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Abstract

We present TuringQ, the first benchmark de-
signed to evaluate the reasoning capabilities of
large language models (LLMs) in the theory of
computation. TuringQ consists of 4,006 under-
graduate and graduate-level question-answer
pairs, categorized into four difficulty levels
and covering seven core theoretical areas. We
evaluate several open-source LLMs, as well
as GPT-4, using Chain of Thought prompting
and expert human assessment. Additionally,
we propose an automated LLM-based evalua-
tion system that demonstrates competitive ac-
curacy when compared to human evaluation.
Fine-tuning a Llama3-8B model on TuringQ
shows measurable improvements in reasoning
ability and out-of-domain tasks such as alge-
bra. TuringQ serves as both a benchmark and
a resource for enhancing LLM performance in
complex computational reasoning tasks. Our
analysis offers insights into LLM capabilities
and advances in AI comprehension of theoreti-
cal computer science 1.

1 Introduction

The reasoning and comprehension capabilities of
large language models (LLMs) are becoming in-
creasingly critical due to their expanding applica-
tions across complex domains (Guo et al., 2023).
As LLMs continue to evolve, robust benchmarks
are essential for assessing their performance, par-
ticularly in areas that require deep understanding
and logical reasoning (Brown et al., 2020; Ling
et al., 2024). While multi-task benchmarks like
BIG-Bench (Srivastava et al., 2022) cover a vari-
ety of domains, a notable gap remains, a dedicated
dataset for evaluating LLM performance on theo-
retical concepts and problems within the domain of

1The dataset, code, and fine-tuned model are publicly avail-
able: the fine-tuned model on HuggingFace, the dataset on
HuggingFace Datasets, and the code, along with interactions
with the language models, on GitHub.

the theory of computation. This gap is significant,
as assessing comprehension in formal languages
and abstract computational problems is crucial to
evaluating the true depth of an LLM’s reasoning
capabilities. Addressing this need is a key step
toward transforming LLMs into sophisticated prob-
lem solvers in highly complex domains (Bender
and Koller, 2020).

TuringQ fills this critical gap by providing a com-
prehensive platform for rigorously assessing and
comparing the reasoning capabilities of different
LLMs on intricate theoretical domains. It drives
advancements in enhancing their skills for tackling
computationally complex concepts, contributing to
the development of more reliable and capable AI
systems (Radford et al., 2019; Yang et al., 2023).
Mastery of theory of computation principles is par-
ticularly vital, as these foundational concepts under-
pin modern computing systems and algorithms. Im-
proving LLM comprehension in this domain could
unlock new potential for reasoning about compu-
tational problems, analyzing algorithms, and even
contributing to the creation of novel computational
models and methodologies. Figure 1 presents a
complete visual overview of our work. Our contri-
butions are threefold:

1. TuringQ Dataset: We introduce a new
resource of 4,006 theory of computation
question-answer pairs from universities world-
wide. This dataset spans undergraduate and
graduate-level concepts across four difficulty
levels and seven main areas, including a sub-
set focused on theoretical essentials. It serves
as a comprehensive tool for evaluating and
fine-tuning LLMs in this domain.

2. LLM-based Evaluation: We explore the fea-
sibility of leveraging LLMs themselves as
evaluators for TuringQ (Zheng et al., 2024).
By defining an ‘AutoGrade-TQ’ prompt us-
ing Llama3-8B, we investigate the potential
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Figure 1: TuringQ Dataset and its Evaluation Framework. This diagram presents the TuringQ dataset, a
comprehensive resource for theory of computation, and illustrates the automated assessment of LLMs using
Llama3-8B. It showcases sample questions, LLM responses, and their evaluations by the AI evaluator. The fine-
tuned Llama3-8B-ft-TuringQ model demonstrates improved performance but still encounters certain challenges in
addressing TuringQ questions.

for automating the evaluation process, thereby
reducing the time and cost associated with
manual grading.

3. Llama3-8B-ft-TuringQ Model: We present
a fine-tuned large language model, Llama3-
8B-ft-TuringQ, specifically tailored for rea-
soning in the theory of computation. Through
extensive evaluation, we provide a compara-
tive analysis of the performance of large lan-
guage models across various TuringQ cate-
gories, showcasing how our fine-tuned model
competes with GPT-4.

2 Related Work

Evaluating Computational Reasoning Capabili-
ties of LLMs Substantial progress has been made
by large language models, but evaluating their
mathematical and computer science reasoning re-
mains an evolving challenge. Various datasets have
been introduced to assess LLMs’ mathematical rea-
soning abilities (Ahn et al., 2024), and approaches
such as graph-based verification have been pro-
posed to enhance reasoning (Cao, 2024). However,

significant gaps remain, particularly in the domain
of the formal theory of computation, where evalua-
tion benchmarks and models’ capabilities are less
developed (Li et al., 2024; Frieder et al., 2023).

Automated LLM Evaluation Research on au-
tomating LLM evaluations has gained momentum,
proposing techniques like self-consistency checks,
external truth verification, and adversarial prob-
ing to improve evaluation accuracy (Huang et al.,
2024; Chiang and yi Lee, 2023). LLMs have also
been used to calibrate and augment human raters
for evaluating generated text (Zhang et al., 2024).
Hybrid approaches that combine human and LLM
evaluations for assessing written content offer new
insights into human-AI collaboration (Ren et al.,
2024). However, questions remain regarding the
trustworthiness of LLMs as evaluators, prompting
research into scalable meta-evaluation mechanisms,
such as agent debate (Chern et al., 2024). Align-
ing LLM-assisted evaluations with human prefer-
ences continues to be an active area of exploration
(Shankar et al., 2024).
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Figure 2: Category and Difficulty Level Distribution in the TuringQ Dataset

3 The TuringQ Dataset

TuringQ is a comprehensive dataset comprising
4,006 question-answer pairs covering undergradu-
ate and graduate-level theory of computation prob-
lems, aligned with Sipser’s framework (Sipser,
2013). The questions are categorized into four diffi-
culty levels and seven main conceptual areas: Regu-
lar Languages, Theoretical Concepts, Context-Free
Languages, Computability Theory, Countability
Concepts, Complexity Theory, and Fundamental
Concepts. Details are provided in Appendix Table
18. The difficulty levels were determined by do-
main experts, ensuring an even distribution across
categories and a clear distinction between difficulty
levels and conceptual categories. The distribution
of the dataset by category and difficulty level is
illustrated in Figure 2. Examples of dataset entries
are provided in Appendix Table 17.

3.1 Data Collection
We curated a collection of questions from publicly
available exam sets and homework solutions from
29 top-tier universities to ensure a high-quality
dataset in in the theory of computation domain. The
primary dataset consists of 2,155 carefully selected
university exam and homework questions, ensuring
fair distribution across various categories. Addi-
tionally, 61 question-answer pairs from reputable
non-university resources were incorporated. To
complement the academic questions, we developed
a secondary set focusing on fundamental concepts,
theorems, lemmas, and essential knowledge. Do-
main experts identified these topics, and the Claude
3 Sonnet model (Anthropic, 2024) was utilized to
generate 1,790 question-answer pairs covering the
core principles of Theory of Computation.

3.2 Question Type Distribution
The TuringQ dataset includes three main types
of questions: objective, analytical, and subjective.

Objective questions, such as true/false or multiple-
choice, have clear and unambiguous answers. Ana-
lytical questions require problem-solving and logi-
cal reasoning, while subjective questions involve
providing explanations or descriptions.

The dataset emphasizes analytical thinking, with
48.1% of the questions classified as analytical. Ad-
ditionally, 32% of the questions are subjective, fo-
cusing on explanatory capabilities, while 19.9%
are objective, assessing factual knowledge. This
distribution ensures a comprehensive assessment
of language models across diverse cognitive tasks
within the theory of computation domain.

4 Experiments

For further evaluation and analysis, we employ
a diverse set of language models: Llama-3-8B-
Instruct (Dubey et al., 2024), Llama-2-7B-chat-hf
(Touvron et al., 2023), Mistral-7B-Instruct (Jiang
et al., 2023), GPT-4-32k (OpenAI, 2023), Gemma-
7B-it, and Gemma-2B-it (Team et al., 2024). To
assess these models, we curated a stratified sample
of 500 questions from the TuringQ dataset, main-
taining the original distribution across difficulty
levels and categories. This approach ensures a rep-
resentative subset for our comparative analysis.

4.1 Evaluation Metrics

To assess the LLM performance, the evaluator as-
signs a score on a 1-to-4 scale, with higher values
indicating superior quality. We then use binary ac-
curacy, which classifies responses as valid (3-4) or
invalid (1-2) and calculates the percentage of valid
responses. To measure how well the LLM evalua-
tor’s scoring aligns with the human evaluator, we
use two metrics: binary alignment and exact align-
ment. Binary alignment checks if both evaluators
consider a response to be valid or invalid, while ex-
act alignment checks whether the scores are exact
matches.
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4.2 AI-Driven Assessment
We employed the Llama3-8B model to generate
responses using direct and Chain of Thought (CoT)
prompts (Wei et al., 2023). To standardize evalu-
ation, we created the AutoGrade-TQ prompt, en-
abling LLMs to score responses on a 1-4 scale.
Three domain experts independently scored the re-
sponses for ground-truth evaluations, resulting in
substantial agreement (Fleiss’ Kappa κ = 0.742).
Final scores were derived from majority voting.
Detailed statistical measures are provided in Ap-
pendix Table 5, and specific prompts used are out-
lined in Appendix Table 16. The Llama3-8B model
performed well as an evaluator, achieving 77.8%
binary alignment, with CoT-generated responses
consistently receiving higher scores.

4.3 Model Specialization
We fine-tuned Llama3-8B to create Llama3-8B-ft-
TuringQ using our comprehensive dataset of de-
tailed answers. Our approach combined Quan-
tized Low-Rank Adaptation (QLoRA) (Dettmers
et al., 2023), Parameter-Efficient Fine-Tuning
(PEFT) (Xu et al., 2023), and Supervised Fine-
Tuning (SFT)2. We utilized three TuringQ-derived
datasets: training (3,006 instances), validation
(500 instances), and test (500 instances), gener-
ated through stratified sampling based on difficulty
and category. Our process incorporated quanti-
zation and low-rank adaptation to optimize per-
formance within computational constraints. De-
tailed setup and hyperparameters are provided in
Appendix A.1.

5 Results

5.1 Performance Evaluation
We evaluated seven LLMs, including our fine-tuned
model, Llama3-8B-ft-TuringQ, using the TuringQ
test set. The evaluation involved two prompts: a
Chain-of-Thought prompt to elicit responses from
the LLMs and an AutoGrade-TQ prompt for au-
tomatic scoring. To establish a benchmark, three
human annotators rated each answer, with the final
human rating determined by majority vote. These
human ratings served as a standard against which
we compared the performance of the LLM evalua-
tor and were used to assess the accuracy of LLM
performance. Interestingly, as illustrated in Table 1,
our fine-tuned model achieved an average binary ac-
curacy of 81.2%, representing a 10% improvement

2https://huggingface.co/docs/trl/en/sft_trainer

Model H Acc L Acc H Score L Score

GPT-4 84.8% 82.4% 3.18 3.28
Llama3-8B-ft 81.2% 76.0% 3.08 2.98
Llama3-8B 71.2% 73.8% 3.05 3.03
Mistral-7B 76.4% 70.4% 2.92 2.99
Llama2-7B 72.6% 70.8% 2.85 3.02
Gemma-7B 68.2% 72.2% 2.76 3.02
Gemma-2B 59.4% 65.2% 2.59 2.87

Table 1: Performance Comparison of LLMs on the Tur-
ingQ Test Set: Mean Score and Binary Accuracy Evalu-
ated by Humans (H) vs. Llama3-8B (L)

over its base model, and performed comparably
to GPT-4, which reached 84.8% accuracy, despite
using limited resources.

The results showed partial alignment between
the LLM evaluator, Llama3-8B, and human eval-
uators. We observed that LLMs, when acting
as evaluators, tended to overrate responses from
weaker models and underrate those from stronger
models compared to human evaluators. This sug-
gests that LLMs may face challenges in accurately
distinguishing between high- and low-quality an-
swers. In the evaluation of true/false questions, the
agreement between the LLM evaluator and human
experts was notably strong, with our fine-tuned
model achieving 80% binary alignment, while GPT-
4 reached 78%. The remaining 20% discrepancy
likely stems from instances where the LLM evalua-
tor introduced its own reasoning during evaluation,
highlighting an area for further investigation. Table
14 provides detailed statistical measures.

5.2 Category-Specific Performance Analysis

The category-specific analysis of the TuringQ
dataset revealed contrasting trends between human
evaluations and LLM evaluations. In the LLM eval-
uations, model performance was consistent across
each category, with minimal variation. The best
average performance was achieved in the ‘complex-
ity theory’ category, with an accuracy of 81.51%,
while the lowest performance was observed in the
‘theoretical concepts’ category, at 68.57% (details
are provided in Appendix Tables 6 and 10). In con-
trast, human evaluations showed a different trend.
The ‘theoretical concepts’ category achieved the
highest scores across all metrics, with a significant
gap compared to other categories. The average
accuracy for this category was 89.93%, while the
lowest performance was in the ‘countability con-
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cepts’ category, with an accuracy of 50.23% (de-
tails are provided in Appendix Tables 7 and 11).
Notably, our fine-tuned model outperformed the
base model in every category, demonstrating im-
proved performance across all aspects of the theory
of computation.

5.3 Impact of Difficulty Levels on Model
Performance

A notable limitation of the LLM evaluator is high-
lighted in the analysis of difficulty levels. When
evaluated by humans, the mean accuracy for level-
3 questions was 48.91%, while the mean accuracy
for axiomatic questions was significantly higher at
89.93% (details are provided in Appendix Tables
9 and 13). This outcome aligns with expectations,
indicating that LLMs tend to perform better on eas-
ier questions. Conversely, when the LLM served as
an evaluator, the results were reversed. For level-3
questions, the evaluator assigned a mean accuracy
of 77.5%, whereas the mean accuracy for axiomatic
questions dropped to 68.57% (details are provided
in Appendix Tables 8 and 12).

This scoring discrepancy likely stems from the
fundamental difference between LLM and human
evaluation approaches. The LLM’s rigid, pattern-
matching assessment tends to favor complex an-
swers, even when partially incorrect, while under-
valuing simpler yet accurate responses. In contrast,
human evaluators employ a holistic approach, con-
sidering comprehension and intent, thus more ac-
curately assessing both simple correct answers and
flawed complex ones.

5.4 Accuracy Breakdown by Data Source

We evaluated model performance across diverse
data sources, including both university and non-
university origins. Our fine-tuned model and GPT-
4 demonstrated distinct strengths, particularly ex-
celling in non-university and synthetic questions.
For a comprehensive analysis, please refer to Ap-
pendix A.2.

5.5 Out-of-Domain Performance

To assess the generalization capabilities of our
model and investigate potential overfitting, we eval-
uated Llama3-8B-ft-TuringQ on the challenging
out-of-domain MATH Dataset (Hendrycks et al.,
2021), which comprises competition-level mathe-
matics problems. Our analysis involved a stratified
sample of 500 questions from the MATH test split,
allowing us to compare the performance of both the

Score Llama3-8B Llama3-8B-ft
1 47.20% 44.40%
2 15.20% 17.40%
3 4.20% 4.60%
4 33.40% 33.60%

Table 2: Score Distribution of Human Evaluation:
Llama3-8B vs. Llama3-8B-ft on MATH Test subset

base Llama3-8B model and our fine-tuned version.
We engaged human experts to evaluate the model’s
answers, and the results are shown in Table 2.

The fine-tuned model achieved a 0.6% increase
in binary accuracy, indicating that specialized fine-
tuning did not compromise generalization. Instead,
these results suggest that enhanced computational
theory understanding may improve mathematical
reasoning capabilities. Performance varied across
MATH categories (Table 15), with improvements in
‘Prealgebra’ and ‘Intermediate Algebra’ but slight
declines in ‘Number Theory’ and ‘Precalculus’.
This varied performance across mathematical do-
mains highlights the complex relationship between
computational theory training and general mathe-
matical problem-solving abilities, warranting fur-
ther investigation into the transfer of knowledge
between these domains.

6 Conclusion

We introduced TuringQ to evaluate the reasoning
capabilities of large language models (LLMs) in
the domain of computation theory, encompassing
four difficulty levels and seven core concepts. Our
evaluation involved various open-source LLMs and
GPT-4, utilizing Chain of Thought prompting and
assessments from human experts. Additionally,
we developed an automated evaluation system us-
ing a large language model, demonstrating both its
potential and limitations. Fine-tuning a Llama3-
8B model on TuringQ significantly improved its
grasp of computation theory, as well as its per-
formance on out-of-domain tasks such as algebra.
This work establishes a valuable benchmark for
assessing LLMs’ understanding of computational
theory. Evaluating comprehension of formal lan-
guages is essential for gauging the depth of LLMs’
reasoning abilities, marking a significant advance-
ment toward developing LLMs into effective prob-
lem solvers.
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7 Ethics Statement

The TuringQ dataset comprises publicly available
exams and homework questions from renowned
universities worldwide, obtained from the internet.
Each source is duly cited in the dataset’s meta-
data, and no question has been extracted without
acknowledgment of the original source. After data
collection, we reviewed and enhanced some an-
swers to maintain the dataset’s high quality and
ensure its value as a resource. This enhancement
process did not involve any bias or alteration of the
original content or answers.

For the theoretical concepts, we utilized the
Claude 3 Sonnet model to generate answers for
specified theorems and lemmas. Subsequently, we
checked and edited the model-generated answers to
ensure the absence of bias, hallucinations, or errors
in our work.

In gathering solutions from non-university
sources, we made efforts to include diverse, reliable
references, such as computer science portals and
textbooks. As the theory of computation and the-
oretical computer science is an evolving and com-
plex field, we have included answers that reflect
our current understanding, particularly regarding
P, NP, and open problems. We acknowledge that
as our knowledge progresses, some open questions
in our dataset may require updates to their answers.
However, to the best of our current knowledge, this
dataset is up to date.

8 Limitations

This study encountered several limitations that fu-
ture research should address. Firstly, computational
resource constraints hindered our ability to utilize
larger language models. Consequently, we focused
on smaller yet powerful models that were more
feasible for our research scope.

Evaluating descriptive questions posed a signifi-
cant challenge. While we attempted various meth-
ods for assessing these questions, incorporating
more extensive human evaluation would be ben-
eficial. Although this approach is more resource-
intensive and time-consuming, it could yield valu-
able insights into model performance.

While our dataset effectively captures the es-
sential categories and fundamentals of the the-
ory of computation, it lacks coverage of more ap-
plied tasks, such as code generation. Future re-
search could investigate how fine-tuned, special-
ized models impact performance in related domains

like code generation, reasoning, and mathematical
problem-solving. It would be particularly interest-
ing to explore the extent to which domain-specific
fine-tuning may affect a model’s general capabili-
ties.
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A Appendix

A.1 Fine-tuning Setup and Hyperparameters

Our fine-tuning approach for the Llama3-8B
model combined Quantized Low-Rank Adapta-
tion (QLoRA), a Parameter-Efficient Fine-Tuning
(PEFT) method, with Supervised Fine-Tuning
(SFT) using the SFTTrainer from HuggingFace’s
trl library3. QLoRA, as a PEFT technique, al-
lows for task-specific tuning without modifying
all model parameters, while SFT provides a frame-
work for supervised learning on our specific task.
LoRA (Low-Rank Adaptation) freezes the LLM’s
weights and injects trainable rank-decomposition
matrices (Hu et al., 2021). QLoRA extends this
by incorporating quantization techniques, further
reducing memory usage while maintaining or im-
proving model performance. We configured the
PEFT settings with the following hyperparameters:

• Alpha: 64

• Dropout rate: 0.05

• Optimizer: ’paged_adamw_8bit’

• Learning rate: 5e-6

• Learning rate scheduler: cosine

• Number of epochs: 3

• Max steps: 4000

• Batch size: 4 (for both training and evalua-
tion)

• Gradient accumulation steps: 2

Evaluation was performed at every step, with re-
sults logged for detailed performance tracking.
We employed quantization via the BitsAndBytes
method4, setting the compute data type to bfloat16
and loading the model in 4-bit with a quantization
type of "nf4". This configuration enabled double
quantization, potentially improving the efficiency
of our model training. Our approach, combining
QLoRA, SFT, and quantization techniques, allowed
us to achieve high-quality results despite computa-
tional constraints.

3https://huggingface.co/docs/trl/en/index
4https://huggingface.co/docs/bitsandbytes/main/en/index

A.2 Accuracy Breakdown by Data Source
To provide a more nuanced understanding of model
performance, we conducted an analysis of accuracy
across different data sources in our test set. This
analysis encompassed both intra-university com-
parisons and a broader inter-university analysis.

A.2.1 Intra-University Performance Analysis
We examined performance across four institutions
with similar data distributions: New Jersey Institute
of Technology, The University of Texas at Austin,
UC San Diego, and University of Washington. Bi-
nary accuracies based on human evaluator scores
for our fine-tuned model and GPT-4 were as fol-
lows:

Institution Fine-tuned Model GPT-4
New Jersey Institute of Technology 76.19% 85.71%
The University of Texas at Austin 71.43% 76.19%
UC San Diego 61.11% 77.78%
University of Washington 90.00% 60.00%

Table 3: Intra-university Performance Comparison

A.2.2 Inter-University Performance Analysis
We also compared performance between university-
sourced questions and those from non-university or
synthetic sources. Binary accuracies from human
ratings showed:

Source Fine-tuned Model GPT-4
Non-university 95.65% 96.74%
University 72.78% 77.85%

Table 4: Inter-university Performance Comparison

It is important to note that these results may
be influenced by factors such as difficulty levels,
question types, and categories.
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Average MSE Variance Correlation Binary Alignment Exact Alignment

Llama2-7B 3.494 1.758 1.4979 0.1169 0.6800 0.3440

Llama2-7B-CoT 3.456 1.656 1.4928 0.0478 0.7040 0.3520

Llama3-8B 2.858 1.746 1.7301 0.1772 0.6400 0.3180

Llama3-8B-CoT 3.032 1.268 1.2676 0.3408 0.7780 0.3520

Gemma-2B 3.2969 2.068 1.9737 0.1400 0.6784 0.3753

Gemma-2B-CoT 3.4854 2.006 1.8295 0.1463 0.7050 0.4121

Gemma-7B 3.1674 1.678 1.6520 0.0479 0.6801 0.2733

Gemma-7B-CoT 3.3162 1.524 1.4479 0.0355 0.7084 0.3203

Mistral-7B 3.454 1.538 1.3171 0.3474 0.7260 0.4520

Mistral-7B-CoT 3.374 1.686 1.5823 0.2632 0.7120 0.4620

GPT-4 2.69 1.390 1.3036 0.5103 0.7000 0.4880

GPT-4-CoT 2.366 2.106 1.6354 0.3906 0.6080 0.3980

Human 2.984 - - - - -

Human-CoT 3.052 - - - - -

Table 5: Statistical Measures of LLM Performance as Evaluators on the TuringQ Test Set: Direct and Chain-of-
Thought (CoT) Prompt Answers of Llama3-8b

Category llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Complexity Theory 3.1 3.1 3.0 3.2 3.1 3.2 3.4
Computability Theory 3.1 3.3 3.1 3.3 3.2 3.3 3.4

Context-Free Languages 2.8 3.3 3.2 3.3 3.4 3.1 3.4
Countability Concepts 2.9 3.2 2.8 2.9 3.2 2.8 3.6
Fundamental Concepts 3.1 3.1 3.0 3.1 3.3 2.9 3.2

Regular Languages 3.1 3.0 3.0 3.2 3.2 3.1 3.4
Theoretical Concepts 3.0 2.8 2.7 2.9 2.8 2.9 3.2

Table 6: Comparative Analysis of Mean Scores Across Categories: Evaluated by Llama3-8B

Category llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Complexity Theory 2.9 3.0 2.4 2.5 2.8 2.8 3.0
Computability Theory 2.6 3.0 2.3 2.5 2.5 2.5 2.8

Context-Free Languages 2.5 2.9 2.1 2.5 2.6 2.8 2.7
Countability Concepts 2.4 2.8 2.4 2.4 2.6 2.2 2.7
Fundamental Concepts 2.8 3.1 2.6 2.8 3.0 3.1 3.6

Regular Languages 2.5 2.7 2.0 2.2 2.4 2.5 3.1
Theoretical Concepts 3.5 3.3 3.0 3.1 3.1 3.2 3.3

Table 7: Comparative Analysis of Mean Scores Across Categories: Evaluated by Human Expert

Difficulty llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Axiomatic 3.0 2.8 2.7 2.9 2.8 2.9 3.2
Level 1 2.9 3.0 2.9 2.9 3.2 2.8 3.0
Level 2 3.1 3.2 3.0 3.2 3.2 3.1 3.4
Level 3 3.0 3.2 3.1 3.2 3.1 3.1 3.5

Table 8: Comparative Analysis of Mean Scores Across Difficulty Levels: Evaluated by Llama3-8B
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Difficulty llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Axiomatic 3.6 3.3 3.0 3.1 3.1 3.2 3.3
Level 1 2.7 3.2 2.5 2.8 2.8 3.1 3.5
Level 2 2.7 3.0 2.3 2.6 2.8 2.7 3.1
Level 3 2.6 2.6 2.1 2.2 2.4 2.4 2.8

Table 9: Comparative Analysis of Mean Scores Across Difficulty Levels: Evaluated by Human Expert

Category llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Complexity Theory 81.2% 83.3% 75.0% 83.3% 81.2% 81.2% 85.4%
Computability Theory 74.5% 88.2% 76.5% 78.4% 76.5% 80.4% 84.3%

Context-Free Languages 66.7% 88.9% 74.1% 74.1% 81.5% 74.1% 77.8%
Countability Concepts 66.7% 78.8% 60.6% 63.6% 75.8% 60.6% 90.9%
Fundamental Concepts 72.1% 78.7% 68.9% 73.8% 82.0% 65.6% 77.0%

Regular Languages 75.4% 75.4% 73.7% 71.9% 75.4% 70.2% 84.2%
Theoretical Concepts 74.0% 69.1% 57.0% 69.1% 61.0% 68.2% 81.6%

Table 10: Comparative Analysis of Mean Binary Accuracy Across Categories: Evaluated by Llama3-8B

Category llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Complexity Theory Concepts 60.4% 75% 45.8% 52.1% 64.6% 68.8% 72.9%
Computability Theory 58.8% 70.6% 41.2% 54.9% 56.9% 56.9% 66.7%

Context-Free Languages 48.1% 66.7% 29.6% 48.1% 51.9% 66.7% 59.3%
Countability Concepts 45.5% 63.6% 45.5% 45.5% 54.5% 39.4% 57.6%
Fundamental Concepts 62.3% 78.7% 54.1% 67.2% 75.4% 83.6% 95.1%

Regular Languages 52.6% 64.9% 31.6% 42.1% 52.6% 54.4% 80.7%
Theoretical Concepts 90.1% 94.2% 80.7% 87.4% 87.4% 92.8% 96.9%

Table 11: Comparative Analysis of Mean Binary Accuracy Across Categories: Evaluated by Human Expert

Difficulty llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Axiomatic 74.0% 69.1% 57.0% 69.1% 61.0% 68.2% 81.6%
Level 1 65.9% 68.3% 68.3% 68.3% 78.0% 61.0% 68.3%
Level 2 78.2% 84.0% 71.2% 75.6% 79.5% 73.7% 85.3%
Level 3 68.8% 83.8% 75.0% 76.2% 77.5% 75.0% 86.2%

Table 12: Comparative Analysis of Mean Binary Accuracy Across Difficulty Levels: Evaluated by Llama3-8B

Difficulty llama3-8B Llama3-8B-ft-TuringQ Gemma-2B Gemma-7B llama2-7B Mistral-7B GPT-4

Axiomatic 90.1% 94.2% 80.7% 87.4% 87.4% 92.8% 96.9%
Level 1 51.2% 80.5% 48.8% 63.4% 65.9% 80.5% 90.2%
Level 2 59.6% 73.7% 46.2% 56.4% 67.3% 66.0% 75.6%
Level 3 51.2% 60.0% 31.2% 40.0% 45.0% 48.8% 66.2%

Table 13: Comparative Analysis of Mean Binary Accuracy Across Difficulty Levels: Evaluated by Human Expert

Model MSE Variance Correlation Binary Alignment Exact Alignment

GPT-4 1.08 1.07 0.19 0.77 0.49
Llama3-8B-ft 1.11 1.10 0.18 0.72 0.41
Gemma-2B 1.72 1.64 0.10 0.56 0.29
Gemma-7B 1.58 1.51 0.11 0.64 0.35
Llama2-7B 1.49 1.46 0.11 0.61 0.33
Mistral-7B 1.30 1.29 0.16 0.66 0.40
Llama3-8B 1.27 1.27 0.34 0.74 0.33

Table 14: Statistical Measures: Human Evaluator vs. LLM Evaluator for Each Model

12277



Type Llama3-8B Llama3-8B-ft Delta
Number Theory 32.08% 28.30% -3.78%

Prealgebra 58.62% 62.07% +3.45%
Precalculus 27.27% 21.82% -5.45%
Geometry 31.25% 33.33% +2.08%

Intermediate Algebra 14.29% 18.68% +4.39%
Algebra 55.46% 56.30% +0.84%

Counting & Probability 23.40% 21.28% -2.12%

Table 15: Comparative Analysis of Mean Binary Accuracy Across Categories on the MATH Test Set: Evaluated by
Human Expert

Chain of Thought

You are a knowledgeable AI assistant specialized in Theory of Computation and Complexity.

You will be answering questions related to this domain.

To provide a clear and structured response, you will follow the Chain of Thought approach:

Chain of Thought:

1. Analyze the question and identify core concepts, algorithms or problems.

2. Build a step-by-step solution approach, stating assumptions, defining

variables/notations, and listing intermediate steps.

3. For proofs or complex calculations, show work explicitly, using relevant theorems, lemmas, or properties.

4. For true/false statements, provide clear justification or counterexample.

5. Review your Chain of Thought for logical soundness and completeness.

Use clear and concise language, avoiding unnecessary jargon.

AutoGrade-TQ

You are an automated grading system for evaluating answers in the field of theory of computation and complexity.

Your task is to assign a score (1, 2, 3, or 4) to a given answer based on its correctness

and alignment with the provided solution,

following the rubrics outlined below.

Rubrics:

Level 4 (Excellent):

- Answer is completely correct and aligns perfectly with the provided solution.

- Proofs, descriptions, true/false justifications, and calculations match the solution with no errors or omissions.

- Demonstrates a comprehensive understanding of the concepts.

Level 3 (Good):

- Answer is mostly correct, with only minor deviations or omissions compared to the provided solution.

- Proofs, descriptions, justifications, and calculations are largely accurate but may have a few minor flaws

- Shows a strong grasp of the key concepts.

Level 2 (Flawed):

- Answer has some significant differences or incorrect elements compared to the provided solution.

- Proofs, descriptions, justifications, and calculations contain several errors or omissions,

but the core approach is partially valid.

- Demonstrates a basic understanding of the concepts but lacks depth.

Level 1 (Poor):

- Answer deviates substantially from the provided solution.

- Proofs, descriptions, justifications, and calculations are mostly incorrect or entirely missing crucial components.

- Exhibits a lack of understanding of the fundamental concepts.

Please note that the length of the answer should not be a factor in determining the score.

The focus should be solely on the correctness and alignment with the provided solution.

Given Answer: Answer

Solution: Solution

Based on the rubrics and the provided solution, assign a score (1, 2, 3, or 4) to the given answer.

Table 16: Prompts Employed for Automated Grading and Answer Generation via Chain of Thought Reasoning
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Question Answer

Show that the following is not regular.
L = {ww : w ∈ {a, b}∗}

Difficulty: Level 2
Category: Regular Expression
Source: The University of Texas at Austin

L = {ww : w ∈ {a, b}∗}. We’ll use the pumping lemma.
Don’t get confused by the use of the variable w both to define L
and as the name for the string we will choose to pump on.
As is always the case, the only real work we have
to do is to choose an appropriate string w.
We need one that is long enough (i.e., |w| ≥ N).
And we need one with firm boundaries between regions.
So let’s choose w = aˆNbaˆNb. Since |xy| ≤ N,
we know that y must occur in the first a region.
Clearly if we pump in any additional a’s, the two halves of w
will no longer be equal. Therefore L is not regular.

Give a context-free grammar that
generate the following language.
{w ∈ {0, 1}∗,
the length of w is odd and the middle symbol is 0}

Difficulty: Level 2
Category: Context-Free Languages
Source: New Jersey Institute of Technology

G = (V,Σ,R,S) with set of variables V = {S}, where S is the start variable;
set of terminals Σ = {0,1}; and rules S → 0S0 | 0S1 | 1S0 | 1S1 | 0

Consider the language L = {wwR}.
Describe a two tape Turing machine to accept L.

Difficulty: Level 3
Category: Computability Theory
Source: The University of Texas at Austin

The two tape machine works as follows: If the input is ϵ, accept.
If not, copy the input to the second tape and record in the state
that you have processed an even number of characters so far.
Now, start the first tape at the left end and the second tape at the right end.
Check that the symbols on the two tapes are the same.
If not, reject. If so, move the first tape head to the right
and the second tape head to the left.
Also record that you have processed an odd number and continue,
each time using the state to keep track of whether
you’ve seen an even or odd number of characters so far.
When you reach the end of the input tape,
accept if you’ve seen an even number of characters.
Reject if you’ve seen an odd number.
(The even/odd counter is necessary to make sure
that you reject strings such as aba.)

Let A be the set {x, y, z} and B be the set {x, y}.
What is A × B?

Difficulty: Level 1
Category: Fundamental Concepts
Source: Sipser Book

A x B = {(a, b) : a ∈ A and b ∈ B} = {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}

What is the pumping lemma for regular languages?

Difficulty: Axiomatic
Category: Theoretical Concepts
Source: Claude3 + human

The pumping lemma for regular languages states that if A is a regular language,
then there exists a number p such that for any string s in A
with length greater than or equal to p, there exist strings x, y, and z where s can
be written as xyz, satisfying the following conditions:
(1) xyiz belongs to A for each i greater than or equal to 0,
(2) y is not an empty string, and
(3) the length of xy is less than or equal to p.

Table 17: Sample Instances from the TuringQ Dataset
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Category Description

Regular

Languages

Regular languages are a class of formal languages that can be defined by regular expressions

or recognized by finite automata with a finite number of states.

Key topics in this category include determining whether a given language is regular or not,

often employing techniques like the pumping lemma

or constructing regular expressions. Additionally, concepts like deterministic finite automata (DFAs)

and nondeterministic finite automata (NFAs) are fundamental,

addressing the recognition of strings in regular languages through state transitions based on an input alphabet.

Context-Free

Languages

A context-free language is a formal language that can be precisely defined by a context-free grammar,

which consists of a set of production rules specifying how strings of symbols can be derived or generated,

regardless of the context in which the symbols appear. Key concepts in the study

of context-free languages include context-free grammars themselves,

the processes of derivation and parse trees for visualizing derivations,

as well as techniques for proving whether a given language is context-free or not.

Computability

Theory

Computability Theory is a branch of theoretical computer science

that deals with the limitations and capabilities of computational models,

particularly in determining which problems are computationally solvable and which are not.

Core concepts include Turing machines, decidability,

Turing-recognizable languages, the Church-Turing thesis, and undecidability.

Complexity

Theory

Complexity Theory is a branch of computer science that classifies computational problems

based on their inherent difficulty and resource requirements.

It analyzes time and space complexity using notations like Big O,

and categorizes problems into complexity classes such as P, NP, NP-Complete, and PSPACE.

Key concepts include polynomial time solvability, NP-Completeness for hardest problems in NP,

and reducibility for relating problem complexities.

Countability

Concepts

Countability concepts revolve around distinguishing between countable and uncountable sets,

as well as characterizing the sizes of infinite sets. Key ideas include

countable vs. uncountable sets, cardinal numbers and

infinite cardinals, bijections and enumeration techniques, diagonalization methods

for proving uncountability, the notion of cardinality as a measure of set size,

and combinatorial principles like combinations and permutations.

These concepts from set theory, combinatorics,

and measure theory are crucial for understanding the nature of infinity.

Fundamental

Concepts

Fundamental Concepts are the essential and introductory topics,

including Set Theory, Propositional and Predicate Logic, and Relations.

Set Theory covers sets, operations, and relations.

Logic encompasses logical operators, truth tables, well-formed formulas, and quantifiers.

Relations involve properties like reflexivity, symmetry, transitivity, equivalence relations, and partitions.

Theoretical

Concepts

Theoretical Concepts in the theory of computation comprise the principles, theorems,

rigorous proofs, lemmas, and auxiliary results that constitute the backbone of the field.

These concepts lay the groundwork, illuminate pivotal results through meticulous derivations,

and foster a profound understanding by elucidating connections and delineating boundary conditions.

Mastering these Theoretical Concepts equips one with a robust theoretical foundation.

Table 18: Details and Interpretation of the TuringQ Dataset Categories
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