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Abstract

Large language models have shown their abil-
ity to become effective few-shot learners with
prompting, revolutionizing the paradigm of
learning with data scarcity. However, this ap-
proach largely depends on the quality of prompt
initialization, and always exhibits large variabil-
ity among different runs. Such property makes
prompt tuning highly unreliable and vulnera-
ble to poorly constructed prompts, which limits
its extension to more real-world applications.
To tackle this issue, we propose to treat the
hard prompt and soft prompt as separate in-
puts to mitigate noise brought by the prompt
initialization. Furthermore, we optimize soft
prompts with contrastive learning for utilizing
class-aware information in the training process
to maintain model performance. Experimental
results demonstrate that StablePT outperforms
state-of-the-art methods by 6.97% in accuracy
and reduces the standard deviation by 1.92 on
average. Furthermore, extensive experiments
underscore its robustness and stability across 8
datasets covering various tasks. 1

1 Introduction

Pre-trained Language Models (PLMs) (Ouyang
et al., 2022; Touvron et al., 2023; Anil et al., 2023;
OpenAI, 2023) exhibit an overwhelming capacity
to understand, analyze and classify textual infor-
mation. Recent works suggest prompt tuning (Shin
et al., 2020; Schick and Schütze, 2021a; Ye et al.,
2022; Han et al., 2022; Liu et al., 2023b; Wu et al.,
2024) to be a plausible method for efficiently adapt-
ing abundant but general knowledge behind PLMs
to various downstream tasks. Prompt tuning refor-
mulates downstream tasks into the same Mask Lan-
guage Modeling (MLM) problem as pre-training of
PLMs by constructing proper templates with open
slots. In this way, the tasks benefit from PLMs’
generative capability to fill the slots. And Brown
et al. (2020) find that PLMs are able to learn well

1Codes are available at https://github.com/lccc0528.

Figure 1: Illustration of performance various on NLU
tasks with different prompt initialization. SP means soft
prompt. The left subplot takes RoBERTa-base as the
backbone, and the right shows RoBERTa-large. The
accuracy variation can reach 15.77% and 16.86% on the
SST-2 dataset, respectively.

from limited training templates for certain tasks.
Thus, it has been a practical topic to generalize
PLMs’ ability in a prompt manner with only a few
samples for both training and data efficiency.

Current works on the construction of prompts
could be roughly categorized into two branches:
a) Hard prompt construction, which generates
a template in natural language manually (Petroni
et al., 2019; Schick and Schütze, 2021a) or au-
tomatically (Jiang et al., 2021; Ben-David et al.,
2021; Li et al., 2023). While hard prompts provide
explicit guidance for PLMs, the performance is
largely dependent on the selection of a proper tem-
plate. In fact, Zhao et al. (2021) report that differ-
ent prompt formats could lead to accuracy varying
from near chance to near state-of-the-art. b) Soft
prompt construction, which searches for appro-
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priate prompts in embedding space (Li and Liang,
2021; Lester et al., 2021a). Although steering away
from natural language avoids meticulous selection
of manual prompts, effective initialization of soft
prompts is considered crucial for gaining satisfying
performance (Gu et al., 2022). Fig. 1 illustrates the
instability of vanilla prompt tuning with 10 runs on
eight natural language understanding (NLU) tasks.
A common solution for searching valid prompt ini-
tialization in continuous space is pre-training (Gu
et al., 2022; Vu et al., 2022a), which first learns the
prompt on multiple datasets with diversified tasks
but requires massive computing expenses.

To deal with the defects of hard and soft prompt
construction, we propose a Stable Prompt Tuning
method, named StablePT, which is robust to prompt
initialization quality and keeps out performance
and stability in the meantime. Instead of concate-
nating hard and soft prompts directly, we treat them
as separate inputs to different transformers-style
modules. Hard prompts with contexts are embed-
ded by PLM and a single SemEncoder layer for
context-aware representation, and a GenDecoder
layer takes soft prompt as input, further inject-
ing class-aware information into cloze templates
by contrastive learning. Moreover, we apply su-
pervised contrastive loss in the soft prompt opti-
mization process, enhancing the model’s ability to
achieve inter-class separation and inner-class com-
pactness, which further boosts model performance
in the few-shot setting. The advantages of our
method are three-folded: (i) Reduce noise caused
by undesired soft prompt initialization through pro-
cessing hard prompt and soft prompt with different
modules. (ii) Soft prompts provide the verbalizer
with additional class-aware information, ensuring
consistent performance regardless of the discrete
template expression. (iii) Hard prompts offer ex-
plicit guidance on soft prompt optimization for ex-
tracting task-specific knowledge efficiently.

The contribution is summarized as follows:

• Input Separation: We design a novel strat-
egy that separates soft prompt from textual
input to alleviate performance inconsistency
brought by the initialization quality of contin-
uous templates.

• Information Fusion: We design an interac-
tion learning process for hard and soft prompt
optimization, which integrates context-aware
and class-aware information for stable perfor-
mance.

• Outstanding Performance: StablePT sur-
passes state-of-the-art methods on 8 NLU
tasks. The experiment results verify its ro-
bustness and stability across different prompt
initializations.

2 Related Work

Prompt Tuning. Prompt tuning is an efficient
approach to adapting PLMs to downstream tasks.
The initial method in prompt tuning (Schick and
Schütze, 2021a,b) involves manually designing
hard prompts composed of discrete words. Sub-
sequent works (Gao et al., 2021; Jiang et al., 2020;
Shin et al., 2020) propose the automatic generation
of prompts for mining appropriate templates to ob-
tain desired outputs. Yet, previous work reveals
that changing a single word in the hard prompt
might result in a substantial performance drop (Liu
et al., 2023a). Soft prompting is another branch
of prompt tuning, which searches proper prompt
in continuous vector space (Li and Liang, 2021;
Qin and Eisner, 2021; Lester et al., 2021b). It en-
dows model flexibility to various downstream tasks
while suffering greatly from undesired initializa-
tion (Gu et al., 2022). To keep consistent perfor-
mance for prompt tuning, PPT (Gu et al., 2022) pre-
trains prompts with 10 GB textual data, and SPoT
(Vu et al., 2022a) conducts prompt pre-training
on three tasks across eight datasets to attain trans-
ferable prompts. However, prompt pre-training
also requires massive computing expenses (e.g.,
it takes 25 hours to pre-train PPT and 30 hours
to pre-train SPoT with Roberta-base on a single
NVIDIA A100), which is contrary to the original
intention of prompt tuning. Our method achieves
the goal of stabilizing language model adaptation,
i.e., reducing the model performance fluctuates for
different prompt initialization (Liu et al., 2023a),
by disentangling hard prompt and soft prompt to
avoid noise propagation, refraining the necessity to
pre-train prompts.

Few-shot Learning with PLMs. Prompting PLMs,
such as GPT-3 (Brown et al., 2020) and PET
(Schick and Schütze, 2021a), are found to obtain
surprising performance in substantial downstream
tasks with few-shot settings. Subsequent research
efforts by Perez et al. (2021) and Bragg et al. (2021)
have explored reasonable few-shot settings by con-
straining the size of the validation set and introduc-
ing a unified framework for assessing few-shot per-
formance. The study by Logan IV et al. (2022) em-
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phasizes that fine-tuning PLMs in few-shot learning
scenarios can enhance the model’s robustness to dif-
ferent hard prompts. However, their approaches do
not address the fundamental issue of poor prompt
adjustment performance in few-shot scenarios. Our
method overcomes this by fine-tuning trivial por-
tions in additional layers with interaction between
disentangled prompts.

3 Methodology

We introduce a novel language model architecture
named StablePT that processes textual informa-
tion2 and soft prompts separately but keeps inter-
action between them. It helps stabilize model per-
formance across different initialization of hard/soft
prompts. The detailed illustration of StablePT is
shown in Fig. 2.

3.1 Textual Information Processing
To exploit the strengths of hard prompts in few-
shot learning while addressing their robustness is-
sues, we introduce a prompt-based multi-encoder
architecture to process textual information. This
architecture encapsulates a dual-encoding module
for context-aware information extraction and class-
aware information absorption.
Task-Specific Hard Prompt. Task-specific hard
prompts can provide clear context-relevant guid-
ance for the model, helping PLMs accurately focus
on task-related semantic representations. For ex-
ample, in sentiment analysis, the hard prompt "the
sentiment of the review is [mask]" directly guides
the model to focus on the emotional polarity of
the review text, thereby improving the prediction
accuracy of a specific task.
PLM Encoder. The PLM Encoder is the corner-
stone of the architecture, harvesting the extensive
knowledge accumulated during the PLM’s pre-
training. It anchors the initial processing of the hard
prompt and input, encoding them into semantic em-
beddings. We set PLM in a frozen state according
to the general prompt tuning setting. Despite be-
ing in a frozen state, the PLM Encoder retains its
efficacy in capturing the core semantics intended
by the hard prompts. Specifically, the original hard
prompt template Ph and the input sentence x are
syntactically mapped into a semantic vector space:

Ese = PLMEncoder([Ph, x]) (1)
2Textual information refers to the information formed by

concatenating the hard prompt and the input.

where [·, ·] is the splicing operation, Ese ∈ Rb×o×d

is the embeddings of the hard prompt and input sen-
tence, b is batch size, o is the maximum sequence
length of PLMs, and d is the embedding dimension
of PLMs.
Semantic Encoder Layer. Building on the foun-
dation of the PLM encoder, we initialize a single
trainable transformer encoder layer, which adeptly
projects hard prompts and inputs into a shared
space by self-attention mechanism while incorpo-
rating class-aware information back-propagated
from soft prompt processing module, ensuring
that semantically similar embeddings are projected
more consistently within the space. Specifically,
the semantic encoder refines and recontextualizes
the embeddings Ese produced by the PLM encoder,
further modeling semantic interactions:

Hse = softmax(
QEK

T
E√

dk
)VE (2)

where QE , KE , VE are linear transformation of Ese
with matrix WE

q , WE
k , WE

v which are initialized
in semantic encoder layer.

Overall, the prompt-based multi-encoder maps
discrete prompts and inputs into a syntactic embed-
ding space guided by the prior knowledge of the
PLM encoder. These embeddings are then intri-
cately processed within the semantic encoder for
semantic interaction. Subsequently, at the top of
the semantic encoder, a verbalizer is used to map
the output statesHm

se of the [mask] token to the la-
bel y. Furthermore, the output statesHse is fed into
a generative decoder to interact with soft prompts,
thus completing the semantically enriched cycle of
the architecture.

3.2 Soft Prompt Processing
In order to mitigate the issue of substantial noise
caused by the random initialization of soft prompts
in few-shot scenarios, we introduce a transformer
decoder layer called GenDecoder Layer for soft
prompts to interact with semantic output statesHse

instead of concatenating soft prompts on the input
textual information. We initialize a soft prompt
of length l with random values. This soft prompt
serves as a query input to the GenDecoder Layer,
while the output states from the SemEncoder Layer
are used as key and value inputs to the decoder.
Through the cross-attention mechanism, the soft
prompt functions as a query to retrieve information
from the hidden states, thereby achieving the ob-
jective of interacting with the input and extracting
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Figure 2: Overview of StablePT. The textual information processing, through a dual-encoding module, coordinates
task-specific invariant prompts, simplifies adaptation to various language comprehension tasks, and enhances the
semantic processing capabilities of static PLMs through dynamic semantic encoding (Sec. 3.1). The generative
decoder module is central to the model, processing soft prompts through a cross-attention mechanism to interact
with the encoder’s outputs and diminish the adverse effects of random initialization (Sec. 3.2). The training regime
employs a dual loss function comprising MLM loss and contrastive loss, aiming at enhancing the model’s capabilities
in language comprehension and categorical differentiation (Sec. 3.3).

context-aware information. Specifically, we apply
cross-attention with Ps as query and Hse as key
and value:

QD = WD
q Ps,

KD, VD = WD
k Hse,W

D
v Hse,

Hsp = softmax(
QDK

T
D√

dk
)VD (3)

where Hsp ∈ Rb×l×d is the output states of soft
prompt, WD

q ,WD
k ,WD

v are initilzed in GenDe-
coder Layer. Hsp is further processed through
mean pooling to obtain more representative em-
beddings:

H̄sp = Meanpooling([Hsp]) (4)

Furthermore, we apply a supervised contrastive
learning method (Gunel et al., 2020) for extracting
class-aware information from H̄sp. Our intention
is to achieve instance-level intra-class compactness
and inter-class separability for discovering essen-
tial differences between classes. The contrastive
learning loss is formulated as:

LCL =− 1

b

b∑

j=1

1[yi=yj ]

log
exp

(
sim

(
¯H(i)
sp ,

¯H(j)
sp

)
/τ

)

∑B
K=1 exp

(
sim

(
¯H(i)
sp ,

¯H(k)
sp

)
/τ

) (5)

where 1 is the indicator, sim(·, ·) denotes the nor-
malized cosine similarity score, and τ is the tem-
perature coefficient.

Soft prompt processing aligns soft prompts more
closely with the semantic representation encoded
by the encoder and injects class-aware information
obtained from contrastive learning into context-
aware representation. In this way, model perfor-
mance is stabilized regardless of prompt initializa-
tion because changing a single word in the hard
prompt would not lead to insufficient class-aware
information extraction, and random soft prompt ini-
tialization would not affect the textual information
processing stage.

3.3 Loss Function Design
We implement Masked Language Model (MLM)
loss for filling slots in prompts, which is derived
from the output states of the encoder. Specifically,
for the masked token representationsHm

se, a verbal-
izer function is employed to project these represen-
tations into a space where the MLM loss can be
calculated.

LMLM = argmax
θ

∑

x

log p(y|[Ph, x]; θ)

= argmax
θ

∑

x

log p(⟨X⟩ = v(y)|Hm
se; θ) (6)

where y is the label of input sentence x, ⟨X⟩ is the
mask token, v(·) is the verbalizer of PLMs, θ indi-
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cates all tunable parameters. The total loss for the
model training is the sum of these two components,
aiming to optimize both the language understand-
ing and categorical distinction capabilities of the
model.

Ltotal = LMLM + LCL (7)

The pseudocode of the training process is shown in
Appendix B.

4 Experiments

4.1 Datasets and Settings
We evaluate our model across eight datasets on
four NLU tasks: Fake News Detection including
Politifact (Shu et al., 2020), Gossipop (Shu et al.,
2020) and PHEME (Buntain and Golbeck, 2017);
Sentiment Analysis including SST-2 (Socher et al.,
2013) and MR (Pang and Lee, 2005); Natural Lan-
guage Inference (NLI) including QNLI (Wang
et al., 2018) and RTE (Wang et al., 2018); Ques-
tion Answer (QA) including BoolQ (Wang et al.,
2019). The experiment details and the impact of
hyperparameters are shown in Appendix A and
Appendix G, respectively.

4.2 Comparison Methods
We conduct extensive experiments with 10 com-
petitors that are reported to be effective in few-shot
settings. The comparison methods are divided into
two categories roughly, i.e., prompt-tuning and
fine-tuning.
Prompt Tuning (Lester et al., 2021b). It prepends
a sequence of soft prompt tokens to the input and
only tunes the soft prompt for adaptation.
Prefix Tuning (Li and Liang, 2021). It reparam-
eterizes networks for soft prompts and integrates
and adjusts soft prompts at every layer of the PLM.
P-Tuning v2 (Liu et al., 2021). It can opt for a
reparameterization network, and utilize the [CLS]
classification head to adjust the soft prompts at
each layer of the PLM.
PPT (Gu et al., 2022). It uses designed pattern-
verbalizer pairs on large-scale unlabeled data for
self-supervised learning to pre-train soft prompts.
SPoT (Vu et al., 2022b). It pre-trains soft prompts
on multi-task datasets through transfer learning and
investigates the transferability between tasks.
SMoP (Choi et al., 2023). It employs a gating
mechanism to use multiple short soft prompts spe-
cific to data subsets as an alternative to tuning with
a single long soft prompt.

E2VPT (Han et al., 2023). It is a visual prompting
method but could generalize well to NLU task. It
introduces key-value prompts in the self-attention
module of PLM and jointly serves as learnable
parameters with soft prompts from the input layer
in the model.

ResPT (Razdaibiedina et al., 2023). It employs
a residual connection network as a reparameteriza-
tion network to adjust the soft prompts of the input
layer.

Fine Tuning (Kenton and Toutanova, 2019). It
fine-tunes the model for classification by adding a
linear classification layer on top of PLMs.

CP-Tuning (Xu et al., 2023). It adds soft prompts
to the end of the input to provide a novel contrastive
loss and combines with an additional MLM loss
for prompt-oriented fine-tuning.

For a fair comparison, we reimplement PPT and
SPoT with the same backbone model, i.e., Roberta-
base. We pre-train SPoT on GLUE datasets (Wang
et al., 2018), which enables SPoT to achieve the
best results reported in original paper. Moreover, to
conduct a fair comparison, we exclude SST-2 and
RTE. We pre-train PPT on the same pre-training
dataset as the original paper, i.e., 10 GB OpenWeb-
Text (Gokaslan et al., 2019). Further model-level
comparisons are shown in Appendix C.

4.3 Comparison Results

The comparison results on eight datasets are listed
in Table 1. Overall, StablePT outperforms all base-
lines by a large margin on all three different tasks
and keeps the lowest standard deviation.

From the results, we have the following key find-
ings: (i) StablePT demonstrates superior perfor-
mance on all datasets, even surpassing the methods
that involve full-model fine-tuning (i.e., Fine Tun-
ing, CP-Tuning) by at least 1.34%, 2.36%, 3.04%
and 4.51% on the Politifact, Gossipop, SST-2 and
RTE datasets. It benefits from our novel interaction
mechanism which significantly mitigates the issues
caused by prompt initialization in low-resource set-
tings, even without pre-training of the prompts. (ii)
Random initialization of prompts causes signifi-
cant instability of results across all datasets. But
our method StablePT demonstrates superior stabil-
ity with an average standard deviation of 0.7 across
datasets, outperforming Prompt Tuning, Prefix Tun-
ing, P-Tuning V2 and SMoP in standard deviations
by 3.2, 2.4, 3.1, and 2.6 respectively. (iii) Prefix
Tuning, P-Tuning V2, E2VPT, and ResPT gener-
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Method Politifact Gossipop PHEME SST-2 MR QNLI RTE BoolQ Avg.

Prompt Tuning 70.882.54 59.102.72 67.841.96 62.315.56 64.753.03 59.345.07 50.511.84 52.033.04 60.85

Prefix Tuning 72.913.71 58.772.31 68.732.17 70.311.91 67.842.62 60.272.33 50.821.71 54.322.79 63.00

P-Tuning V2 70.996.69 59.994.84 72.312.16 68.713.67 68.271.34 60.732.44 51.160.73 58.641.77 63.85

PPT 73.002.45 61.581.42 69.551.23 73.830.64 69.921.26 60.401.46 50.621.32 55.331.08 64.28

SPoT 75.431.94 65.181.07 72.551.21 74.790.82 70.390.77 61.491.30 51.381.09 56.341.17 65.94

SMoP 73.162.83 61.452.98 70.803.62 70.673.05 68.193.57 60.331.60 50.960.58 55.292.12 63.86

E2VPT 78.621.66 68.322.49 72.161.27 70.351.96 67.754.54 60.782.07 53.772.06 57.932.47 66.21

ResPT 78.461.48 67.051.69 71.452.26 75.923.11 71.352.73 62.021.69 54.572.10 59.542.07 67.55

Fine Tuning 79.382.63 67.312.45 75.012.26 80.073.92 79.521.93 62.834.37 52.211.82 61.691.58 69.75

CP-Tuning 79.522.28 69.802.83 74.292.52 81.004.31 80.791.21 63.021.43 55.834.15 61.121.67 70.67

StablePT 80.860.83 72.160.72 75.350.81 84.040.45 81.840.57 63.370.91 60.340.55 62.540.78 71.31

Table 1: Comparison of StablePT and baseline methods on few-shot NLU tasks in accuracy. The subscript means
the standard deviation (e.g., 80.860.83 means 80.86±0.83) and the same to the following Tables.

ally outperform vanilla prompts in most scenarios,
demonstrating that the additional parameters ef-
fectively enhance model performance. However,
reparameterization can also exacerbate result insta-
bility in certain situations. For example, on Politi-
fact, the standard deviations of Prefix Tuning and
P-Tuning V2 are higher than Prompt Tuning by
1.2 and 4.2, respectively. (iv) Pre-trained prompts
might lead to suboptimal performance due to inap-
propriate knowledge transfer caused by domain in-
consistency between pre-training and downstream
tasks. In contrast, multi-task pre-training tends to
outperform single-task pre-training in downstream
applications. For instance, PPT and SPoT show a
smaller performance gap in sentiment analysis at
0.7% than in fake news detection at 3.0%.

4.4 Stability to Prompts Initialization

We would show the better stability of StablePT to
various prompt initializations, which is compared
with hybrid prompt tuning (Hybrid PT) (Liu et al.,
2023a) on two different tasks.

Stability to Soft Prompt Initialization. We adopt
five different soft prompt initialization strategies
(Gu et al., 2022) here to test the stability of our
method. The initialization strategies are explained
in the Appendix D. As shown in Table 2, the results
indicate that StablePT is more stable to different
soft prompt initialization. The standard deviation
of StablePT is lower by 1.19 and 3.08, and the
performance of StablePT is better, compared with
Hybrid PT on SST-2 and PHEME respectively.

Stability to Hard Prompt Initialization. We em-
ploy ChatGPT (OpenAI, 2023) to generate multiple
expressions with identical meanings (Tsn for SST-2

SST-2 PHEME

Method StablePT Hybrid PT StablePT Hybrid PT

Random 82.27 71.15 76.22 70.45
Label 82.98 71.94 76.53 65.09
Vocab 83.03 74.21 76.09 72.75
Top-1k 83.05 70.29 76.35 73.45

Task 83.10 73.76 76.79 73.95

Std. 0.31 1.50 0.24 3.32

Table 2: Comparison between Hybrid PT and StablePT
on SST-2 and PHEME in accuracy(%) when using dif-
ferent initial soft prompt strategies. Std. means standard
deviation. The best result across different templates is
bold and the worst is underlined.

and Tfn for PHEME) as hard prompts. The tem-
plate construction for Tsn and Tfn are provided in
the Appendix E. As shown in Table 3, the standard
deviation of StablePT is lower by 9.91 and 11.23
compared with Hybrid PT on SST-2 and PHEME,
respectively. The stability of performance indicates
the effectiveness of our design which disentangles
hard prompt and soft prompt.

4.5 Ablation Study

We conduct an ablation study to analyze the contri-
bution of different modules in StablePT. For each
experiment, we also try 10 random seeds. The set-
ting of the ablation study is described as follows:
w/o. CL refers to the model no longer using soft
prompts for contrastive learning. We use only hard
prompts and input, processing them through textual
information processing and utilizing MLM loss as
the total loss.
w/o. GD refers to the model lacking a generative
decoder. In this setup, we attach the soft prompt at
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SST-2 PHEME

Tsn StablePT Hybrid PT Tfn StablePT Hybrid PT

Ts1 84.75 73.98 Tf1 75.21 61.38
Ts2 83.10 72.97 Tf2 72.61 69.94
Ts3 81.45 69.21 Tf3 72.03 67.22
Ts4 83.44 76.21 Tf4 70.52 67.79
Ts5 84.23 77.63 Tf5 74.64 73.68
Ts6 83.95 68.63 Tf6 71.91 66.20

Std. 1.11 11.02 Std. 2.64 13.87

Table 3: Comparison between Hybrid PT and StablePT
on SST-2 and PHEME in accuracy(%) when using dif-
ferent hard prompts. The best result across different
templates is bold and the worst is underlined.

the beginning of the input and perform contrastive
learning on the hidden states of the soft prompt
after the semantic encoder’s output.
w/o. SP refers to removing soft prompts and only
allowing generative decoder processing contextu-
alized embeddings with both cross entropy and
contrastive loss.
w/o. HP refers to the model lacking task-specific
hard prompts, where we directly attach the [mask]
token at the beginning of the input.

Method Gossipop PHEME SST-2 RTE

StablePT 72.160.72 75.350.81 84.040.45 60.340.55

w/o.CL 69.331.65 73.961.34 83.110.79 59.450.91
w/o.GD 68.872.15 69.202.35 81.192.04 55.212.23
w/o.SP 68.622.58 74.311.02 82.490.94 54.912.47
w/o.HP 70.901.23 73.621.27 76.871.06 58.141.45

Table 4: Ablation study of StablePT in accuracy (%).

The experiment results shown in Table 4 indi-
cate that all four modules contribute to the accuracy
improvement. For "w/o.CL", the overall perfor-
mance declines, indicating the necessity to acquire
class-aware information from instance-level. More-
over, the removal of the generative decoder (i.e.,
"w/o.GD") leads to unstable performance, which
proves the essence role of this module in stabiliz-
ing model performance. For "w/o.SP", the overall
performance declines, demonstrating soft prompts
provide a more direct guide for the model to extract
label-specific information from contextualized em-
beddings. "w/o.HP" causes a performance drop on
all four datasets and the performance on SST-2 suf-
fers the most, which may be attributed to the fact
that the sentiment classification task benefits far
more knowledge obtained from pre-training than
others. A similar conclusion is also reported in Ni

and Kao (2022).

4.6 Extension to Larger Model
To demonstrate that StablePT is equipped with the
ability to utilize necessary knowledge from a larger
model, we also conduct experiments using Roberta-
large as the backbone. We re-trained PPT and SPoT
with the same experimental settings as before and
the experimental times are shown in Appendix I.
The experimental results are shown in the Table 5.

Method Gossipop PHEME SST-2 RTE

StablePT 73.320.82 77.450.60 88.170.39 62.700.68

ResPT 70.491.98 73.721.82 78.262.17 56.792.55
SPoT 67.451.31 73.381.74 78.670.51 53.921.55
PPT 65.211.45 71.031.91 78.240.59 53.321.42
PT 63.642.87 70.602.54 65.844.84 52.832.53
FT 71.204.41 76.202.29 85.952.83 53.541.44

Table 5: Parameter efficiency test in accuracy (%). PT
and FT represent Prompt Tuning and Fine Tuning.

It should be noticed that the pre-training times
for PPT and SPoT on RoBERTa-large are 8 times
and 6 times longer than those on RoBERTa-base
respectively. The results indicate that our method
still maintains a significant advantage over baseline
methods, despite the number of parameters in the
pre-trained language model (PLM) has increased,
demonstrating the universality and efficiency of our
model. Compared to the results of RoBERTa-base
(shown in Table 1), there is a significant improve-
ment in the effectiveness of all the methods based
on RoBERTa-large as expected, which contains
more parameters. However, it is noteworthy that
increasing the number of PLM parameters does
not noticeably mitigate the perturbation problems
caused by soft prompt initialization, which again
emphasizes the importance of stabilizing language
model adaptation through the perspective of the
model architecture.

4.7 Extension to Full-data Scenario
To discuss the performance of StablePT in the full-
data scenario, we conduct experiments comparing
it with other tuning methods. As shown in Table 6,
our method outperforms other prompt-based meth-
ods, showcasing its efficiency. Additionally, we
observe that the standard deviation of the results
for all randomly initialized Prompt Tuning meth-
ods, including both Prompt Tuning and Residual
Prompt Tuning, is more favorable compared to the
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limited-sample scenario. This indicates that the
perturbations introduced by the random initializa-
tion of prompts have been greatly mitigated in the
full-data scenario. Furthermore, the performance
gap between different prompt tuning strategies is
notably smaller in the full-data context than in the
few-shot scenario. This suggests that with suffi-
cient training data, the impact of how prompts are
initialized and tuned becomes less pronounced, al-
lowing for more robust and consistent model per-
formance across varying tasks.

Method Gossipop PHEME SST-2 RTE

StablePT 79.930.77 83.650.65 89.430.35 67.380.64

ResPT 79.411.13 82.870.79 89.080.52 65.241.31
SPoT 79.040.82 80.930.86 85.850.57 64.430.92
PPT 77.240.69 78.211.01 85.320.62 63.271.14
PT 76.820.91 77.430.74 84.510.82 63.640.89
FT 88.200.45 89.110.38 94.720.41 69.520.66

Table 6: Full data test in accuracy (%).

4.8 Extension to Decoder-only PLMs

To demonstrate the superiority of StablePT on var-
ious pre-trained backbones, following the exper-
iment settings of Zhu and Tan (2023), we run 4
tasks on the GPT-2-small (Radford et al., 2019)
and LlaMA-2-7b (Touvron et al., 2023) backbones
instead of Roberta-base. The results in Appendix
H indicate that StablePT works well on the back-
bones and successfully outperforms the representa-
tive prompt tuning and fine-tuning methods.

4.9 Visualizations

To demonstrate that soft prompt processed by the
generative decoder exhibits good separability for
NLU tasks after training, we plot H̄sp for the few-
shot training and testing data before tuning and af-
ter tuning. The underlying dimension reduction and
visualization algorithm are t-SNE (Van der Maaten
and Hinton, 2008). The results are illustrated in
Fig. 3 (SST-2) and Appendix F (MR, PHEME).
As shown by the results, even reduced in two di-
mensions, most of the embeddings in the testing
set are clearly separated after tuning, with only a
few-shot training samples available on different
tasks. In addition, the representation of the training
sample is widely spread, demonstrating the suc-
cess in learning class-aware information through
contrastive learning and explaining the stability of
model performance.

Figure 3: Visualizations of the full testing sets of SST-2
before and after tuning by t-SNE. The left and the right
show the results before tuning and after tuning.

Dataset State SC↑ KL↑ MMD↑

SST-2 before tuning 0.01 0.28 29.46
after tuning 0.10 0.67 379.66

MR before tuning 0.001 0.08 0.34
after tuning 0.24 0.68 2295.47

PHEME before tuning 0.05 0.12 200.41
after tuning 0.18 0.59 1789.42

Table 7: Results of silhouette coefficient (SC), KL diver-
gence (KL), and maximum mean discrepancy (MMD)
before and after tuning.

To quantitatively assess the intra-class cohesion
and inter-class separation of our embeddings, we
use three metrics, silhouette coefficient (Kullback
and Leibler, 1951), KL divergence (Rousseeuw,
1987) and maximum mean discrepancy (Gretton
et al., 2012). As shown in Table 7, the three quanti-
tative metrics all showed a significant increase after
training, further illustrating the effectiveness of Sta-
blePT in acquiring category information through
soft prompts.

5 Conclusion

In this work, we propose StablePT, an innovative
hybrid prompt-tuning framework for improving the
effectiveness of prompt tuning in few-shot learning
and reducing the reliance on well-chosen prompt
initialization. By introducing a generative decoder
module, our system allows soft prompt to interact
with the output states of encoded hard prompt and
input, rather than simply appending soft prompt
to the input text. This approach not only over-
comes the initial noise potentially introduced by
soft prompts but also enhances the model’s abil-
ity to capture class-aware information through the
application of contrastive learning, thereby achiev-
ing better performance in NLU tasks. The results
across eight datasets in four tasks demonstrate that
our method maintains top performance while show-
ing stability to different prompt initializations.
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Limitations

In this work, we focus on stabilizing model per-
formance across different prompt initializations.
However, several limitations still exist for the bor-
der applications of StablePT. Firstly, data pertur-
bations still impact our results. Future work could
combine data selection (Köksal et al., 2022; Yu
et al., 2023) with StablePT to further enhance per-
formance. Secondly, StablePT does not take the
impact of different verbalizers (Cui et al., 2022)
into account, we believe that a better verbalizer can
further improve language modeling capabilities,
as some advanced works have demonstrated the
significant impact of verbalizers on performance
improvement. Thirdly, StablePT is designed to im-
prove PLMs’ performance on NLU tasks, which
cannot be directly extended to generation tasks.

Ethics Statement

As far as we are aware, our proposed work does
not have any ethical considerations. However, our
work relies on pre-trained language models, which
have been shown to be biased in prior work (Li
and Liang, 2021). As such, users of such models
should be aware of and if possible address such
issues. The data and the code for this work will be
made available to aid reproducibility. Moreover,
though all the datasets used in our experiments are
publicly available and have not been reported to
carry a social bias against any sensitive attributes,
and the proposed approach would not explicitly
introduce new negative societal impacts, more work
is still needed to investigate the potential unfairness
in these datasets.
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A Experiment Details

We choose Roberta-base (Liu et al., 2019) as our
backbone model. For all tasks, we follow the same
procedure as Gu et al. (2022) to form the true few-
shot learning settings (Perez et al., 2021). In par-
ticular, we randomly select 64 samples from the
original training set to construct a few-shot training
set, and construct a development set by randomly
selecting another 64 samples from the original train-
ing set. We ensure that the number of labels is bal-
anced for both training and development sets. We
apply the AdamW (Loshchilov and Hutter, 2019)
optimizer with a learning rate of 1e-4 and weight
decay of 1e-4, and train for 100 epochs. The mini-
batch size is 8. For all prompt-based methods, we
set the prompt lengths as 10. We run experiments
with 10 different random seeds on a single NVIDIA
A100 and report the average accuracy and standard
deviation.

Giving details of the datasets used in our main
experiments in the few-shot setting, including type,
label words, and size of test in Table 8. |C|: The
number of categories for tasks.

Datasets Type |C| |Test| Label words

Politifact FD 2 19k fake/real
Gossipop FD 2 32k fake/real
PHEME FD 2 1.6k fake/real
SST-2 SA 2 1.8k positive/negative
MR SA 2 2k positive/negative
QNLI NLI 2 5.3k yes/no
RTE NLI 2 2.4k Clearly/Yet
BoolQ QA 2 3.2k yes/no

Table 8: Datasets information in the main experiments.
FD means fake news detection, SA means sentiment
analysis, NLI means natural language inference and QA
means question answer.

B Pseudocode of StablePT

Pseudocode of StablePT is presented in Algorithm
1.

C Details of Comparison Methods

In Table 9, we introduce specific details of Sta-
blePT and other comparison methods.

D Soft Prompt Initial Strategies

In Sec. 4.4, we utilized five methods of soft prompt
initialization, and here we provide specific explana-
tions for these five methods. "Random" indicates

Algorithm 1 Algorithm of StablePT

Require: Input x, hard prompt ph, soft prompt ps
batch size b and labels y

Ensure: A learned model StablePT, consisting of
semantic encoder fs with parameters θS , gen-
erative decoder fg with parameters θG, soft
prompt ps with parameters θs, PLM Encoder
with parameters θP

1: Random initialize θS , θG, θs
2: Freeze θP
3: epoch← 0
4: while epoch ≤ epochmax do
5: n← 0
6: while n ≤ nmax do
7: Randomly select batch bn
8: Hse = fs(ph, bn)
9: Hsp = fg(ps,Hse)

10: CalculateLCL with equation (5), calcu-
late LMLM with equation (6), calculate Ltotal
with equation (7)

11: Backward on Ltotal and update θS , θG,
θs based on AdamW gradient descent with an
adjustable learning rate

12: n← n+ 1
13: end while
14: epoch← epoch+ 1
15: end while
16: return A trained model StablePT

that we randomly initialize the embedding of soft
prompts. "Label" indicates that we use the embed-
dings of the label words. "Vocab" indicates that we
randomly sample words from the vocabulary. "Top-
1k" indicates that we randomly sample words from
the most frequent 1000 words in the pre-training
corpus. "Task" indicates that we randomly sample
words from the downstream data.

E Hard Prompt Template

Table 10 and Table 11 show the hard prompt
template used in Sec. 4.4 for sentiment analysis
and fake news detection, respectively. All these
prompts are generated by employing ChatGPT
(OpenAI, 2023) to express the same meaning but
with different vocabularies.

F Visualizations

We plot the average-pooled soft prompt (i.e., H̄sp)
of the few-shot training and testing data in MR and
PHEME, shown in Fig. 4.
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(a) Dataset: SST-2 (b) Dataset: MR (c) Dataset: PHEME

Figure 4: Visualization of the few-shot training sets and the full testing sets of SST-2, MR, and PHEME by t-SNE.
The top shows the results before tuning and the bottom shows the results after tuning.

Method Train. params Pre-train

Prompt Tuning 7.7K No
Prefix Tuning 14.2M No
P-TuningV2 14.2M No
PPT 7.7K Yes
SPoT 7.7K Yes
ResidualPT 9.3M No
SMoP 77K No
E2VPT 46K No
Fine Tuning 135M No
CP-Tuning 135M No
Stable PT 13.1M No

Table 9: Comparison of all methods. Train. params
denotes total number of trainable parameters, Pre-train
denotes if the method requires pre-training on source
tasks.

Tsn Template

Ts1 "The sentiment of the review is <mask> ."
Ts2 "The outlook portrayed in this appraisal is <mask> ."
Ts3 "The emotional tone of this testimonial is <mask> ."
Ts4 "The sentiment of this critique is <mask> ."
Ts5 "The feeling conveyed by this evaluation is <mask> ."
Ts6 "The mood expressed in this assessment is <mask> ."

Table 10: Example of hard prompt template for senti-
ment analysis

G Impact of Hyperparameters

G.1 Sample Efficiency

We’d like to discuss how performance varies with
an increasing number of training samples. We se-
lect two strong baselines SPoT and PPT for com-
parison. As shown in the Fig. 5, with the num-
ber of training samples increasing, StablePT, PPT,

Tfn Template

Tf1 "Here is a piece of claim with <mask> information ."
Tf2 "The outlook portrayed in this appraisal is <mask> ."
Tf3 "The content of this statement is <mask> ."
Tf4 "What this declaration says is <mask> ."
Tf5 "The essence of this proclamation is <mask> ."
Tf6 "This announcement conveys a <mask> message ."

Table 11: Example of hard prompt template for fake
news detection

(a) Gossipop (b) SST-2

Figure 5: Comparison among PPT, SPoT and StablePT
with different numbers of training samples on Gossipop
and SST-2.

and SPoT all exhibit a gradual upward trend in
results. Besides, StablePT outperforms PPT and
SPoT across all scales of training samples for dif-
ferent tasks with slight fluctuations. In addition, the
suboptimal performance caused by the domain in-
consistency between pre-training and downstream
tasks (mentioned in Sec. 4.3) still exists with the
increase in the number of training samples.

G.2 Prompt Length

The length of the soft prompt could act as an im-
portant hyperparameter. Therefore, we investigate
the impact of various lengths of soft prompt on
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StablePT across four different datasets, as shown
in Table 12.

PL Gossipop PHEME SST-2 RTE

5 71.171.04 74.611.23 83.291.43 59.211.03
10 72.160.72 75.350.81 84.040.45 60.340.55
20 70.662.02 73.531.88 83.121.79 58.832.23
50 70.531.55 73.241.29 82.991.08 59.341.81

Table 12: StablePT performance with various soft
prompt lengths (PL) in accuracy (%).

The results, which explore soft prompt lengths
of 5, 10, 20, and 50, reveal a discernible pattern,
i.e., increasing the prompt length beyond 10 does
not proportionally enhance performance. In fact,
longer prompts often lead to a marginal decline in
effectiveness, possibly due to dilution of semantic
density or increased complexity in the learning pro-
cess (Lester et al., 2021b). Choosing an optimal
length can facilitate PLMs to extract subtle seman-
tic insights without being burdened by redundant
information. This underscores the importance of
prompt length optimization in maximizing the effi-
cacy of soft prompts in contrastive learning settings.
Especially when balancing the need for contextual
richness against the constraints of computational
efficiency and model generalizability.

H Extension to Decoder-only PLMs

The experimental results of decoder-only back-
bones are shown in Table 13.

Method Gossipop PHEME SST-2 RTE

GPT-2 backbone

StablePT 67.780.46 73.330.42 74.830.67 52.550.34

ResPT 64.264.53 72.411.78 63.863.63 51.100.57
PT 60.152.81 69.403.11 60.523.63 50.340.63
FT 67.212.63 73.022.62 66.212.63 51.481.03

LlaMA-2 backbone

StablePT 71.130.63 75.590.73 81.930.10 52.780.36

ResPT 67.563.64 73.522.07 66.903.98 51.460.90
PT 63.571.87 68.921.14 62.633.84 51.030.84
FT 68.212.07 75.041.61 81.251.24 52.481.83

Table 13: Various PLM backbones tests in accuracy
(%).

The results indicate that our method still main-
tains a significant advantage over baseline methods,
despite using decoder models of different sizes as

the backbones, demonstrating the universality of
our model.

I Time Using of Pretrain Methods

For a fair comparison, we use the datasets from
the original paper to re-train PPT and SPoT on
Roberta-base and Roberta-large. Table 14 shows
the time required for the experiment.

Methods Roberta-base Roberta-large

PPT 93123s 781934s
SPoT 110954s 676522s

Table 14: Consumption of PPT and SPoT in time (s).

The results indicate that as the model parameters
increase, the pretraining time required for PPT and
SPoT also increases, which consume substantial
computational resources. This may hinder the fur-
ther development of pretraining prompt methods.
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