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Abstract

Many open-ended conversations (e.g., tutoring
lessons or business meetings) revolve around
pre-defined reference materials, like work-
sheets or meeting bullets. To provide a frame-
work for studying such conversation structure,
we introduce Problem-Oriented Segmenta-
tion & Retrieval (POSR)1, the task of jointly
breaking down conversations into segments and
linking each segment to the relevant reference
item. As a case study, we apply POSR to ed-
ucation where effectively structuring lessons
around problems is critical yet difficult. We
present LessonLink, the first dataset of real-
world tutoring lessons, featuring 3,500 seg-
ments, spanning 24,300 minutes of instruction
and linked to 116 SAT® math problems. We
define and evaluate several joint and indepen-
dent approaches for POSR, including segmen-
tation (e.g., TextTiling), retrieval (e.g., Col-
BERT), and large language models (LLMs)
methods. Our results highlight that modeling
POSR as one joint task is essential: POSR
methods outperform independent segmentation
and retrieval pipelines by up to +76% on joint
metrics and surpass traditional segmentation
methods by up to +78% on segmentation met-
rics. We demonstrate POSR’s practical impact
on downstream education applications, deriv-
ing new insights on the language and time use
in real-world lesson structures.2

1 Introduction

Across education, business, and science, many
open-ended conversations like meetings or tutor-
ing sessions are designed to address a set of pre-
defined topics. As a prominent example, educators
often shape their lessons around worksheet prob-
lems. Structuring lessons effectively is critical but
challenging, as educators must allocate the right

1Pronounced as “poser” (/"poz@r/), a perplexing problem.
2Our code and dataset are open-sourced at https://

github.com/rosewang2008/posr.
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1

x y2 − = 8

x y+ 2 = 4
For the system of equations above, what is the value
of x y+ ?

A) –1
B) 4
C) 5
D) 20

2

Which of the following is equivalent to
x x x2 − + 3( ) ( x−2 2 ) ?

A) x5 − 52 x

B) x5 + 52 x
C) 5x
D) 5x2

3

Which of the following statements is true about the
graph of the equation y x2 − 3 = −4 in the xy-plane?

A) It has a negative slope and a positive y-intercept.
B) It has a negative slope and a negative y-intercept.
C) It has a positive slope and a positive y-intercept.
D) It has a positive slope and a negative y-intercept.

4

The front of a roller-coaster car is at the bottom of a
hill and is 15 feet above the ground. If the front of the
roller-coaster car rises at a constant rate of 8 feet per
second, which of the following equations gives the
height h, in feet, of the front of the roller-coaster car
s seconds after it starts up the hill?

A) h s= 8 + 15

B) h s= 15 +
335
8

C) h s= 8 +
335
15

D) h s= 15 + 8

3 3

...............................................................................................................................................................................................................................................................................................................
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Figure 1: Problem-Oriented Segmentation and Retrieval
(POSR) provides a framework for studying conversation struc-
ture around reference materials. For example, while conver-
sations i, j discuss the same worksheet, POSR reveals that
conversation i covers fewer problems than j but spends more
time per problem.

amount of time to different problems, while ad-
dressing different student learning needs (Haynes,
2010; Henderson, 1997; Panasuk and Todd, 2005).
However, many novices or educators teaching large
groups of students struggle with lesson structur-
ing and often run out of time (Stradling and Saun-
ders, 1993; Pozas et al., 2020; Deunk et al., 2018;
Takaoglu, 2017; Hejji Alanazi, 2019).

Providing evidence-based insights on lesson struc-
turing is a key step towards addressing this chal-
lenge. These insights provide educators feedback
on their teaching (Fishman et al., 2003; Kraft et al.,
2018; Lomos et al., 2011; Desimone, 2009), tutor-
ing platforms on training priorities (Hilliger et al.,
2020; Gottipati and Shankararaman, 2018; Hilliger
et al., 2022) and curriculum developers on mate-
rial design (O’Donnell, 2008; Fullan and Pomfret,
1977). Unfortunately, obtaining insights on lesson
structures at scale is challenging.

The study of conversation structure around refer-
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ence materials draws on concepts from two, typ-
ically distinct natural language processing (NLP)
tasks: discourse segmentation to identify segments
in the conversations and information retrieval (IR)
to retrieve the relevant reference material for each
segment. While each task has rich literature, study-
ing them jointly reveals real-world challenges that
existing works bypass. For example, discourse seg-
mentation methods assume that conversations share
the same structure (Ritter et al., 2010; Hearst and
Plaunt, 1993; Chen and Yang, 2020), but education
conversations have unique structures as teachers
adapt their lessons to different needs. While prior
IR work has studied supporting natural-language
queries over conversations (Sanderson et al., 2010;
Oard et al., 2004; Chelba et al., 2008), the reverse
task of using open-ended conversation segments
as queries for retrieving domain-specific reference
materials has not received similar attention.

To address these gaps, we make several key con-
tributions. We define the Problem-Oriented Seg-
mentation and Retrieval (POSR) task for jointly
segmenting conversations and linking segments
to relevant reference materials, such as worksheet
problems (Figure 1). Unlike segmentation or re-
trieval alone, the joint POSR task reflects the re-
alistic opportunities and challenges presented by
knowing the potential reference topics (from the
reference materials) for conversation segments.

POSR provides a general framework for studying
conversation structure around reference materials.
As a case study, we apply POSR to the educa-
tion setting. We contribute LessonLink, a novel
dataset of real-world tutoring lessons featuring
3,500 segments, 116 SAT® math problems, and
over 24,300 minutes of instruction. Our open-
source dataset consists of real tutoring conversa-
tions paired with SAT® math worksheets, each
conversation lasting about 1.5 hr long. Each con-
versation is segmented and each segment is linked
with one of the 116 problems. To the best of our
knowledge, this is the first dataset to include real-
world conversations of unique structures linked
with reference materials like worksheets.

Evaluating POSR is challenging: Existing segmen-
tation metrics do not measure time-weighed errors
and existing metrics fail to reflect the subtle ways
in which segmentation and retrieval errors inter-
act. To address this, we contribute time-aware
segmentation metrics adapted from standard line-

based metrics (e.g., WindowDiff from Pevzner and
Hearst (2002)) and introduce the Segmentation
and Retrieval Score (SRS) to jointly measure seg-
mentation and retrieval accuracy as the proportion
of conversation where the retrieved item matches
the ground truth.

We define and evaluate a suite of segmentation,
retrieval and POSR methods on LessonLink, in-
cluding traditional segmentation methods like Text-
Tiling (Hearst, 1997), popular IR methods like
ColBERT (Khattab and Zaharia, 2020) and long-
context large language models (LLMs) like Claude
and GPT-4 (Anthropic, 2024; OpenAI, 2024). Our
results highlight the importance of POSR’s joint
approach: POSR methods outperform independent
segmentation and retrieval pipelines by up to +76%
on SRS metrics and traditional segmentation meth-
ods by up to +78% on segmentation metrics. How-
ever, several challenges remain. In domains with
high privacy risks like education, companies are of-
ten unwilling to share data long-term due to privacy
concerns. Moreover, while LLMs achieve strong
POSR performance, their high API costs on long
texts raise scalability concerns. Our findings moti-
vate the need for more cost-effective, open-sourced
methods that can deliver high accuracy on joint
reasoning tasks like POSR.

Finally, to further highlight the utility of POSR to
real-world scenarios, we describe two novel ap-
plications of POSR to illustrate its potential for
impacting evidence-based practices in education.
First, through a linguistic analysis, we discover that
tutors who spend more time on problems provide
richer conceptual explanations. Tutors who spend
less time provide procedural explanations. Second,
POSR quantifies wide variability in how long tu-
tors spend on the same problem. These examples
point to opportunities for improving language and
time-management practices.

2 Related Work

Discourse segmentation is the task of partitioning
conversations into segments, traditionally a pre-
processing step before retrieval or summarization
of conversations (Hearst and Plaunt, 1993; Callan,
1994; Wilkinson, 1994; Galley et al., 2003; Chen
and Yang, 2020; Althoff et al., 2016; Salton and
Buckley, 1991a,b; Salton et al., 1996; Huang et al.,
2003). Different domains like customer service
or meetings define segments differently, e.g. as
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a speech act, a topic, or a conversation stage (Liu
et al., 2023; Riedl and Biemann, 2012; Prabhakaran
et al., 2018); In this work, we study problem-
oriented segments: conversation segments that dis-
cuss individual math problems. While most exist-
ing segmentation methods assume conversations
exhibit predictable structure (Ritter et al., 2010;
Hearst and Plaunt, 1993; Chen and Yang, 2020),
education conversations are diverse and lack such
predictable structure.

Math information retrieval poses special chal-
lenges (Munavalli and Miner, 2006; Sojka and
Líška, 2011; Nguyen et al., 2012) because math ex-
pressions can be difficult to represent contextually
(Schubotz et al., 2016; Kamali and Tompa, 2013;
Zanibbi and Blostein, 2012; Aizawa and Kohlhase,
2021). Our setting combines these challenges with
the additional difficulty of treating conversational
segments as queries, unlike typical retrieval using
well-formed keyword queries (Wang et al., 2024).
Our LessonLink dataset provides a new resource of
real-world education conversations segmented and
linked to math problems from worksheets. This
enables the study of POSR, combining discourse
segmentation with retrieval of math materials.

Evaluation metrics for segmentation include
Pk (Beeferman et al., 1997) and WindowD-
iff (Pevzner and Hearst, 2002). Both measure
the segmentation accuracy based on a line-level
sliding window (Morris and Hirst, 1991; Kozima,
1996; Reynar, 1999; Choi, 2000; Beeferman et al.,
1999) but neither account for the time duration
of a line, which can confound accuracy reporting
for real-world applications (Grosz and Hirschberg,
1992; Nakatani et al., 1995; Passonneau and Lit-
man, 1997; Hirschberg and Nakatani, 1998; Repp
et al., 2007). We develop a time-based version of
Pk and WindowDiff and propose a time-based SRS
metric for assessing the holistic performance.

3 Problem-Oriented Segmentation and
Retrieval (POSR)

We define the task of Problem-Oriented Segmen-
tation and Retrieval (POSR) as jointly dividing a
conversation transcript into segments and retriev-
ing the relevant topic (e.g., problem) discussed in
each segment. While segmentation and retrieval are
individually challenging, POSR jointly addresses
them together to improve ecological validity and
expose new system design tradeoffs. We hypothe-

Algorithm 1 POSR vs. non-POSR methods
Require: T,R

if with POSR then
s1, . . . , sN ← segment(T,R)

else
s1, . . . , sN ← segment(T )

end if
w1, . . . , wN ← retrieve([s1, . . . , sN ], R)

size (and show in Section §6) that systems aware of
retrieval topics will segment better, and vice versa,
motivating joint POSR methods.

3.1 Task Definition

Given a transcript T = ⟨T1, ..., TN ⟩ of N
lines and a corresponding reference corpus
R = ⟨R1, ..., RW ⟩ (e.g., a worksheet of prob-
lem entries), the POSR objective is to out-
put an array of segment id and problem refer-
ence id for each line in the transcript, Y =
[(s1, w1), (s2, w2), . . . , (sN , wN )]:

• s1, . . . , sN is the segment id for each line in
line. So, s1 is the segment id for the line 1, s2
the segment id for line 2, and so on.

• w1, . . . , wN ∈ {R1, . . . , RW } indicate the
problem reference id from the corpus.3

Since these transcripts originate from real-world
conversations, each line Ti is associated with a start
and end timestamp, tstart

i , tend
i . Algorithm 1 high-

lights POSR methods , which take both transcript
T and retrieval corpus R into account for segmenta-
tion, in contrast to independent segmentation and
retrieval methods.

3.2 Metrics

To evaluate the effectiveness of POSR methods, we
introduce the standard and our novel metrics for
evaluating segmentation and retrieval individually
and jointly. As evident in Algorithm 1, the segmen-
tation metrics help capture how segmentation may
be improved by accounting for the retrieval corpus.
We additionally adapt standard metrics to also take
time into account. Finally, we also account for
practical considerations by reporting cost.

Existing, line-based segmentation metrics. We
use two established metrics for segmentation accu-
racy: WindowDiff from Pevzner and Hearst (2002)
and Pk metric from Beeferman et al. (1999). Both

3If si = sj then wi = wj .
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use a line-based sliding window approach that mea-
sures boundary mismatches within the window.
Lower values are better for both metrics. For exam-
ple, WindowDiff is computed as:

WindowDiff(Y, Y ∗) =

1

N − k

N−k∑

j=1

1(|b(sj:j+k)− b(s∗j:j+k)| > 0),

where b(·) represents the number of boundaries
within the · window and k is typically set to half
of the average of the true segment line size. Pk

is similar but penalizes false-negatives more, i.e.,
missed segments. For conciseness, we leave Pk’s
definition in Appendix §A.

New, time-based variants of segmentation met-
rics. Existing segmentation metrics operate at a
line-level and do not account for the time duration
of segments. However, in education settings, time
spent per segment is crucial to understanding lesson
structures (Stevens and Bavelier, 2012; Martens
and Wyble, 2010; Heim and Keil, 2012; Eze and
Misava, 2017). To address this, we propose Time-
WindowDiff and Time-Pk, new time-based variants
of Pk and and WindowDiff. Time-Windowdiff is
calculated as:

Time-WindowDiff(Y, Y ∗) =

1

N − k

N−k∑

j=1

1(|b(ststart
j :tend

j +∆k
)

− b(s∗
tstart
j :tend

j +∆k
)| > 0),

where ∆k, the time duration of the sliding window,
is half of the average true segment duration (sim-
ilar to k). b(ststart

j :tend
j +∆k

) refers to the number of
boundaries within the window that starts at tstart

j

and ends at tend
j +∆k. This ensures that long and

short segment durations are appropriately weighted
in the evaluation. For conciseness, we leave Time-
Pk’s definition in Appendix §A.

API cost. Closed-sourced models result in high
API usage costs, especially on thousands of long
conversations such as in our setting.4 Educational
organizations may be less inclined to rely on ex-
pensive methods without justified trade-offs. Thus,
we report the average cost per 100 transcripts5.

4Third-party models additionally raise privacy and intel-
lectual property concerns especially in domains that deal with
sensitive data, like student data and copyrighted materials.

5Based on OpenAI and Anthropic pricing in 05/24-06/24.

The Segmentation Retrieval Score (SRS). Eval-
uating POSR methods presents unique challenges
because of interdependencies between segmenta-
tion and retrieval. On the one hand, segmentation
may improve with access to the retrieval corpus in
disambiguating segment boundaries. On the other
hand, incorrect segmentation make retrieval eval-
uations difficult as the retrieved content cannot be
easily checked with misaligned segment bound-
aries and IDs.

We propose the Segmentation Retrieval Score
(SRS), which accounts for this by evaluating the
correctness of retrieved topics, conditioned on the
predicted segmentation. False positive segments
overly penalize an exact segment match. Therefore,
SRS only requires the retrieved topic wj , deter-
mined based on the predicted segment sj (rf. Algo-
rithm 1), to match the reference w∗

j for a line to be
considered correct. This allows some flexibility in
segment boundaries as long as the retrieved topics
are accurate. SRS is defined as:

α-SRS(Y, Y ∗) =
1∑
j αj

N∑

j=1

αj1(wj(sj) == w∗
j )

where line-based SRS has αj = 1 and time-based
SRS has αj = tend

j − tstart
j .

4 The LessonLink Dataset

We introduce the LessonLink dataset as a con-
crete case study of POSR. LessonLink contains
real-world tutoring lesson transcripts segmented
and linked with problems in SAT® math work-
sheets. The dataset features 3,500 segments of
over 24,300 minutes of instruction, featuring 1,300
unique speakers and 116 linked problems. Table 1
summarizes the statistics of the dataset. We release
the LessonLink dataset under the CC Noncommer-
cial 4.0 license6.

Data source. We collected the data in partner-
ship with Schoolhouse.world, a free peer-to-peer
tutoring platform that supports over ∼80k students
worldwide with the help of ∼10k volunteer tutors.
One of their main focuses is to help high school
students prepare for the SAT, a standardized test
used for college admissions in the United States.
The platform shared de-identified transcripts with
us from their March 2023 SAT® Math Bootcamp,

6https://creativecommons.org/licenses/by-nc/4.
0/
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Transcripts Total Transcripts 300
Total Speakers 1377
Total Segments 3576
Mean Speakers Per Transcript 6.37
Mean Segments Per Transcript 11.92
Mean Problems Per Transcript 7.43
Mean Lines Per Transcript 495.51
Mean Duration (mins) 81.62

Worksheets Total Worksheets 7
Total Problems 116

Table 1: LessonLink dataset statistics.

a four week-long course where tutors met with
students in small groups twice a week to practice
SAT® math problems. We randomly picked 300
transcripts. Schoolhouse received consent from
parents and students to share de-identified data for
research purposes. The maximum tutor-student
ratio in each bootcamp is 1:10. Tutoring lessons
are 80 minutes long. Schoolhouse recommends
a lesson structure that starts with 30 minutes of
warm-up exercises followed by the students work-
ing on the worksheet independently and then a
group review. Tutors have freedom in structuring
their lesson and they typically use their students’
practice test results to determine what to focus on.

Transcripts. Each tutoring lesson is recorded
and transcribed automatically via Zoom. School-
house de-identified the transcripts using the Edu-
ConvoKit library (Wang and Demszky, 2024), with
tutor and student names replaced with placeholder
tokens “[TUTOR]” and “[STUDENT]”.

Worksheets. Each transcript is linked to an
SAT® problem worksheet that the tutor and stu-
dents work on during the lesson. The sheets include
official, publicly available math practice problems
created by College Board®, the organization that
administers the SAT® exams.7 Each worksheet
has about 16 problems on average. We split each
worksheet into separate problem images, and use
Pytesseract, an optical character recognition (OCR)
tool, to extract the text content from the images
(PyTesseract, 2017). OCR does not capture the
visual components (e.g., graphs). We focus only on
using the text data, and leave visual data for future
work.

Annotation. The definition of a segment varies
across domains like customer service, meetings,
and tutoring sessions (Liu et al., 2023; Riedl and

7https://satsuite.collegeboard.org/sat/
practice-preparation/practice-tests

Biemann, 2012). Our definition builds on School-
house.world’s curriculum structure that dedicates
time for an introduction to the session, targeted
warm-up exercises, and worksheet problems. We
use the following segment categories: (1) Infor-
mal. These segments include introductory talk or
off-task discussions (Carpenter et al., 2020; Ro-
drigo et al., 2013). Examples include the group
doing an ice-breaker game. (2) Warm-up prob-
lem. These segments discuss warm-up problems
that are not a part of the session’s main worksheet.
(3) Worksheet problem. These segments discuss
a problem from the session’s main worksheet.

We recruited 3 annotators who were familiar with
the Schoolhouse materials and tutoring session
structure. This domain familiarity was important in
ensuring high-quality annotations. The annotation
process was carried out using Excel sheets, and
annotators were compensated at a rate of $20 per
hour. Segment annotations happen at the level of
a transcript line, as provided by Zoom. Each tran-
script line includes a start and end timestamp in
milliseconds. While Zoom uses its own proprietary
ASR technology, the lines typically capture a single
utterance without the speaker making a pause. To
ensure alignment and consistency, the start/end of
a segment happens on the end of a sentence. This
means that if a sentence is broken up into two lines,
the last line would be considered for the segment
annotation.

To determine human agreement on this task, the
annotators annotated the same 30 lesson transcripts
for segments and linked problems. On a line-level,
the inter-rater segmentation accuracy was 98.9%
and retrieval accuracy was 100%. We also use
Cochran’s Q (Cochran, 1950) to evaluate segmenta-
tion agreement, similar to prior work (Galley et al.,
2003): Cochran’s test evaluates the null hypothesis
that the number of subjects assigning a boundary
at any position is random. The test shows that the
inter-rater reliability is significant to the 0.01 level
for 98% of the transcripts. Given the high inter-
rater agreement, the 3 annotators annotated 300
transcripts. We create a small 1:10 train/test split
on our dataset: The train set containing 30 tran-
scripts and the test set 270 transcripts. We inten-
tionally have a large test set: While some methods
require a training set, we prioritize a robust evalu-
ation of zero-shot methods and thus have a larger
test set. This approach is consistent with other zero-
shot evaluations in the literature (Chen et al., 2021;
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Wang et al., 2024), where large test sets are used
for robust comparison of zero-shot methods.

5 Evaluation

This section describes the methods and evalu-
ation setup which uses LessonLink’s test split.
Appendix §B includes more information on our
prompting setup for GPT4 and Claude LLMs.

Segmentation. We evaluate a series of common
segmentation methods. We evaluate top-10 and
top-20 word segmentation, i.e. we take the top-10
and 20 words found in the segment boundaries of
the train set to segment the test set. We also eval-
uate existing approaches like TextTiling (Hearst,
1997)8 and topic- and stage-segmentation meth-
ods from Althoff et al. (2016) and Chen and Yang
(2020), which segment discourse by topics and
stages. Lastly, we test zero-shot prompting long-
context LLMs like GPT-4-turbo (OpenAI, 2024)
and the Claude variants Haiku, Sonnet, and Opus
(Anthropic, 2024).9 We omit open-source, instruct-
tuned LLMs like Llama-2 (Touvron et al., 2023),
Llama-3 (Meta, 2024), or Mixtral (Jiang et al.,
2024) because their context windows are not long
enough for our transcripts.

We fit the topic and stage segmentation methods
on our train split, and use three pre-trained en-
coders from Sentence-Transformers (Reimers and
Gurevych, 2019): the base-nli-stsb-mean-tokens
(originally used in Chen and Yang (2020)), all-
mpnet-base-v2, all-MiniLM-L12-v2. These en-
coders did not vary in performance. Therefore, we
report results on the first encoder and Appendix D
reports the rest. Stage segmentation requires the
number of segments a priori; our experiments vary
this to be either the rounded average or maximum
number of segments in LessonLink.

Retrieval. We evaluate several methods for IR:
Jaccard similarity (Jaccard, 1912), TD-IDF (Sam-
mut and Webb, 2011), BM25 (Robertson et al.,
2009), ColBERTv2 (Santhanam et al., 2021),
zero-shot prompting GPT-4-turbo, Claude Haiku,
Claude Sonnet, and Claude Opus. Retrieval is chal-
lenging in our setting. Retrieval methods must han-
dle the semantic variability in how problems are
discussed and referenced. The conversations do not
follow a sequential order of problem IDs, and the

8We use the NLTK libary implementation of the algorithm
(Bird et al., 2009)

9These evaluations were performed in May 2024.

POSR Metrics
Segmentation Retrieval SRS (↑) Cost (↓)

Method Method Line Time

Opus Jaccard 0.62± 0.19 0.63± 0.19 17.17± 4.82

Opus TFIDF 0.63± 0.22 0.63± 0.22 17.17± 4.82

Opus BM25 0.51± 0.23 0.52± 0.23 17.17± 4.82

Opus ColBERT 0.50± 0.23 0.5± 0.23 17.17± 4.82

Opus GPT4 0.87± 0.13 0.88± 0.13 54.22± 15.14

Opus Haiku 0.57± 0.23 0.57± 0.23 18.10± 4.91

Opus Sonnet 0.68± 0.20 0.69± 0.20 28.30± 6.93

Opus Opus 0.85± 0.11 0.85± 0.11 72.80± 21.57

POSR GPT4 0.88± 0.12 0.89± 0.11 11.71± 2.71

POSR Haiku 0.60± 0.22 0.60± 0.22 0.35± 0.08

POSR Sonnet 0.84± 0.15 0.85± 0.15 4.23± 0.93

POSR Opus 0.88± 0.11 0.89± 0.11 21.08± 4.62

Table 2: POSR evaluations. The best average is highlighted.

references to problems are highly contextual, mak-
ing lexical cues insufficient for dictionary-based
retrieval.

A challenge in using traditional IR methods in our
setting is specifying that nothing in the worksheet
is linked to a segment, e.g., for informal or warm-
up segments. For instruct-tuned LLMs, we can
simply specify this in the prompt. For traditional
IR methods, we must set a threshold value for what
is deemed relevant enough to the segment. We
perform 5-fold cross validation on the training set
and set the threshold to the average value that best
separates on the held-out fold. We report these
thresholds in Appendix §C.

POSR. We combine the best independent seg-
mentation method with each retrieval method and
report their joint performance. We also evaluate
zero-shot prompted GPT-4-turbo, Claude Haiku,
Claude Sonnet, Claude Opus as POSR methods
that perform segmentation and retrieval jointly.

6 Results
Table 2 summarizes the joint evaluations, and Ta-
ble 3 summarizes the segmentation results. The
POSR methods outperform most independent
segmentation and retrieval approaches, and
at lower costs. POSR Opus and POSR GPT4
achieves slightly higher Line- and Time-SRS to
their independent counterparts, and much higher
to other combined independent approaches, e.g.,
Opus+TFIDF on both SRS metrics. Additionally,
POSR methods are much more cost-effective, as
they require only a single prompt to perform both
segmentation and retrieval, rather than multiple
prompts handling these tasks separately: POSR
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Segmentation Metrics
Pk (↓) WindowDiff (↓)

Method Line Time Line Time

Top-10 0.58± 0.04 0.28± 0.16 1.0± 0.01 1.0± 0.0

Top-20 0.58± 0.04 0.28± 0.16 1.0± 0.0 1.0± 0.0

TextTiling 0.58± 0.05 0.27± 0.16 0.90± 0.11 0.94± 0.06

Topic 0.58± 0.04 0.27± 0.16 1.0± 0.02 1.0± 0.01

Stageavg 0.58± 0.04 0.28± 0.16 1.0± 0.0 1.0± 0.0

Stagemax 0.58± 0.04 0.28± 0.16 1.0± 0.0 1.0± 0.0

GPT4 0.20± 0.10 0.25± 0.17 0.33± 0.09 0.52± 0.15

Haiku 0.29± 0.14 0.30± 0.17 0.39± 0.14 0.55± 0.16

Sonnet 0.24± 0.14 0.23± 0.18 0.37± 0.15 0.53± 0.17

Opus 0.15± 0.09 0.11± 0.10 0.31± 0.13 0.46± 0.17

POSR GPT4 0.16± 0.01 0.18± 0.17 0.32± 0.09 0.53± 0.17

POSR Haiku 0.24± 0.10 0.22± 0.13 0.35± 0.11 0.51± 0.17

POSR Sonnet 0.13± 0.08 0.11± 0.12 0.31± 0.09 0.49± 0.17

POSR Opus 0.13± 0.08 0.12± 0.13 0.28± 0.10 0.44± 0.17

Table 3: Segmentation evaluations. The best average is
highlighted.

Opus and POSR GPT4 cost $11-$21 per 100 tran-
scripts, while the best combined independent meth-
ods, Opus+GPT4, cost $54 per 100 transcripts. This
demonstrates the importance of POSR of jointly
modelling segmentation and retrieval for better ac-
curacy and cost performance. However, there is
still room for improvement such as future work
on developing and improving open-sourced long-
context methods.

According to Table 3, POSR methods perform
better than most independent segmentation
methods by a large margin. For example, POSR
Opus improves upon topic and stage segmenta-
tion methods by ∼ 57% on Pk and WindowD-
iff. The poor performance of top-10 and top-20
word segmentation indicates that segmentation can-
not be solved by word-level cues alone. Addition-
ally, we find that POSR methods perform better
than their independent LLM segmentation coun-
terparts. For example, POSR Sonnet improves
upon Sonnet across all segmentation metrics, such
as 0.24 → 0.13 on Line-Pk or 0.37 → 0.31 on
Line-WindowDiff. Incorporating retrieval items
enhances segmentation accuracy by providing addi-
tional context for more precise boundary detection,
reinforcing the importance of treating segmentation
and retrieval jointly.

The time- and line-based metrics for segmenta-
tion and SRS are well-correlated across meth-
ods, indicating that accounting for time does not
impact relative rankings. However, time-weighing
is still important in accounting for errors in long
segments: Time-Pk errors are lower than Line-Pk

because it reduces the impact of oversegmentation
whereas Time-WindowDiff amplifies errors from
missing long segments.

Segmentation error analysis. To better under-
stand sources of segmentation error, we investigate
the difference in segment numbers (reported in Ta-
ble 4) and we examine the bigram language in false
segment insertions compared to true segment inser-
tions with the log odds ratio, latent Dirichlet prior,
measure defined in Monroe et al. (2008). Table 4
reveals that traditional methods oversegment, be-
ing sensitive to low-level topics shifts. Surprisingly,
while Haiku has a higher segmentation error rate in
Table 2, it achieves the lowest segment count differ-
ence, altogether indicating that Haiku inserts new
(albeit few) segments far away from true segment
boundaries. The log odds results in Table 5 indi-
cate that incorrect segments are inserted when the
tutor introduces examples (e.g., “let’s say”), alter-
native explanations (e.g., “There are different ways
to solve this”), or participation prompts (e.g., “how
did you like start to approach this problem?”). This
analysis signals areas for improvement in precise
segmentation.

Retrieval error analysis. We conduct a qualita-
tive analysis on retrieval errors, particularly those
in the independent methods. A large error source
is caused by long segments that are incorrectly seg-
mented for reasons illustrated in the previous sec-
tion. For example, long problem segments are bro-
ken up and incorrectly linked. Oversegmentation
also yields shorter segment queries for retrieval,
reducing the similarity to the target reference. This
particularly impacts traditional methods whose sim-
ilarity thresholds are set with the ground truth seg-
ments as explained in Appendix C. In Appendix E,
we compare retrieval methods on ground-truth seg-
ments and confirm that ground truth segments sig-
nificantly boosts retrieval accuracy, especially for
LLM methods. Thus, we conclude that inaccurate
segmentation is a critical bottleneck to mitigating
downstream retrieval errors.

7 Downstream Applications

There are several applications that POSR enables
for gaining insights into tutoring practices at scale.
We illustrate two. One application is a language
analysis to compare how tutors talk about the same
problem with the long vs. short talk times (top
and bottom quartile). We use the log odds ratio
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Method # Segment Diff

Top-10 236.84± 75.98

Top-20 305.37± 90.04

TextTiling 42.97± 17.93

Topic 148.61± 52.044

Stageavg 367.40± 115.82

Stagemax 371.27± 118.84

GPT4 −1.24± 4.51

Haiku 0.73± 4.90

Sonnet 2.86± 5.50

Opus 4.82± 5.86

POSR GPT4 1.09± 4.47

POSR Haiku 1.02± 4.02

POSR Sonnet 3.67± 3.8

POSR Opus 2.64± 3.64

Table 4: Difference in
number of segments.

Category Bigram (log odds)

Providing Examples “lets_say” (2.26), “yeah_say” (1.51)
e.g., Let’s say we have the function X squared plus 5 x plus 6.

Alternative explanations “differ_way” (1.50), “simpler_way” (1.23)
e.g., There are different ways to solve this as well.

Prompting participation like_start (1.51), try_find (1.48), guy_know (1.48)
e.g., So, [STUDENT], how did you like start to approach this problem?

Table 5: Bigram categories founded in falsely inserted boundaries by POSR Opus.
Incorrect segments are inserted when the tutor provides examples (“let’s_say”), alternative
explanations (“diff_way”), or prompts for participation (“like_start”).

Long segments let_see (0.683), let_say (0.683), conditional_probability (0.602)

Example Tutor: And then someone wants to take a look at Question 18 [...]
you might deal with something called conditional probability. Right?
So conditional probability means what is the probability of something
occurring when something else doesn’t occur. So let’s say that you have
2 events A and B. The probability that a occurs assuming that B occurs
which we denote like this probability of A assuming B [...] so let’s say
that we have some event a. and we have some event. B. So a. And then we [..]

Short segments always_divided (2.025), often_would (1.658), would_watch (1.658)

Example Tutor: So now 18. [..reading aloud the problem..] So let’s just take
31.3. Take that off of a 100, so 68, point 7. That’s going to be 30.
Point 9, over 68.7, which i’m guessing is around point 4, 5, just to
guess. based off of the answer choices. Yep. The answer is, See that’s
pretty much all there is to that problem. You just have to get rid of this.

Figure 2: Qualitative examples & log odds. We report the top-3 bigrams in segments talking about the left problem. We
compare long segments (top quartile duration) and short segments (bottom quartile duration). Longer segments tend to provide
conceptual explanations (“let’s say”, conditional probability). Shorter segments tend to stick more to the problem at hand.

measure from Monroe et al. (2008) to estimate the
distinctiveness of a bigram using Edu-ConvoKit
(Wang and Demszky, 2024). We report the top-3
bigrams on the most popular problem from Lesson-
Link and qualitative examples in Figure 2. The
log-odds analysis reveals that in short segments,
tutors tend to stick to the language from the “prob-
lem statement” and immediately explain the an-
swer. However, in longer segments, tutors provide
examples to students (e.g., “let’s say”), and offer
conceptual explanations inferring the underlying
mathematical concept (e.g., “this is a conditional
probability question”). The second POSR applica-
tion is the analysis of talk time distributions across
different tutors and problems, such as in Figure 3:
some problems have very different talk times (e.g.,
problem 11), while others have similar talk times
(e.g., problem 12). Altogether, POSR enables these
downstream applications and can tackle the large
challenge of lesson structuring in education.

8 Discussion and Conclusion

We introduce the Problem-Oriented Segmentation
and Retrieval (POSR), a task that jointly segments
conversations and retrieves the problem discussed
in each segment. We contribute the LessonLink
dataset as a concrete case study of POSR in edu-
cation. LessonLink is the first large-scale dataset
of tutoring conversations linked with worksheets,
featuring 3,500 segments, 116 linked SAT® math
problems and over 24,300 minutes of instruction.
To evaluate the joint performance and account for
time in segmentation, we introduce the Segmen-
tation and Retrieval Score (SRS) and time-based
segmentation metrics for Pk and WindowDiff. Our
comprehensive evaluations highlight the impor-
tance of jointly modeling segmentation and re-
trieval, rather than treating them as independent
tasks: POSR methods significantly outperform the
independent approaches as measured against the
traditional segmentation, SRS, and new time-based
metrics. The LLM-based POSR methods achieve
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Figure 3: Left: Time spent (minutes) per worksheet problem. Right: Example of time management across two lessons.

the best performance, but come at a higher cost, mo-
tivating future work on cost-effective solutions. We
also demonstrate the potential of POSR by show-
casing downstream applications, such as a language
analysis comparing tutoring strategies. In conclu-
sion, our work establishes POSR as an important
task to study conversation structure. The Lesson-
Link dataset and the proposed methods pave the
way for further research in joint segmentation and
retrieval, with broad implications for educational
technology, conversational analysis, and beyond.

9 Limitations

While our work provides a useful starting point for
understanding conversations (such as in education)
at scale, there are limitations to our work. Address-
ing these limitations will be an important area for
future research.

One limitation is the lack of connection to out-
comes. While prior works have explored the rela-
tionship between duration and sequencing of prob-
lems on student attention (e.g., Stevens and Bave-
lier (2012) inter alia), there is limited research on
how these factors impact long-term student learn-
ing, particularly in group-based settings. Under-
standing this connection is crucial for grounding
POSR in real contexts.

Additionally, POSR does not rigorously link the
language content with the segment duration or or-
dering. This applies to other conversation domains
as well, beyond education settings. Linking content
and quality of the language with the time alloca-
tion and sequencing matters (Suresh et al., 2018):
Are tutors soliciting student contributions, or talk-
ing all the time? Are they restating or engaging
with student contributions? While our downstream
applications illustrate one form of language anal-
ysis with a log odds analysis, future work should
investigate using language categories, instead of
unsupervised methods for understanding language
patterns.

Another limitation is the absence of audio and vi-
sual inputs. Our current models rely solely on
textual data and miss non-verbal cues that add to
the full context in understanding conversations. We
also only use the problem text, and ignore the prob-
lem’s visual components such as graph information.
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Incorporating multimodal data, such as audio and
visual inputs, could improve the accuracy of POSR
systems.

10 Ethical Considerations

The purpose of this work is to promote and im-
prove effective interactions, such as in the setting
of education, using NLP techniques. The Lesson-
Link dataset is intended for research purposes. The
dataset should not be used for commercial pur-
poses, and we ask that users of our dataset respect
this restriction. As stewards of this data, we are
committed to protecting the privacy and confiden-
tiality of the individuals who contributed comments
to the dataset. It is important to note that inferences
drawn from the dataset should be interpreted with
caution. The intended use case for this dataset is to
further research on conversation interactions and
education, towards the goal of improving interac-
tions. Unacceptable use cases include any attempts
to identify users or use the data for commercial
gain. We additionally recommend that researchers
who do use our dataset take steps to mitigate any
risks or harms to individuals that may arise.
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A Pk and Time-Pk

The Pk metric is an established segmentation met-
ric from Beeferman et al. (1999). Similar to Win-
dowDiff, it uses a line-based sliding window ap-
proach that measures boundary mismatches within
the window. Lower values is better. For example,
Pk is computed as:

Pk(Y, Y
∗) =

1

N − k

N−k∑

j=1

1
(
1(b(sj:j+k) > 0) ̸= 1(b(s∗j:j+k) > 0)

)

where b(·) represents the number of boundaries
within the · window and k is typically set to half of
the average of the true segment line size.

Time-Pk is calculated as:

Time-Pk(Y, Y
∗) =

1

N − k

N−k∑

j=1

1

(
1(b(ststart

j :tend
j +∆k

) > 0) ̸= 1(b(s∗
tstart
j :tend

j +∆k
) > 0)

)

where ∆k, the time duration of the sliding window,
is half of the average true segment duration (similar
to k).

B Prompts

Recognizing that models are sensitive to prompt
phrasing, we ran experiments on 15 transcripts to
determine the best prompting approach for each
task: independent segmentation, independent re-
trieval, and joint segmentation and retrieval. For
each task, two authors collaboratively wrote a pool
of prompt templates with varying phrasings. From
these, we chose the top-performing template across
all models to use for all transcripts.

B.1 Independent segmentation
For the independent segmentation task, we de-
signed three distinct prompt templates:

1. A template prompting the LLM to identify
segments that each involve the discussion of
an individual math problem, with an extra note
emphasizing that each segment must involve
the discussion of one math problem only;

2. A template prompting the LLM to segment
the transcript into contiguous segments, where
each segment either involves (a) the discus-
sion of a single math problem or (b) anything
else (such as small talks, the introduction of
the tutoring session, and the conclusion of the
tutoring session, which, if contiguous, must
be part of the same segment);

3. A template prompting the LLM to detect lines
where the tutor/students start transitioning to
discussing a new math problem, as well as
the line right after the tutor/students finish
discussing the math problem, to mark the be-
ginning of each segment
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Independent Segmentation Prompt

### System:
You are an assistant who will be given a transcript of an SAT math tutoring session
between a tutor and a group of students. Each line in the transcript will contain the
line index, the speaker (tutor or student), and the utterance. Your job is to read the
transcript and identify segments that each involve the discussion of an individual math
problem. Note that each segment must involve the discussion of one math problem only.

Please then output the first line index and last line index of each segment as a list
of lists:
[[<first line index of segment 1>, <last line index of segment 1>], ...,
[<first line index of segment n>, <last line index of segment n>]].

Only output a list of lists. Do not output any additional text or explanations.

### User:
Please read the transcript below and identify segments that each involve the discussion
of an individual math problem:
{transcript}

Please output the first line index and last line index of each segment as a list of lists:
[[<first line index of segment 1>, <last line index of segment 1>], ...,
[<first line index of segment n>, <last line index of segment n>]].

Only output a list of lists. Do not output any additional text or explanations.

Figure 4: Prompt for the independent segmentation task for LLM methods. {transcript} is the placeholder
for the entire tutoring transcript whose lines have the following format: {idx} {speaker}: {utterance}.

We found that the first prompt template, shown in
Figure 4, performs best in terms of all segmentation
metrics, i.e., WindowDiff and Pk scores.

B.2 Independent retrieval

For the independent retrieval task, we designed two
distinct prompt templates:

1. A prompt template that retrieves for all seg-
ments in a transcript at once;

2. A prompt template that retrieves for one seg-
ment at a time, independently for each seg-
ment.

We found that both prompt templates perform com-
parably when given ground truth segments. How-
ever, when given imperfect, predicted segments,
prompt template 2 performs significantly better in
terms of SRS scores. We therefore choose to use
prompt template 2, shown in Figure 5, for all tran-
scripts.

B.3 Joint segmentation and retrieval

For the joint segmentation and retrieval task, we
designed two distinct prompt templates:

1. Similar to template 1 for the independent

segmentation task, this template prompts the
LLM to identify segments that each involve
the discussion of an individual math problem,
then determine which math problem was dis-
cussed in each segment or indicate if a math
problem was discussed but not found in the
provided set of problems.

2. Similar to template 2 for the independent
segmentation task, this template prompts the
LLM to segment the transcript into contiguous
segments, where each segment either involves
(a) the discussion of a single math problem
or (b) anything else (such as small talks, the
introduction of the tutoring session, and the
conclusion of the tutoring session, which, if
contiguous, must be part of the same segment).
It then requires determining if a math prob-
lem was discussed in each segment, and, if so,
identifying the specific math problem or indi-
cating if it can not be found in the provided
set of problems.

We found that the first prompt template, shown in
Figure 6, performs best in terms of all relevant met-
rics, i.e., WindowDiff, Pk scores, and SRS scores.
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Independent Retrieval Prompt

### System:
You are an assistant who will be given (1) a segment of an SAT math tutoring session
between a tutor and a group of students and (2) the set of math problems that might be
discussed in the segment. Your job is to read the segment’s transcript and set of math
problems, then determine the math problem that was discussed in the segment, if any. If
no math problem was discussed in the segment, please output "null". If a math problem
was discussed in the segment but not found in the provided set of problems, please output
-1. If a math problem was discussed in the segment and is found in the provided set of
problems, please output the ID of the problem. Please do not output any additional text
or explanations.

### User:
Please read the segment’s transcript, read the set of math problems that might be
discussed in the segment, and determine the math problem that was discussed in the
segment, if any.

Segment:
{transcript}

Math problems:
{problems}

If no math problem was discussed in the segment, please output "null". If a math problem
was discussed in the segment but not found in the provided set of problems, please output
-1. If a math problem was discussed in the segment and is found in the provided set of
problems, please output the ID of the problem. Please do not output any additional text
or explanations.

Figure 5: Prompt for the independent retrieval task for LLM methods. {transcript} is the placeholder for a
tutoring segment’s transcript whose lines have the following format: {speaker}: utterance. {problems} is the
placeholder for the worksheet problems relevant to the session that have the following format: Problem ID {id}:
problem string.

C Thresholds

A challenge in using traditional IR methods in our
setting is specifying that nothing in the worksheet
is linked to a segment, e.g., for informal or warm-
up segments. For traditional IR methods, we must
set a threshold to determine which scores indicate
that a worksheet problem is relevant enough to a
segment. We perform 5-fold cross-validation on
the training set, testing threshold values from 0
to 1 in 0.01 intervals on ground truth segments,
to determine the threshold that yields the highest
retrieval accuracy on the held-out fold. We then
average the best thresholds from each fold to obtain
the final threshold for each method.

Note that for BM-25 and ColBERT, which have un-
bounded relevance scores, we normalized the raw
scores within the top 10 results for each query
(as each worksheet has at least 10 problems to re-
trieve from). This normalization adjusts the scores
relative to the top results, making them compara-

ble across different queries and allowing us to set
a threshold that would apply consistently across
queries. Without this normalization, the scores
would only be meaningful within the context of a
single query and not comparable across different
queries.

The threshold values for each traditional IR method
are as follows:

• Jaccard: 0.11

• tfidf: 0.40

• BM-25: 0.19

• ColBERT: 0.14

D Extended Results

Table 6 shows the extended segmentation results
where we used three pre-trained encoders from
Sentence-Transformers (Reimers and Gurevych,
2019): the base-nli-stsb-mean-tokens (originally
used in Chen and Yang (2020)), all-mpnet-base-
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v2, all-MiniLM-L12-v2. As the Table shows, the
encoders did not vary much in segmentation per-
formance.

E Extended Error Analysis

To assess why independently performing retrieval
on top of segmentation does not perform as well as
the joint POSR methods (rf. Table 2), we need to
isolate and analyze the retrieval errors. Therefore,
we additionally evaluate the retrieval performance
conditioned on the ground truth segments in Ta-
ble 7. We find that the LLM-based solutions typ-
ically perform better than traditional IR methods,
and for GPT-4 and Claude-Opus near ceiling. Inter-
estingly, we find that Haiku performs similarly on
retrieval as simpler methods such as using Jaccard
similarity of tfidf. In our qualitative analysis, we
find Haiku’s errors are due to retrieving incorrect
worksheet problems on warm-up segments. This
is also the most common error type of other LLM-
based retrievers.
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Method Pk (↓) WindowDiff (↓)
Sentence Time Sentence Time

Top-10 0.58± 0.04 0.28± 0.16 1.0± 0.01 1.0± 0.0

Top-20 0.58± 0.04 0.28± 0.16 1.0± 0.0 1.0± 0.0

TextTiling 0.58± 0.05 0.27± 0.16 0.90± 0.11 0.94± 0.06

Topic, mpnet 0.58± 0.04 0.27± 0.16 1.0± 0.02 0.99± 0.01

Topic, minilm 0.58± 0.04 0.27± 0.16 1.0± 0.02 1.0± 0.01

Topic, base 0.58± 0.04 0.27± 0.16 1.0± 0.02 1.0± 0.01

Stage, mpnet, avg 0.58± 0.05 0.28± 0.16 0.99± 0.03 1.0± 0.01

Stage, minilm, avg 0.58± 0.04 0.28± 0.16 1.0± 0.02 1.0± 0.01

Stage, base, avg 0.58± 0.04 0.28± 0.16 1.0± 0.0 1.0± 0.0

Stage, minilm, max 0.58± 0.04 0.28± 0.16 1.0± 0.00 1.0± 0.00

Stage, mpnet, max 0.58± 0.04 0.28± 0.16 1.0± 0.01 1.0± 0.00

Stage, base, max 0.58± 0.04 0.28± 0.16 1.0± 0.0 1.0± 0.0

GPT4 0.20± 0.10 0.25± 0.17 0.33± 0.09 0.52± 0.15

Haiku 0.29± 0.14 0.30± 0.17 0.39± 0.14 0.55± 0.16

Sonnet 0.24± 0.14 0.23± 0.18 0.37± 0.15 0.53± 0.17

Opus 0.15± 0.09 0.11± 0.10 0.31± 0.13 0.46± 0.17

POSR GPT4 0.16± 0.01 0.18± 0.17 0.32± 0.09 0.53± 0.17

POSR Haiku 0.24± 0.10 0.22± 0.13 0.35± 0.11 0.51± 0.17

POSR Sonnet 0.13± 0.08 0.11± 0.12 0.31± 0.09 0.49± 0.17

POSR Opus 0.13± 0.08 0.12± 0.13 0.28± 0.10 0.44± 0.17

Table 6: Extended segmentation evaluations (↓ better).
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Segmentation and Retrieval Prompt

### System:
You are an assistant who will be given (1) a transcript of an SAT math tutoring session
between a tutor and a group of students and (2) the set of math problems that might be
discussed in the session. Each line in the transcript contains the line index, the
speaker (tutor or student), and the utterance. Each math problem corresponds to a
problem ID.

Your first job is to read the transcript and identify segments that each involve the
discussion of an individual math problem. Note that each segment must involve the
discussion of one math problem only. Your second job is to determine the math problem
that was discussed in each of the segments you identified. Please then output the
first line index and last line index of each segment, along with the ID of the problem
discussed in each segment as a list of JSON objects:
[{"start_line_idx": <first line index of segment 1>, "end_line_idx": <last line index of
segment 1>, "problem_id": <ID of problem discussed in segment 1>}, ..., {"start_line_idx":
<first line index of segment n>, "end_line_idx": <last line index of segment n>, "problem_id":
<ID of problem discussed in segment n>}].

If a math problem was discussed in a segment but not found in the provided set of
problems, let the problem_id be -1. Only output the list of JSON objects. Do not output
any additional text or explanations.

### User:
Please read the transcript, identify segments that each involve the discussion of an
individual math problem, and determine the math problem that was discussed in each of the
segments you identified.

Transcript:
{transcript}

Math problems:
{problems}

Please output the first line index and last line index of each segment, along with the
ID of the problem discussed in each segment as a list of JSON objects:
[{"start_line_idx": <first line index of segment 1>, "end_line_idx": <last line index of
segment 1>, "problem_id": <ID of problem discussed in segment 1>}, ..., {"start_line_idx":
<first line index of segment n>, "end_line_idx": <last line index of segment n>, "problem_id":
<ID of problem discussed in segment n>}].

If a math problem was discussed in a segment but not found in the provided set of
problems, let the problem_id be -1. Only output the list of JSON objects. Do not output
any additional text or explanations.

Figure 6: Prompt for the joint segmentation and retrieval task for LLM methods. {transcript} is the place-
holder for the entire tutoring transcript whose lines have the following format: {idx} {speaker}: {utterance}.
{problems} is the placeholder for the worksheet problems relevant to the session that have the following format:
Problem ID {id}: problem string.
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Method Accuracy ↑

Jaccard 0.644± 0.196

tfidf 0.675± 0.205

BM-25 0.511± 0.216

ColBERT 0.577± 0.214

GPT-4 0.965± 0.066

Claude Haiku 0.688± 0.255

Claude Sonnet 0.863± 0.164

Claude Opus 0.947± 0.091

Table 7: Independent retrieval evaluations on the ground
truth segments.
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