in is defined as:

KL(pγ(w) || pα(w)) = E
w∼pγ(w)

[
log

∏|w|+1
t=1 cα(w<t)

cγ

]
(30)

so we can fill in the values above into it. Now we prove this KL ∈ Ω(T ). To do so, we show that the
limT→∞ KL

T = C, for a C > 0. First, we isolate the terms dependent on T in the KL’s equation.

KL(pγ(w) || pα(w)) = log
1

cγ
+ E

w∼pγ(w)


log

|w|+1∏

t=1

cα(w<t)


 (31a)

= log
1

xT + (1− x) k
|Σ|

T−1 1−(
x |Σ|
k

)T

1−x |Σ|
k

+

(1− x) k
|Σ|

T−1
(

(
x |Σ|
k

)T+1−(T+1)
x |Σ|
k

+T

(1−x |Σ|
k

)2

)
log k

|Σ|

xT + (1− x) k
|Σ|

T−1 1−(
x |Σ|
k

)T

1−x |Σ|
k

(31b)

= log
x−T

1 + 1−x
k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
) +

1−x
k
|Σ|

1

(1−x |Σ|
k

)2

(
( k
|Σ|

1
x)

−1−(T + 1)( k
|Σ|

1
x)

T−1+T ( k
|Σ|

1
x)

T
)
log k

|Σ|

1 + 1−x
k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
)

(31c)

= log
x−T

1 + 1−x
k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
) +

1−x
k
|Σ|

k
|Σ|

1
x

1

(1−x |Σ|
k

)2

(
1− (T + 1)( k

|Σ|
1
x)

T + T ( k
|Σ|

1
x)

T+1
)
log k

|Σ|

1 + 1−x
k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
)

(31d)

= log
x−T

1 + 1−x
k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
) +

(1−x)x(
k
|Σ|−x

)2

(
1− (T + 1)( k

|Σ|
1
x)

T + T ( k
|Σ|

1
x)

T+1
)
log k

|Σ|

1 + 1−x
k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
) (31e)

= −T log x− log

(
1 +

1− x
k
|Σ| − x

(
(
k

|Σ|
1

x
)T − 1

))
+ (31f)

(1−x)x(
k
|Σ|−x

)2

(
1− (T + 1)( k

|Σ|
1
x)

T + T ( k
|Σ|

1
x)

T+1
)
log k

|Σ|

1 + 1−x
k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
)
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We now analyse the limit: limT→∞
KL(pγ(w) || pα(w))

T . Note that, by construction, 1 > x > k
|Σ| . We thus

write:

lim
T→∞

KL(pγ(w) || pα(w))

T

= lim
T→∞

−T log x− log

(
1 + 1−x

k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
))

+

(1−x) x(
k
|Σ|−x

)2

(
1−(T+1)( k

|Σ|
1
x
)T+T ( k

|Σ|
1
x
)T+1

)
log k

|Σ|

1+ 1−x
k
|Σ|−x

(
( k
|Σ|

1
x
)T−1

)

T
(32a)

= lim
T→∞

−T log x

T
+

(1−x)x(
k
|Σ|−x

)2

(
1− (T + 1)( k

|Σ|
1
x)

T + T ( k
|Σ|

1
x)

T+1
)
log k

|Σ|

T

(
1 + 1−x

k
|Σ|−x

(
( k
|Σ|

1
x)

T − 1
)) (32b)

= − log x > 0 (32c)

This completes the proof.

D Upper-bounding the Divergence between Global and Local Distributions (Thm. 2)

Theorem 2. Let pmin be the minimum probability retained at each time step by either top-k (whose
pmin = k

|Σ| ) or top-π (whose pmin = π). When using either of these decoding algorithms, both forward

and reverse KLs between pγ(w) and pα(w) are upper bounded by:

KL
(
pγ(w) || pα(w)

)
≤ T log

1

pmin
, (9a)

KL
(
pα(w) || pγ(w)

)
≤ T log

1

pmin
(9b)

where pθ(w) is a T -maxlength language model.

Proof. This proof follows trivially from Lemmas 6 and 7 below.

D.1 A General Upper-bound

In this section, we prove an upper-bound on the KL between both decoding distributions. We then provide
corollaries discussing how this bound is instantiated by top-k and top-π algorithms.

Lemma 4. Let pθ(w) be a T -maxlength language model (see Defn. 1). Now let pγ(w) and pα(w) be
global and local decoding algorithms run on top of pθ(w). In this case, the forward KL between pγ(w)
and pα(w) is bounded above by:

KL(pγ(w) || pα(w)) ≤ T log
1

minw∈Σ∗ cα(w)
(33)
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Proof. First, we use the definition of the KL to show a bound:

KL(pγ(w) || pα(w)) =
∑

w∈Σ∗
pγ(w) log

pγ(w)

pα(w)
(34a)

= E
w∼pγ(w)


log

∏|w|+1
t=1 p̂u(wt|w<t)

cγ
∏|w|+1

t=1 p̂u(w|w<t)∏|w|+1
t=1 cα(w<t)


 definition of pγ(w) and pα(w) (34b)

= E
w∼pγ(w)

[
log

∏|w|+1
t=1 cα(w<t)

cγ

]
cancel terms (34c)

= E
w∼pγ(w)


log

|w|+1∏

t=1

cα(w<t)


+ log

1

cγ
cγ does not depend on w (34d)

≤ log
1

cγ
first term is ≤ 0 (34e)

≤ log
1

(minw∈Σ∗ cα(w))T (minw∈ΣT c̃γ(w))
apply lemma 1 (34f)

= T log
1

minw∈Σ∗ cα(w)
+ log

1

minw∈ΣT c̃γ(w)
(34g)

Now note that c̃γ(w) = p̂u(eos | w) +
∑

w∈Σ p̂u(w | w) c̃γ(w ◦ w). Since our language model is
T -maxlengthed, then pθ(eos | w) = 1, which implies that p̂u(eos | w) = 1 for all w ∈ ΣT . We thus
have that minw∈ΣT c̃γ(w) = 1. This completes the proof.

Lemma 5. Let pθ(w) be a T -maxlength language model (see Defn. 1). Now let pγ(w) and pα(w) be
global and local decoding algorithms run on top of pθ(w). In this case, the reverse KL between pγ(w)
and pα(w) is bounded above by:

KL(pα(w) || pγ(w)) ≤ T log
1

minw∈Σ∗ cα(w)
(35)

Proof. For this proof, we start with the KL’s definition and show the upper-bound:

KL(pα(w) || pγ(w)) =
∑

w∈Σ∗
pα(w) log

pα(w)

pγ(w)
(36a)

= E
w∼pα(w)

[
log

cγ∏|w|+1
t=1 cα(w<t)

]
(36b)

= log cγ + E
w∼pα(w)

[
log

1
∏|w|+1

t=1 cα(w<t)

]
(36c)

≤ E
w∼pα(w)

[
log

1
∏|w|+1

t=1 cα(w<t)

]
(36d)

≤ E
w∼pα(w)

[
log

1
∏T

t=1minw′∈Σ∗ cα(w′)

]
(36e)

= log
1

∏T
t=1minw∈Σ∗ cα(w)

(36f)

= T log
1

minw∈Σ∗ cα(w)
(36g)

This concludes the proof.
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D.2 An Upper-bound for Top-k (Lemma 6)
Lemma 6. When using top-k decoding, both KLs (forward and reverse) between pγ(w) and pα(w) are
bounded above by:

KL(pγ(w) || pα(w)) ≤ T log
|Σ|
k

, (37a)

KL(pα(w) || pγ(w)) ≤ T log
|Σ|
k

(37b)

where pθ(w) is a T -maxlength language model.

Proof. For convenience, we first rewrite the definition of the set of strings unpruned by top-k here:

D(w<t) = argmax
D′⊆Σ

∑

w∈D′
pθ(w | w<t), s.t. |D′| = k (38)

Top-k’s D(w<t) is thus defined as the largest probability k-sized subset of Σ. This set clearly has at least
probability k

|Σ| . We can thus bound the local constant’s value as:

cα(w) =
∑

w∈Σ
p̂u(w | w) =

∑

w∈Σ
pθ(w | w)1{w ∈ D(w)} ≥ k

|Σ| (39)

We can now apply this inequality to the bound in lemma 4:

KL(pγ(w) || pα(w)) ≤ T log
1

minw∈Σ∗ cα(w)
(40a)

≤ T log
|Σ|
k

(40b)

The same logic applies to the KL(pα(w) || pγ(w)). This completes the proof.

D.3 An Upper-bound for Top-π (Lemma 7)
Lemma 7. Let pθ(w) be a T -maxlength language model (see Defn. 1). Now let pγ(w) and pα(w) be
global and local decoding algorithms based on top-π (as in Defn. 3). In this case, both KLs (forward and
reverse) between pγ(w) and pα(w) are bounded above by:

KL(pγ(w) || pα(w)) ≤ T log
1

π
, (41a)

KL(pα(w) || pγ(w)) ≤ T log
1

π
(41b)

Proof. For convenience, we first rewrite the definition of the set of strings unpruned by top-π here:

D(w<t) = argmin
D′⊆Σ

D′, s.t.
∑

w∈D′
pθ(w | w<t) ≥ π (42)

Top-π’s D(w<t) is thus defined as the smallest subset of Σ which has at least probability π. We can thus
bound the local constant’s value as:

cα(w) =
∑

w∈Σ
p̂u(w | w) =

∑

w∈Σ
pθ(w | w)1{w ∈ D(w)} ≥ π (43)

We can now apply this inequality to the bound in lemma 4:

KL(pγ(w) || pα(w)) ≤ T log
1

minw∈Σ∗ cα(w)
(44a)

≤ T log
1

π
(44b)

The same logic applies to the KL(pα(w) || pγ(w)). This completes the proof.
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