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Abstract

The difficulty of acquiring abundant, high-
quality data, especially in multi-lingual con-
texts, has sparked interest in addressing low-
resource scenarios. Moreover, current litera-
ture rely on fixed expressions from language
IDs, which results in the inadequate learning
of language representations, and the failure
to generate speech in unseen languages. To
address these challenges, we propose a novel
method that directly extracts linguistic features
from audio input while effectively filtering out
miscellaneous acoustic information including
speaker-specific attributes like timbre. Subjec-
tive and objective evaluations affirm the effec-
tiveness of our approach for multi-lingual text-
to-speech, and highlight its superiority in low-
resource transfer learning for previously unseen
language.

1 Introduction

Text-to-speech (TTS) models have achieved re-
markable advancements in generating human-like
speech with a high degree of clarity and naturalness
(Ren et al., 2021; Kim et al., 2021; Tan et al., 2024).
However, these models necessitate an immense
volume of high-quality audio data for training to
produce such high-quality synthetic speech. This
challenge becomes even more pronounced when ex-
tending a mono-lingual TTS model to multi-lingual
setting, as each additional language requires a pro-
portional increase in training data. To mitigate this
data-intensive challenge, Jeong et al. (2024); Do
et al. (2022, 2023) have employed transfer learning
techniques to synthesize speech for low-resource
languages. Nevertheless, a substantial amount of
source language corpora is still necessary to gener-
ate the linguistic knowledge that can be reused for
speech synthesis in low-resource languages.

The predominant method employed in current
multi-lingual TTS systems involve the use of
unique language IDs assigned to each language

Figure 1: Conceptual visualization comparing prior
multi-lingual methodologies that utilize language IDs
for language representations (upper) with the proposed
methodology (lower). The architecture after the text
encoder follows Kim et al. (2021), which we omit for
brevity.

(Casanova et al., 2022; Cho et al., 2022; Zhang
et al., 2019; Nekvinda and Dušek, 2020). In
other words, during both the training and inference
phases, the model requires the target language’s
unique ID as additional input to generate speech
in that language. However, this approach presents
two significant limitations. First, it is incapable of
generating speech for unseen languages that the
model has not been trained on. To synthesize au-
dio in an unseen language, the TTS model must
be retrained from scratch with a new language ID
specifically assigned to the new language, render-
ing the expansion to additional languages cumber-
some and inefficient. Second, merely representing
each language with its corresponding fixed label
fails to capture the diverse and intricate features
inherent to each language. As a result, this limits
the model’s ability to accurately generate linguistic
nuances within synthetic speech.

To address these challenges, we introduce a
novel approach that directly learns linguistic fea-
tures from audio input instead of relying on fixed
expressions from language IDs. This innovative
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method facilitates the extraction and generation of
representations with richer linguistic information.
Furthermore, our approach enables the synthesis
of speech in unseen language with minimal fine-
tuning, requiring as little as ten minutes of data
from the target language. Remarkably, not only
does this method generate high-quality speech in
unseen languages, but also improves speech syn-
thesis for seen languages. Comprehensive evalu-
ations confirm that our method achieves precise
pronunciation in both seen and unseen languages,
underscoring its versatility and effectiveness.

2 Methods

2.1 Preliminaries

The backbone TTS architecture adopted in this re-
search is a non-autoregressive conditional varia-
tional autoencoder VITS (Kim et al., 2021). Ini-
tially, VITS processes an input text sentence
S to generate the corresponding audio using a
Transformer-based (Vaswani et al., 2017) text en-
coder Etext, a stochastic duration predictor, and
a decoder. While the primary focus of this study
is multi-lingual TTS, the VITS framework neces-
sitates further refinement to incorporate speaker-
specific information, given the absence of datasets
featuring individuals proficient in multiple lan-
guages. Consequently, the conventional feed for-
ward layer within the transformer encoder is re-
placed with a structured block comprising a linear
layer, a kernel-based CNN layer, and another linear
layer. The kernel-based CNN layer especially, is
responsible for the integration of the speaker repre-
sentation, which is derived by passing audio input
a into a reference encoder composed of 2D con-
volution layers and a GRU layer, with the latent
representations of the textual input. Interested read-
ers are encouraged to refer to (Yoon et al., 2023), as
speaker integration extends beyond the immediate
scope of multi-lingual TTS research.

2.2 Audio-Based Language Encoder

This subsection introduces a novel approach that
can capture nuanced linguistic features directly
from acoustic input, and generate speech in unseen
languages. The proposed architecture is shown in
the lower part of Figure 1.

Initially, to process audio input ainput, we utilize
a pretrained language encoder Elang that is trained
using a language identification task by Speechbrain

(Ravanelli et al., 2021).1 Specifically, Elang is
a modified Time Delay Neural Network (TDNN)
(Desplanques et al., 2020) x-vector architecture that
leverages Squeeze-Excitation Res2Blocks. The
output from the pretrained Elang results in interme-
diate language representation of zlang.

From this acoustic representation, in order to
enhance linguistic properties, zlang is fed through
an additional 1D convolution projection layer P ,
which generates a new representation of hlang. Sub-
sequently, we utilize a language classifier to predict
the language label of hlang using a softmax func-
tion. However, due to the diverse acoustic features
present in the original acoustic input ainput, such
as those related to speaker voice and gender, these
extraneous attributes must also be filtered out. To
do so, a speaker classifier is additionally incorpo-
rated, and a gradient reversal layer R is utilized to
facilitate speaker adversarial training (SAT). Thus,
the holistic loss function Lle for optimizing the
language embedding hlang can be mathematically
derived as follows, where ylang and yspk represent
the the ground truth labels for language and speaker,
respectively.

Llang = −
∑

log p(ylang|hlang) (1)

Lspk = −
∑

log p(yspk|R(hlang)) (2)

Lle = Llang + Lspk (3)

2.3 Training Protocol

The proposed model is trained using a two-stage
protocol. In the first stage, we train the model
with multi-lingual data, updating all parameters
from scratch except the pretrained language en-
coder Elang. In the second stage, the model is
finetuned on a target low-resource language, and
only the parameters following the language embed-
ding hlang is optimized. In other words, just the
text encoder, stochastic duration predictor, and the
decoder of the backbone VITS are updated. By
freezing all parameters up to the projection layer
that generates hlang, we ensure that the limited data
of the target language does not excessively influ-
ence the previously pretrained components. This
preserves the linguistic knowledge learned from
multi-lingual data.

In both stages, hlang is integrated into the back-
bone VITS with SC-CNN. Alongside the language

1https://huggingface.co/speechbrain/
lang-id-voxlingua107-ecapa
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embedding loss Lle, we utilize additional loss func-
tions from VITS: mel spectrogram reconstruction
loss Lrecon, KL-divergence loss Lkl, adversarial
loss Ladv, feature matching loss Lfm, and duration
loss Ldur. The overall loss functions for multi-
lingual pretraining and low-resource finetuning set-
tings are defined as follows:

Lml = Lrecon + Lkl + Ladv

+ Lfm + Ldur + Lle

(4)

Llr = Lrecon + Lkl + Ladv + Lfm + Ldur (5)

3 Experiments

In this section, we provide a detailed description
of the datasets, their preprocessing procedures, and
the experimental settings required for both multi-
lingual and low-resource settings.

3.1 Datasets

Different datasets were utilized for each training
stage of the model. In the initial multi-lingual pre-
training phase, nine languages were used: Korean,
German, French, Italian, Hindi, Spanish, Russian,
Ukrainian, and Polish. Due to the challenge of eval-
uating performance with genuinely low-resource
languages, English was assumed to be the target
low-resource language for fine-tuning.

Since there is no unified dataset for these lan-
guages, we compiled various open-source datasets:
the AI Hub (MediaGEN, 2021) dataset for Korean,
the HUI-Audio-Corpus-German (Puchtler et al.,
2021) for German, the M-AILABS (Solak, 2019)
dataset for Spanish, French, Italian, Russian, Pol-
ish, and Ukrainian, the LIMMITS24 (SPIRE lab,
2023) dataset for Hindi, and the LJSpeech (Ito and
Johnson, 2017) dataset for English.

All text data were preprocessed using Interna-
tional Phonetic Alphabet (IPA) token, in line with
previous TTS systems (Kim et al., 2021; Jeong
et al., 2024; Yoon et al., 2023), and audio data was
resampled to 22.05 kHz. For multi-lingual training,
we extracted 10 hours of training data per language
and set aside 500 evaluation sentences per language.
For the low-resource finetuning stage, we used 10
minutes and 1 hour of data from the English dataset,
and prepared 500 evaluation sentences.

3.2 Multi-lingual Experimental Settings

We used four Nvidia A5000 GPUs with a batch size
of 32 to pretrain our model on multi-lingual data for

400K steps. To validate the performance of our pre-
trained model, we compared it against a MM-TTS
(Jeon et al., 2024) model that used language IDs
to represent individual languages. This baseline
model was pretrained using the same multi-lingual
data under the same experimental conditions as our
pretrained model, utilizing the same type and num-
ber of GPUs, batch size, and training steps. Other
configurations not explicitly mentioned followed
the settings from original VITS setup.

3.3 Low-resource Experimental Settings

For low-resource setting, we performed transfer
learning, using the model trained in the multi-
lingual setting as the pretrained model. For com-
parison, we used the original VITS model and con-
ducted the experiments under the same conditions.
The models were trained on four NVIDIA A5000
GPUs with a batch size of 16 for 30K steps.

4 Results and Discussion

For evaluation, we employed Mean Opinion Score
(MOS) and Character Error Rate (CER) as metrics.
The MOS test was conducted to assess the qual-
ity of the synthesized speech. Fifteen evaluators
recruited from the Amazon Mechanical Turk plat-
form listened to the synthesized audio samples and
rated their naturalness on a Likert scale from 1 to 5.
However, due to the difficulty of recruiting multilin-
gual experts for the MOS evaluation, we employed
NORESQA-MOS (Manocha and Kumar, 2022), a
MOS prediction model, for the multilingual evalu-
ation. Additionally, CER was measured to evaluate
the intelligibility of the synthesized speech. We uti-
lized pretrained speech recognition model2: Ope-
nAI’s Whisper (Radford et al., 2023) to transcribe
the synthesized audio and calculate CER.

4.1 Multi-lingual Results

As shown in Table 1, we conducted a multi-lingual
evaluation using CER. Our proposed model demon-
strated superior performance over the baseline
model across all languages. Additionally, we per-
formed MOS prediction using NORESQA-MOS.
The predicted scores are as follows: the baseline
model had an average score of 4.32, the proposed
method without SAT scored 4.41, and the proposed
method with SAT scored 4.44. Detailed scores are
available in the Appendix A. These results demon-
strate that our method of extracting language em-

2https://github.com/openai/whisper
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German French Italian Korean Hindi Polish Russian Spanish Ukrainian

Ground Truth 2.10 4.02 3.06 6.55 13.02 2.62 3.34 2.49 4.09

Baseline 4.99 9.32 5.92 9.69 20.46 6.06 7.13 7.14 7.89

Proposed (w/o SAT) 4.61 8.33 5.51 9.01 18.48 4.85 6.53 5.88 7.61

Proposed (with SAT) 3.75 7.17 4.43 8.80 18.33 4.56 5.49 4.87 6.45

Table 1: Results of pretrained multi-lingual TTS, with each language evaluated using CER (%). Lower CER scores
indicate better performance.

Model CER (↓) MOS (↑)

Ground Truth 2.31 4.14 ± 0.12

VITS 3.88 2.69 ± 0.21

10m Proposed (w/o SAT) 2.32 3.87 ± 0.13

Proposed (with SAT) 2.14 3.97 ± 0.12
VITS 2.19 3.47 ± 0.14

1h Proposed (w/o SAT) 1.96 4.02 ± 0.12

Proposed (with SAT) 1.84 4.11 ± 0.13

Table 2: CER (%) and MOS scores for low-resource
setting with 95% confidence intervals.

bedding directly from audio is able to effectively
capture language representations compared to pre-
vious methods relying on language IDs.

4.2 Low-resource Result

We utilize both CER and MOS metrics to evalu-
ate performance in the low-resource setting. As
shown in Table 2, our method showed strong per-
formance in both metrics. Specifically, while the
original VITS model does not perform adequately
in the low-resource setting (high CER and low
MOS scores), our proposed model with SAT ex-
hibited robust performance. In some instances, our
methodology even surpasses the ground truth CER
results. This illustrates our method’s capability to
learn more nuanced and effective language repre-
sentations, which are effective even for previously
unseen language.

4.3 Ablation Study

To thoroughly validate our methodology, we con-
ducted two additional experiments. First, we com-
pared the performance with and without speaker
adversarial training (SAT) to completely remove
speaker information from the language embedding
extracted from the audio. As shown in Tables 1 and
2, performance improved in all cases when SAT
was included. This confirms that removing speaker
information from the language embedding allows
for better conveyance of language representations.

Figure 2: Distribution of language embeddings with and
without the projection layer. Visualizations were con-
ducted using 2D PCA. Utilization of an addition projec-
tion layer results in distinct language-specific clusters.

Moreover, we examined the distribution of the
language embedding with and without the projec-
tion layer added to the pretrained language encoder.
Figure 2 shows the 2D PCA visualization of lan-
guage embedding extracted under both conditions.
Without the projection layer, the language distri-
butions varied significantly depending on gender
or speaker, indicating that the language embedding
was influenced by these characteristics. However,
the additional projection layer and training with
classifiers enabled the language embedding to be-
come more consistent and clustered according to
language. This demonstrates that the projection
layer enhances the consistency of language embed-
ding, thereby improving the clarity of language dis-
tinctions and enhancing the model’s performance.

5 Conclusion

In this paper, we proposed a method for multi-
lingual TTS that directly extracts language embed-
ding from audio rather than using fixed expressions
from language IDs. We enhanced the pretrained
language encoder with a projection layer to bet-
ter capture language representations and incorpo-
rated speaker adversarial training to remove ex-
traneous speaker information from the language
embedding. Our experimental results demonstrate
that this straightforward approach is highly effec-
tive for multi-lingual TTS. Furthermore, we were
able to observe significant improvements compared
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to previous methodology. Whereas previous lan-
guage ID approach was unable to generate speech
for unseen languages, our proposed approach al-
lows for the generation of high-quality speech for
an unseen language by finetuning the model using
just 10 minutes of additional data. This promising
outcome suggests that our method could signifi-
cantly enhance the accessibility and quality of TTS
across multi-lingual and low-resource settings.

6 Limitations

In order to comprehensively evaluate the efficacy
of our proposed method, as discussed in Section 3,
we considered English as a low-resource language
for testing purposes. It is essential to extend this
evaluation to actual low-resource languages in fu-
ture studies, as our current approach serves as a
proof of concept. Furthermore, while we utilized a
language classifier to aid in linguistic knowledge
learning, employing alternative methods such as un-
supervised learning could potentially offer a more
robust approach. Therefore, future research will
explore diverse learning methods for extracting lan-
guage embeddings from audio data.

7 Ethical Considerations

The target task of speech synthesis can potentially
be used to create artificial speech without some-
one’s consent. As such, we place importance on
conducting responsible and ethical research.
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A MOS Prediction Result

To provide a clearer analysis of multilingual TTS,
we conducted the MOS prediction task using

Baseline Proposed
(w/o SAT)

Proposed
(with SAT)

German 4.34 ± 0.12 4.45 ± 0.15 4.45 ± 0.13
French 4.35 ± 0.23 4.36 ± 0.20 4.42 ± 0.13
Italian 4.24 ± 0.28 4.33 ± 0.22 4.40 ± 0.13
Korean 4.44 ± 0.07 4.43 ± 0.15 4.43 ± 0.08

Hindi 4.47 ± 0.19 4.56 ± 0.26 4.57 ± 0.25
Polish 4.35 ± 0.24 4.42 ± 0.12 4.36 ± 0.14

Russian 4.31 ± 0.29 4.44 ± 0.09 4.43 ± 0.06

Spanish 4.05 ± 0.44 4.27 ± 0.32 4.43 ± 0.08
Ukrainian 4.40 ± 0.23 4.43 ± 0.11 4.43 ± 0.07

Table 3: MOS scores of pretrained multi-lingual TTS,
with each language evaluated using NORESQA-MOS.

NORESQA-MOS. As shown in Table 3, the pro-
posed method with SAT outperforms other con-
figurations across most languages, supporting our
claim that the approach effectively captures lan-
guage representations.
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