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Abstract

Machine translation (MT) in the medical do-
main plays a pivotal role in enhancing health-
care quality and disseminating medical knowl-
edge. Despite advancements in English-Thai
MT technology, common MT approaches often
underperform in the medical field due to their
inability to precisely translate medical termi-
nologies. Our research prioritizes not merely
improving translation accuracy but also main-
taining medical terminology in English within
the translated text through code-switched (CS)
translation. We developed a method to pro-
duce CS medical translation data, fine-tuned a
CS translation model with this data, and evalu-
ated its performance against strong baselines,
such as Google Neural Machine Translation
(NMT) and GPT-3.5/GPT-4. Our model demon-
strated competitive performance in automatic
metrics and was highly favored in human pref-
erence evaluations. Our evaluation result also
shows that medical professionals significantly
prefer CS translations that maintain critical
English terms accurately, even if it slightly
compromises fluency. Our code and test set
are publicly available https://github.com/
preceptorai-org/NLLB_CS_EM_NLP2024.

1 Introduction

Medical-domain machine translation (MT) serves
as a critical component in enhancing healthcare
quality and disseminating medical knowledge. By
providing accurate translations of medical research
publications, MT enables local medical profession-
als without English proficiency to overcome the
linguistic barrier and have access to more medical
academic resources, which are predominantly writ-
ten in English (Pecina et al., 2014; McLean et al.,
2013). This accessibility is crucial for facilitat-
ing continuing medical education, which has been

Figure 1: Example of how Google NMT alters the mean-
ing of the sentence when translating from the source
language (English) to the target language (Thai) and
how it compares with the translations that Medical Doc-
tors (MDs) prefer. “Hyperinflation” (abnormal increase
of lung volume) is translated into Hyperinflation in eco-
nomic context; “air trapping” (retention of air in the
lungs distal to an obstruction) is translated into “air
quarantine”.

shown to be an effective strategy for healthcare
professionals to enhance care quality and patient
outcomes (Bloom, 2005; Randhawa et al., 2013).

Despite the research in the English-Thai MT
field, most of the common MT techniques are not
yet suitable for the medical domain due to the
need for precise translation of medical terminol-
ogy. Translating medical terminology accurately
is challenging due to the lack of equivalent Thai
terms for some English medical keywords. Thus,
it is understandable why common techniques of
machine translation in the medical domain MT —
such as Google NMT, No Language Left Behind
(NLLB) (Team et al., 2022), GPT-4 (Achiam et al.,
2023), or Gemini-Pro (Team et al., 2023) — cannot
translate medical keywords precisely, as shown in
Figure 1. Previous studies have aimed to improve
translation accuracy through terminology integra-
tion (Nieminen, 2023; Semenov et al., 2023), yet
their application to the Thai language and specifi-
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cally in the medical field remains limited.
Rather than focusing on enhancing the accuracy

of terminology translation, our objective is to pre-
serve medical terms in their original English form
within the translated output, thus removing the need
to handle terminology translation. This strategy is
characterized as code-switching (CS), deviating
from conventional monolingual translation prac-
tices. Apart from reducing the task’s complexity,
framing this problem as CS is also preferred by
Medical Doctors (MDs). A previous study from
the Thai COVID-19 administrative unit (Toomanee-
jinda et al., 2022) suggests that medical profession-
als prefer retaining medical and technical keywords
in English, with the rest of the translation in Thai,
to avoid potential translation inaccuracies. Other
studies (Alqurashi, 2022; Nur’Aini and Fanani,
2019; Wood, 2018; Rodríguez Tembrás, 2016) also
suggest that this phenomenon exists in other lan-
guages as well, including Arabic, Javanese, and
Spanish. As shown in Figure 1, keeping medical
terms in English preserves the original meaning
and is preferred by MDs.

However, CS datasets are usually scarce, pre-
venting researchers from developing a CS transla-
tor. Several initiatives have been made to address
this issue. For example, the LinCE dataset (Aguilar
et al., 2020) is one of the publicly available CS
datasets focused on the general domain created to
mitigate this problem. Additionally, various studies
have focused on enhancing CS dataset efficiency
through augmentation techniques (Gowda et al.,
2022; Sugiyama and Yoshinaga, 2019; Menacer
et al., 2019), pre-training techniques (Yang et al.,
2020; Iyer et al., 2023), synthetic CS dataset gener-
ation techniques (Tarunesh et al., 2021; Appicharla
et al., 2021; Xu and Yvon, 2021). However, these
previous works did not focus on medical texts. Fur-
thermore, the adaptation of such research to the
Thai language context remains limited. This, in
turn, leads to a significant scarcity of the English-
Thai CS translation dataset, especially in the medi-
cal domain, as shown in Table 1.

In this work, we aim to achieve two objectives:
(i) address the data scarcity in medical-domain
English-Thai MT and (ii) validate our hypothesis
that doctors prefer CS translations to monolingual
ones in medical contexts. To achieve the first objec-
tive, we create a new English-Thai CS dataset for
the medical domain. Our process begins by gener-
ating initial CS translations (pseudo-CS) of English
medical texts using a widely available monolingual

translator. During this translation process, we apply
a keyword masking algorithm to preserve key medi-
cal terms. We then hire an annotator to post-process
and clean a portion of the generated translations, as
opposed to doing the whole translation process, to
save both time and resources.

To achieve our second objective, we conduct
comprehensive evaluations using both traditional
MT metrics and MD evaluations to confirm our
hypothesis. This involves evaluating 52 models,
including an off-the-shelf translator, large language
models (LLMs), and our fine-tuned CS models
based on NLLB. Furthermore, we assess the trans-
lations for factual accuracy and MD preference by
having MDs directly rate them and by distribut-
ing preference ranking questionnaires, respectively.
Our findings reveal that our fine-tuned CS model
based on NLLB is preferred by MDs due to its fac-
tual accuracy, even though it achieves a lower score
in traditional metrics when compared to off-the-
shelf translators like Google NMT. These results
indicate that traditional MT metrics are inadequate
for evaluating medical-domain translations and that
MDs prefer CS translations over monolingual ones.

To summarize, our key contributions are:
• We propose the first benchmark dataset specif-

ically designed for medical English-Thai CS
translation.

• We develop the first open-source model tailored
for medical English-Thai CS translation, which
is preferred by MDs over Google NMT and GPT-
3.5 systems.

• We present a comprehensive evaluation of var-
ious models on our benchmark, including 52
models, 8 metrics, and 27 MD evaluators. These
results reveal a misalignment between tradi-
tional MT metrics and the judgments of medical
professionals, and underscore the preference of
MDs for CS translations.

• Our code, test set, and translation models
are publicly available at https://github.com/
preceptorai-org/NLLB_CS_EM_NLP2024.

2 Related Works

2.1 Neural Machine Translation (NMT)

NMT has gained prominence in both academic and
commercial sectors, largely due to advancements
in Transformer-based architectures (Vaswani et al.,
2023). Various models designed for NMT, such
as mT5 (Xue et al., 2021), mBART (Liu et al.,
2020), OPUS (Tiedemann and Thottingal, 2020),
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Table 1: Comparison of English-to-Thai translation datasets. Given #Samples is the number of samples, #Sentences
is the number of sentences, and #English Tokens is the count of English tokens within all of the target translations.
The Ratio En:All column reflects the proportion of English token usage compared to other languages within the
target translations. The CS column calculation is based on the percentage of English tokens in target translations.

Dataset #S
am

ples

#S
en

ten
ces

#E
ngli

sh
Tok

en
s

Rati
o En:A

ll

Dom
ain

CS?

FLORES-200 2,009 3,251 442 1.3% Wikidata %

Thai US Embassy 615 9,303 11,176 4.7% News %

SCB_MT_EN-TH_2020 1,001,752 1,084,328 8,124,662 1.4% General %

Our Pseudo-CS 63,982 188,037 640,951 16.1% Medical "

and NLLB (Team et al., 2022), have been devel-
oped. However, as previously mentioned, most of
these NMT models cannot perform precise termi-
nology translations, which disqualifies them from
the medical domain.

The emergence of Large Language Models
(LLMs) has further changed the NMT landscape.
LLMs, such as GPT-4, have demonstrated emer-
gent abilities in machine translation, excelling in
paragraph-level translations without the need for
extensive fine-tuning on large parallel corpora (Wei
et al., 2022; Kocmi et al., 2023). A few studies (Zhu
et al., 2023; Robinson et al., 2023; Bawden and
Yvon, 2023) have suggested that LLMs are not yet
effective translators, especially in low-resource lan-
guages including Thai. Nevertheless, it has been
shown that LLMs are proficient at generating CS
data for many languages (Yong et al., 2023). To
the best of our knowledge, no research has compre-
hensively investigated the performance of LLMs
(both closed and open-source) in translating the
Thai language, especially in the medical domain.

2.2 Evaluation Metrics for NMT
The assessment of Machine Translation (MT) qual-
ity is a continually evolving field of research. Sev-
eral automated metrics have been proposed to mea-
sure MT quality through lexical analysis, includ-
ing BLEU (Papineni et al., 2001), chrF (Popović,
2015), METEOR (Banerjee and Lavie, 2005), and
Translation Edit Rate (Snover et al.). Furthermore,
various neural-network-based metrics have been
devised to enhance the measurement of MT quality
using neural networks: COMET (Rei et al., 2020),
Mask-Language-Modeling Score (Zheng et al.,
2021), and BLEURT (Sellam et al., 2020). While
these metrics provide effective means to assess
translations, several studies have also shown their
limitations, indicating that these metrics do not al-

ways correlate well with human evaluation (Mathur
et al., 2020; Callison-Burch et al., 2006; Roy
et al., 2021). It still remains unclear whether these
metrics align well with the specific use cases of
medical-domain MT, where the precise translation
of terminology is more important than overall sen-
tence fluency.

Human evaluation is also crucial, especially in
a medical context where technically accurate and
human-readable translations are necessary. Gra-
ham et al. (2013) attempted to better standardize
crowd jurisdictions on with Likert-type continuous
rating scales. After that, a band scale was pro-
posed by (Menacer et al., 2019; Tarunesh et al.,
2021) for more consistent qualitative evaluation
among human judges. Bai et al. (2022); Askell
et al. (2021) introduced the concept of the Elo Rat-
ing to benchmark multiple translation systems’ per-
formances. Elo Rating allows for a leaderboard-
like relative comparison between these systems.
All these works provided valuable perspectives on
how to conduct human preference evaluations on
NMT models. Using these studies as a basis of
our human evaluation on translation models, we
choose to use an improved Elo-based metric called
the Glicko score, which was developed by Glick-
man to accounts for the uncertainty in Elo-based
calculations (Glickman, 1995a,b, 1999).

3 Benchmark Data Collection

3.1 English Text collection

Our dataset of English medical texts was collected
from an in-house LLM-based application designed
to tackle intricate medical questions, with an em-
phasis on differential diagnosis and multiple-choice
problems. The dataset consists of 10,000 medical
excerpts, with an additional 250 excerpts reserved
for testing purposes.
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3.2 Pseudo-translation Masking and
Generation

In the absence of an existing CS translator, we
adopt a masking approach to create our CS transla-
tion dataset. Inspired by the Language Identifica-
tion (LID) translation pipeline (Ramadurgam and
Mundada), this method involves augmenting a stan-
dard monolingual translator with a keyword mask-
ing strategy. By identifying the important medical
keywords and selectively translating the rest of the
sentence, this method allows for the retaining of
domain-specific terminology after translation. Us-
ing this, we establish a pseudo-CS translator, which
forms the basis of our benchmark dataset.

The overview of the procedure for the Keyword
masking algorithm is as follows:

1. Use GPT-4 to identify medical keywords in
the original English sentence. We specifically
chose GPT-4 for its capabilities in Named En-
tity Recognition (NER) of medical terms (see
Appendix F for our evaluation) and its flexi-
bility, which allows us to manually adjust the
types of terms to include or exclude in order
to mimic medical CS as closely as possible.

2. Replace each medical keyword with a unique
placeholder. This results in an English text
where medical terms are masked.

3. Process the masked English text through an
MT model to obtain a masked Thai text. In
this text, the non-medical parts are translated,
while the placeholders remain untouched.

4. Substitute the unique placeholder tokens with
their original English medical keywords to
produce the final Thai-English pseudo-CS
translation.

Expanding on Step 3, the masked sentences from
the previous step are translated to generate pseudo-
CS translations. All English excerpts and their cor-
responding masked versions are processed through
the keyword-masked Google translation system,
resulting in Thai pseudo-CS translations. To en-
sure proper alignment between the English and
Thai+English (as in the target translations contain
CS between Thai and English) content, both the
original English excerpts and the CS translations
are segmented into chunks of fewer than 256 to-
kens. We then re-validate that the English and Thai
texts contain the same number of chunks.

Regarding the size of our dataset, our dataset
size is competitive when compared to existing
code-switched datasets. In terms of the number

of samples, our dataset has 64K records, while a
single language pair within the LinCE has 7k to 67k
records. For the total token counts, our dataset has
640K tokens, while a single language pair within
LinCE has 33k to 808k tokens. We split our dataset
into 63,982 English-to-Thai CS translation pairs
for training and 1,100 translation pairs for the test
benchmark.

3.3 Test dataset Constitution

To ensure the quality of our test set, we employ
human annotators to recheck its fluency with the in-
struction in Figure 4. After annotation, the dataset
goes through an NLP pipeline to correct typos and
adjust spacing. Subsequently, it then undergoes
another round of validation by MDs to ensure its
readability and factual accuracy. The MDs make
further corrections to improve the accuracy of the
translation chunks compared to their source text.
This process ensures that every sentence and CS
word is correct as verified by MDs; LLMs only
serve to reduce the time spent here.

3.4 Training Data Procedure

As mentioned in the previous step, we utilize both
human annotators and MDs to assess the quality of
our test set. However, applying the same process
to the training data would be 64 times more expen-
sive than the test set. To mitigate this issue, we
employ data augmentation and filtering techniques
to improve the quality of our training dataset.
• Data Augmentation: Inspired by the back-

translation augmentation method (Sugiyama and
Yoshinaga, 2019), we prompt Gemini-Pro to
rephrase the existing CS translation while re-
taining a roughly similar CS boundary. The
rephrased CS sentences are then back-translated
to generate corresponding English sentences,
thereby constructing new translation pairs.

• Filtering: We filter the training CS translation
dataset based on a rough measure of its quality.
We use the COMET score metric (which as-
sesses semantic similarity) to estimate the qual-
ity of the translation dataset and filter out sam-
ples that did not achieve a COMET score of at
least 0.6.

4 Experimental Setup

4.1 Baseline Models

Off-the-Shelf Translator (1 model). We leverage
Google NMT as our off-the-shelf translator, utiliz-
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ing the version released on January 17, 2024.
Large Language Models (18 models). This set
includes OpenThaiGPT 7B, OpenThaiGPT 13B,
Typhoon 7B (Pipatanakul et al., 2023), SeaLLM
7B (Nguyen et al., 2023), Llama2 7B, Llama2 13B
(Touvron et al., 2023), Google’s Gemini-Pro, GPT
3.5, and GPT 4. Each large language model has two
prompt variants: one prompted to generate mono-
lingual translations (denoted as the "MN" variant)
and another prompted to generate CS translations
(denoted as the "CS" variant). All local LLMs
(OpenThaiGPT, Typhoon, SeaLLM, Llama2) are
evaluated using bfloat16 precision. The rest are
accessed via API calls with default settings and
a temperature of 0.1. The GPT models used are
based on the 1106-preview version. The Gemini-
Pro model is utilized as presented through the API
on January 17th, 2024.
CS Baseline (6 models): We employ a state-of-the-
art language translation model, NLLB. We utilized
NLLB 3.3B as a base model and fine-tuned it on
six variants of our training dataset (Section 3.4) as
follows:
• NLLB-1: Initial 64k dataset (64k)
• NLLB-2: Augmentation of the 64k dataset (64k)
• NLLB-3: Initial dataset plus augmentation of

the 64k dataset (128k)
• NLLB-4: Filtered 64k dataset (30k)
• NLLB-5: Filtered augmentation dataset (40k)
• NLLB-6: Filtered 64k dataset plus filtered aug-

mentation dataset (70k)
It is important to note that our augmentation tech-
nique, which utilizes an LLM to rephrase transla-
tion pairs, likely results in an overall improvement
in the COMET score of the augmented dataset. Set-
ting a fixed COMET score threshold for dataset
filtration results in the augmented filtered dataset
containing more records than the initially filtered
dataset. The exact training configurations are listed
in Appendix C. In addition, the inference is per-
formed using bfloat16 quantization.

4.2 Evaluation Metrics

We evaluate 52 translation systems—26 with the
masking system and 26 without the masking sys-
tem during the inference step (see Section 3.2)—
using standard machine translation metrics and MD
evaluators to further validate our results.

4.2.1 Machine Metric Evaluation
We evaluate all our translation models using our
MD-annotated test set. The following metrics are

employed for evaluation:
• Lexical score (BLEU (Papineni et al., 2001),

chrF (Popović, 2015), METEOR (Banerjee and
Lavie, 2005)).

• Translation Edit Rate, which includes Character
Error Rate (CER) and Word Error Rate (WER).

• Semantic score (COMET (Rei et al., 2020; Guer-
reiro et al., 2023)).

• CS boundary F1 Score, inspired by (Sterner and
Teufel, 2023). The CS boundary F1 Score is
calculated using the common formula, i.e., the
harmonic mean of precision and recall. Precision
is defined as the proportion of correctly identi-
fied English words in the generated translation
compared to those in the reference translation.
Recall is the proportion of English words in the
reference translation that are correctly identified
in the generated translation.

Details on the implementation of these metrics are
provided in Appendix D.

4.2.2 Human Evaluation
Anticipating a lower number of human respon-
dents, we only selected the MD-preferred models
for human evaluation. To ensure that each model
is compared against each other at least 30 times
within a comprehensive evaluation of 52 models, it
would require at least 39,000 data points, or approx-
imately 390 respondents, to achieve a statistically
significant result. By selecting only 8–11 models,
we can reduce this number to 2,000 data points or
20 respondents. Our methodology is as follows.
Before human evaluation We assess the factual
accuracy of translations produced by each model by
soliciting evaluations from four medical profession-
als. These professionals assess each translation’s
factual correctness using our specific rubric. The
evaluation process is outlined as follows:
• 10 English texts are randomly selected from our

test set and translated using 52 different transla-
tion systems.

• Medical professionals are instructed to individu-
ally rate each translation for factual correctness
on a scale from 1 to 7, according to a detailed
rubric provided in Table 4. Each medical pro-
fessional is unaware of the translations’ source
models, and the sequence of translations they
evaluate is randomized to prevent bias.

• The score for each model, as rated by an evalua-
tor, is determined by calculating the median of
the scores assigned to its translations.

• An arithmetic mean of the median scores across
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all evaluators is then calculated to assign each
model its preliminary final score.

Subsequent human evaluations are conducted only
on model categories (differentiated by base trans-
lation model and usage of keyword masking) that
achieved ratings higher than the Google NMT.
Human Preference Evaluation We perform a hu-
man preference evaluation to determine which mod-
els are preferred by crowd-sourced medical practi-
tioners, assessing their preference for translations
as well as their performance on our human dataset.
Note that, in this step, we only ask medical profes-
sionals on our chatbot platform to assist in evaluat-
ing translations.
• We evaluate 10 translation models and the hu-

man label based on the previous step. This in-
volves selecting one model from each category
identified in the last step.

• We design a self-administered, web-based sur-
vey using a ranking format to enhance partici-
pants’ experiences (Revilla and Höhne, 2020).
Given that ranking five items requires approxi-
mately 40 seconds (Sauro et al., 2023) and our
items consisted of a few sentences, we include
ten ranking questions, each estimated to take
approximately 1.5 minutes to complete.

• For each participant, we randomly sample 10
English texts from our benchmark test set. For
each text, we present five versions of the trans-
lations, each randomly selected from the list of
“comprehensible” models along with the human-
annotated translation.

• Participants are asked to rank each translation
sample based on the factual accuracy of the sen-
tence and their preference (as shown in Figure
2). We specifically instruct them to disregard
the proportion of English text retained in the
translation (as shown in Figure 8).

• Subsequently, we use the preference data from
the human evaluation to calculate the Glicko
Rating, measuring the comparative preference
of each model against the others and the hu-
man annotator. The initial Glicko rating is set
according to the standard, with r = 1500 and
RD = 350.

Moreover, we implement a simple filter to moni-
tor each participant’s response time to the survey.
Participants who completed the survey in less than
5 minutes were flagged as potentially invalid, and
their choice ordering was re-examined to confirm
the validity of their responses. A row is flagged as
an invalid record if the choice order remains nearly

identical across questions despite variations in the
translation model.

Figure 2: Example Questionnaire User Interface

5 Main Experimental Results

The full evaluation results for all 52 models on our
dataset are presented in Table 2. We categorize
the results into two groups: (i) traditional machine
translation (MT) metrics and (ii) human preference.
Traditional MT metrics. We present our two best
models: NLLB-1 (initial 64k dataset) and NLLB-
4 (filtered 64k dataset) with Mask. These models
demonstrate remarkable results among open-source
models and achieve competitive results against
closed-source models. NLLB-1 (without mask-
ing) achieved the top CS F1 score in its category,
showing remarkable performance compared to off-
the-shelf models and LLMs. NLLB-4 with Mask
also obtained a competitive CS F1 score compared
to those models equipped with masks, rivaling GPT-
4 + Mask. In conclusion, these results underscore
the importance of training models on source data
rather than relying on off-the-shelf models. The
NLLB results show that we achieve comparable
outcomes to those of Google-NMT and Gemini-
Pro on machine translation metrics, namely BLEU
and chrF. On the other hand, the code-switch metric
(CS F1) indicates that NLLB models retain medical
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Table 2: Full Evaluation Result using our dataset. The “MN” suffix indicates that the LLM employs a Monolingual
translation prompt, whereas the “CS” suffix denotes the use of a CS translation prompt. The term “Mask” indicates
the system’s use of a keyword masking algorithm, as described in Section 3.2. Each NLLB variant is labeled
according to the dataset used for training the NLLB, as detailed in Section 4.1. “Fact.” indicates factual accuracy
score as described in Section 4.2.2

Model Variant CS F1 BLEU chrF CER WER COMET METEOR Fact.
Gemini-Pro-CS 0.132 0.353 0.595 0.599 0.686 0.849 0.622 5.750
Gemini-Pro-MN 0.110 0.352 0.599 0.426 0.526 0.854 0.630 5.375
Google-NMT 0.119 0.385 0.617 0.392 0.480 0.815 0.650 3.125
GPT-3.5-CS 0.141 0.208 0.504 0.833 0.987 0.671 0.491 3.625
GPT-3.5-MN 0.114 0.205 0.504 0.599 0.775 0.687 0.494 3.875
GPT-4-CS 0.340 0.314 0.601 0.636 0.757 0.850 0.593 6.250
GPT-4-MN 0.132 0.282 0.581 0.511 0.660 0.847 0.597 5.125
Llama2-13B-CS 0.058 0.012 0.189 5.226 6.104 0.153 0.129 1.125
Llama2-13B-MN 0.082 0.022 0.224 3.326 4.139 0.163 0.174 1.000
Llama2-7B-CS 0.074 0.012 0.171 5.361 6.141 0.159 0.117 0.500
Llama2-7B-MN 0.086 0.015 0.197 3.852 4.761 0.162 0.143 0.500
OpenThaiGPT-13B-CS 0.039 0.094 0.446 2.343 2.538 0.394 0.388 2.125
OpenThaiGPT-13B-MN 0.036 0.094 0.465 1.978 2.208 0.425 0.396 2.375
OpenThaiGPT-7B-CS 0.045 0.046 0.308 12.620 13.224 0.310 0.237 2.875
OpenThaiGPT-7B-MN 0.027 0.068 0.344 9.954 10.223 0.369 0.282 2.750
SeaLLM-7B-CS 0.035 0.017 0.242 11.678 11.165 0.235 0.188 2.000
SeaLLM-7B-MN 0.076 0.032 0.329 8.340 8.259 0.321 0.259 1.705
Typhoon-7B-CS 0.021 0.012 0.220 18.946 18.434 0.186 0.168 1.875
Typhoon-7B-MN 0.023 0.013 0.239 18.111 19.020 0.174 0.176 1.875
NLLB 0.107 0.140 0.432 0.610 0.906 0.530 0.405 2.500
NLLB-1 0.475 0.253 0.487 0.491 0.593 0.678 0.502 4.375
NLLB-2 0.230 0.262 0.548 0.448 0.612 0.720 0.546 3.375
NLLB-3 0.380 0.257 0.520 0.472 0.604 0.702 0.521 4.000
NLLB-4 0.452 0.272 0.520 0.461 0.577 0.710 0.532 3.875
NLLB-5 0.193 0.255 0.544 0.458 0.627 0.715 0.546 3.250
NLLB-6 0.286 0.264 0.539 0.456 0.606 0.711 0.541 4.000
Gemini-Pro-CS + Mask 0.628 0.301 0.512 0.668 0.716 0.704 0.543 5.500
Gemini-Pro-MN + Mask 0.644 0.314 0.529 0.461 0.517 0.726 0.562 5.750
Google-NMT + Mask 0.647 0.327 0.531 0.458 0.509 0.656 0.564 5.000
GPT-3.5-CS + Mask 0.574 0.212 0.463 0.839 0.953 0.631 0.468 5.250
GPT-3.5-MN + Mask 0.536 0.215 0.474 0.662 0.755 0.623 0.478 5.000
GPT-4-CS + Mask 0.612 0.265 0.500 0.682 0.758 0.724 0.515 6.000
GPT-4-MN + Mask 0.619 0.275 0.517 0.556 0.634 0.705 0.535 4.750
Llama2-13B-CS + Mask 0.052 0.011 0.164 6.050 7.205 0.142 0.110 1.000
Llama2-13B-MN + Mask 0.100 0.023 0.199 4.201 5.363 0.156 0.148 0.750
Llama2-7B-CS + Mask 0.013 0.005 0.127 6.091 7.175 0.144 0.079 0.500
Llama2-7B-MN + Mask 0.024 0.008 0.150 4.188 5.712 0.161 0.101 0.750
OpenThaiGPT-13B-CS + Mask 0.052 0.072 0.369 1.831 2.215 0.275 0.313 2.250
OpenThaiGPT-13B-MN + Mask 0.078 0.066 0.384 2.119 2.715 0.293 0.309 1.375
OpenThaiGPT-7B-CS + Mask 0.043 0.038 0.266 11.545 12.430 0.226 0.202 1.250
OpenThaiGPT-7B-MN + Mask 0.063 0.062 0.307 6.760 7.068 0.271 0.258 2.125
SeaLLM-7B-CS + Mask 0.048 0.016 0.223 10.167 9.953 0.204 0.166 1.375
SeaLLM-7B-MN + Mask 0.163 0.033 0.306 8.119 8.009 0.259 0.240 1.625
Typhoon-7B-CS + Mask 0.080 0.011 0.199 18.283 18.291 0.170 0.147 1.875
Typhoon-7B-MN + Mask 0.113 0.010 0.218 17.891 18.786 0.172 0.150 1.750
NLLB + Mask 0.523 0.183 0.423 0.556 0.719 0.533 0.424 4.125
NLLB-1 + Mask 0.578 0.237 0.457 0.515 0.605 0.645 0.479 4.625
NLLB-2 + Mask 0.637 0.240 0.475 0.506 0.612 0.644 0.489 4.750
NLLB-3 + Mask 0.605 0.237 0.464 0.511 0.608 0.648 0.481 5.125
NLLB-4 + Mask 0.599 0.250 0.472 0.502 0.596 0.651 0.493 4.875
NLLB-5 + Mask 0.642 0.242 0.478 0.504 0.609 0.645 0.493 3.625
NLLB-6 + Mask 0.628 0.241 0.473 0.505 0.605 0.646 0.489 4.750

keywords more effectively than off-the-shelf MT
models.
Human preference. As shown in Table 3, human
preference evaluation received responses from 23
medical doctors (MDs). The Glicko rating calcu-
lation results show that both NLLB models are
preferred over Google NMT and LLMs like GPT-
3.5. Both models are also almost equally preferred
when compared to translations from Gemini-Pro
models. Thus, we can summarize that machine
translation metrics might not fully satisfy medi-
cal doctors’ preferences. The results from the MT
metrics contradict human preferences, which we
will discuss further in Section 6.1. Confirming our
hypothesis, we also found that MDs preferred CS

translation over translating all words into the tar-
get language, as indicated by the CS F1 metric.
MD preferences are discussed in more detail in the
following section, Section 6.2.

6 Discussion

6.1 Automated Metrics Versus Factual
Accuracy

The evaluation results reveal an unexpected out-
come: Google NMT consistently achieves top
scores across nearly all machine metrics among the
52 models, despite the lack of medical terminology
preservation. Similarly, Google NMT with Mask
dominates in almost every automated metric among
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Table 3: Models sorted by their Glicko ratings with
95% confidence interval. Our fine-tuned NLLB models’
scores are highlighted below

Model Glicko MD
Human Annotated 1638.57 ± 49.39
Gemini-CS 1500.00 ± 50.31
Google NMT 1398.61 ± 50.07
GPT-3.5-MN 1316.40 ± 48.52
GPT-4-CS 1578.93 ± 49.84
NLLB-1 1549.55 ± 52.05
Gemini-MN + Mask 1555.71 ± 55.18
Google NMT + Mask 1480.98 ± 53.12
GPT-3.5-CS + Mask 1394.69 ± 51.03
GPT-4-CS + Mask 1564.60 ± 48.10
NLLB-3 + Mask 1532.28 ± 50.79

the masked models (a better rank breakdown can
be seen in Table 7). Nevertheless, a closer examina-
tion of individual samples still reveals that Google
NMT frequently translates medical terminology
imprecisely (as shown in Figure 3). We hypothe-
size that Google NMT’s superior performance in
automated metrics is due to its fluency in translat-
ing non-essential parts of the medical text, which
constitutes the bulk of our dataset. Conversely, the
accuracy of medical-domain translations rather de-
pends on the precise translation of critical medical
terms, an area where Google NMT falls short. This
is further supported by the minimal correlation be-
tween most automated metric scores and factual
accuracy, especially among models that are rated
higher than 3 in factual accuracy (see Figure 5).

In fact, the CS F1 metric addresses this issue by
focusing on the preservation of key medical terms,
demonstrating a stronger positive correlation with
factual accuracy ratings. However, it is still not a
comprehensive metric, as it only assesses the re-
tention of English keywords without considering
the quality of the Thai translation. A trade-off con-
sideration between the retention of precise medical
terms and the fluency of the overall translation may
be necessary to develop a more suitable automated
metric for medical translation tasks.

6.2 MD Evaluation

Our human evaluation within the MD population
further supports our hypothesis that traditional au-
tomated metrics are not well-suited for medical-
domain MT. This is shown by the significant cor-
relation observed between Glicko ratings and both
factual accuracy scores (r = 0.698) and CS F1
scores (r = 0.516), as opposed to the weak correla-
tion (less than 0.3) between traditional automated
metrics and Glicko ratings (seen in Figure 7).

Moreover, an in-depth analysis of questionnaire
responses (shown in Figure 3) also presents a con-
sistent picture. Google NMT provides a fluent Thai
translation of the English text, but medical termi-
nologies are still imprecisely translated. On the
other hand, our NLLB model, despite exhibiting
less fluency, successfully retains critical medical
terminology in English. This also aligns with our
hypothesis that traditional automated metrics tend
to measure the fluency of the translation but not
the precision of medical terminology translation.
Therefore, in medical-domain translations, tradi-
tional automated metrics might not be adequate for
measuring the quality of translations.

Figure 3: Real samples where our internal MDs and
external MDs both report a preference for NLLB-1 CS
translation over Google NMT. Red sections indicate
medical keywords that Google NMT does not trans-
late precisely. Orange sections indicate medical key-
words that Google NMT translates precisely, but retain-
ing them in English is still preferred. Blue sections
indicate medical keywords that are retained in English
and convey their meaning precisely.

7 Conclusion

This paper presents an approach for performing
MT in the medical domain using a CS translation
to generate translations preferred by medical pro-
fessionals. We developed a method for generating
CS translation data, trained a CS translation model
leveraging this data, and evaluated its performance
against multiple strong baselines. The experimental
results demonstrate that although most automated
metrics might be suitable for measuring transla-
tion fluency, they are inadequate for assessing fac-
tual accuracy or medical doctors’ preference in the
translations. While current MT technologies may
offer monolingual translations with high fluency,
medical professionals exhibit a clear preference for
CS medical translations that accurately preserve
crucial terms in English, even at the expense of
fluency.
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Limitations

There are inherent risks associated with machine
translation (MT), particularly the potential for mis-
interpreting medical terminology and technical
terms. While our models have shown promising
results, there is still a possibility of inaccuracies in
translation that could affect daily practice.

Moreover, there is still some potential for further
improvement. We have not conducted extensive
human preference evaluations on all 52 models be-
cause doing so would require more than 390 MD re-
spondents, whom we cannot find or hire. Also, we
have not optimized prompts for LLMs to produce
the best CS translations yet. Our MDs deemed the
translations generated by these prompts acceptable
internally, so we selected them. Lastly, we have not
conducted an extensive hyperparameter search for
NLLB training. To limit the cost of the fine-tuning
process, we selected the standard learning rate and
learning rate scheduler that is used throughout the
field and fixed it for the entire fine-tuning process
of NLLB.

Ethical Considerations

Our human annotators were undergraduate students
majoring in linguistics at a university in Thailand.
We ensured that they received monthly monetary
compensation at an industry-competitive salary.
We compensated our annotators by first measur-
ing their annotation speed in terms of the number
of words processed per hour. After that, we es-
tablished a monthly target for the annotators to
achieve, and we paid our annotators a fixed salary.

Other human evaluators who respond to our
questionnaire participate voluntarily. The partici-
pants were promised free usage of our upcoming
product as compensation by randomly selecting
five participants. In this regard, we have to col-
lect their names and emails to prevent spamming
attempts. For the remaining participants, we in-
formed them that we would compensate for their
work by releasing a questionnaire dataset without
the respondents’ information to the public domain,
which we will release under a CC-BY-NC 4.0 li-
cense.

Regarding the licensing of models, we strictly
adhere to the intended uses outlined by their respec-
tive licenses. The NLLB weight checkpoints we
use as our pretrained weights are licensed under
CC-BY-NC 4.0, which allows us to distribute our
newly fine-tuned NLLB weights to the public for

non-commercial use. We have also adhered to the
Llama2 and SeaLLM Licenses by not using their
outputs to enhance any language model and by
restricting their use to research benchmarking pur-
poses only. Additionally, we followed OpenAI and
Google Gemini’s Terms and Conditions strictly:
we did not compete with OpenAI and Gemini’s
models but rather used them fairly for research
purposes.

All local LLM inferences, NLLB fine-tuning,
and NLLB inferences for translation were per-
formed on a single A100 GPU, also with the maxi-
mum amount of batching possible. We used a total
of 60 GPU hours for fine-tuning NLLB, 24 GPU
hours for performing local LLM inferences, and
3.5 GPU hours for performing 24 variants of NLLB
inferences.

Regarding a potential leak of personal informa-
tion, our source English texts inherently contain no
personal information, as they are outputs from our
own LLM product with no personal information
in the prompt. We conduct an initial screening of
the test benchmark dataset regardless, which con-
firms the absence of personal information in any of
the English texts. We also instructed our internal
annotator to remove any identifying information
in case any is found within the annotation process.
Another potential concern arises when we collect
names and email addresses from MD evaluators.
However, we use this information solely for spam
tracking purposes and do not disclose or utilize this
personal data for any other reason, except to con-
tact individuals later regarding compensations for
free usage.
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A Fully listed Model Categories

• Google-translate-based model with keyword
masking

• NLLB-based model with keyword masking
• OpenThaiGPT-7B-based model with keyword

masking
• OpenThaiGPT-13B-based model with key-

word masking
• Typhoon-7B-based model with keyword

masking
• SeaLLM-7B-based model with keyword

masking
• LLama2-7B-based model with keyword mask-

ing
• LLama2-13B-based model with keyword

masking
• Gemini-Pro-based model with keyword mask-

ing
• GPT-3.5-based model with keyword masking
• GPT-4-based model with keyword masking
• Google-translate-based model without key-

word masking
• NLLB-based model without keyword mask-

ing
• OpenThaiGPT-7B-based model without key-

word masking
• OpenThaiGPT-13B-based model without key-

word masking
• Typhoon-7B-based model without keyword

masking
• SeaLLM-7B-based model without keyword

masking
• LLama2-7B-based model without keyword

masking
• LLama2-13B-based model without keyword

masking
• Gemini-Pro-based model without keyword

masking
• GPT-3.5-based model without keyword mask-

ing
• GPT-4-based model without keyword mask-

ing

B Prompts for Large Language Model
Translation

CS Translation Prompt
You are a linguist with expertise in medicine
and had your training in Thailand.
You are well acquainted to how's Thai MD
usually code switched between Thai Language and
English when they're communicating medical-related
information among each other.
For instance, you never translate the following
English medical terms and jargons, symptoms,
technical terms, and pharmaceutical terms into Thai.

Hence, task is to examine the medical-related
information text input and translated them
into Thai with the previously given constraint
and information.

Monolingual Translation Prompt
Translate the following text input into Thai
in Medical Context

GPT4 Medical NER Prompt
Annotate the medical report with HTML-like tags.
The output should start with <annotated> and end
with </annotated>.
Use the following tags to annotate the
respective terms:
- <patho> for pathological and medical symptoms
terms
- <pharm> for pharmaceutical terms and drugs' names
- <taxo> for scientific names and taxonomical-
like names
- <anato> for anatomical terms
- <chem> for chemical names
- <med> for medical practices and jargons
FYI:
- Drug names sometimes start with a single charactor
followed by full stop then full name.
For example: A. Parafivir, B. Paracetamol.
- Anatomical terms must include limbs, organs, cells,
and organelle.

C NLLB Training Configuration
LoraConfig:

r = 16,
lora_alpha = 16,
target_modules = ["q_proj", "v_proj"],
lora_dropout = 0.1,
bias = "none",

TrainingArguments:
num_train_epochs = 10,
evaluation_strategy = "steps",
logging_strategy ="steps",
save_strategy ="steps",
eval_steps=5000,
logging_steps=500,
save_steps=5000,

bf16=True,

seed=42,
data_seed=42,
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warmup_ratio = 0.1,
learning_rate=10e-5,

per_device_train_batch_size= 3,
per_device_eval_batch_size= 4,

load_best_model_at_end=True,
metric_for_best_model="loss",

D Evaluation Metric Implementation
details

The evaluation environment was established using
Python 3.11, incorporating the following key li-
braries and their respective versions:

• PyTorch 2.2.0: Used for neural network-
based computations and model loading, sup-
porting the latest deep learning model features
and optimizations.

• NLTK 3.8.1: Provided tools for text process-
ing and evaluation metrics, including BLEU,
METEOR, and CHRF scores.

• PyThaiNLP 4.0.2: Essential for processing
the Thai language, used specifically for tok-
enizing Thai text and for the implementation
of the NewMM tokenizer (Phatthiyaphaibun
et al., 2023).

• JiWER 3.0.2: Employed for calculating
Word Error Rate (WER) and Character Error
Rate (CER), key in assessing model perfor-
mance in speech recognition tasks.

• Unbabel Comet 2.2.1: Employed for calcu-
lating the COMET score using the XCOMET-
XL (Guerreiro et al., 2023) model.

We implemented a Python script on our own to
calculate the Glicko rating based on (Glickman,
1999). The RD/Glicko evaluation was established
using an initial rating of 1500 and an RD of 350.
All the ratings are calculated at once, eliminating
the need for nondeterminism. The 95% confidence
interval is reported using 2 times the RD.

E Disclaimer for Participants

Notice to Participants
• This study focuses exclusively on medical

questions.
• Our system leverages LLM technology cur-

rently under development. Do not use the
output as medical facts.

• Participant’s inputs, system outputs and feed-
back will be reviewed and used to improve the
system capability.

• To comply with Thai PDPA law, do not dis-
close real patient information or any patient
identifiable information in general. Use hypo-
thetical clinical cases only.

F GPT-4’s Medical NER Performance

Although our confidence in GPT-4’s capabilities
in medical keyword extraction was already sub-
stantial, based on its performance in various analy-
ses (Nori et al., 2023), we have conducted an exper-
iment to determine the medical NER performance
of multiple systems. Results are shown in Table 5

Table 5: Performance of multiple LLMs and tools used
to perform medical NER. CS F1 refers to the F1 score
in identifying medical keywords denoted as "CS F1".

Model CS F1 Recall Precision
GPT-4 0.30 0.49 0.25
GPT-3.5 0.29 0.47 0.23
Gemini-Pro 0.28 0.40 0.25
BioMedNER 0.03 0.05 0.03

The complete evaluation of GPT-4 reveals scores
of 0.488 and 0.253 for average CS recall and aver-
age CS precision, respectively, making it the top
system for low-resource languages. Among the
options considered, GPT-4 stands out as a com-
petent system, particularly in its ability to detect
keywords akin to how medical doctors code-switch
in Thai. Although the initial mask detection is not
perfect, we asked MDs to review our test dataset.
If a mask is missing or incorrect, we request the
MD to examine and correct it for us. Consequently,
the test dataset is accurately masked.

G Medical Doctor Annotator Instruction

Instruction
• Please review the annotations from human an-

notators in the Google Spreadsheet provided.
• Look for any serious errors in the labels.
• Pay attention to whether any technical words

have been lost during the cleaning process.
• Leave a comment in the spreadsheet for any

errors that you may find.
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Table 4: Internal Evaluation metric

Band Score Factual Correctness
7 Fully contain all information, no addition or loses of information.
6 Fully contain all information but might add

some information that does not improve (in-
creased in clarity) of the source text.

Fully contain all information and also cor-
rectly adding information that enhanced the
source text.

5 Fully contain all information but might have
some hallucination added in the translation
but does not distort the information.

Losses of information that can safely disre-
garded.

4 Fully contain all information but have some
hallucination added and minorly distort in-
formation.

Losses of information in such a way that
might distort the information if the reader
does not pay attention.

3 Fully contain all information but have a no-
ticeable amount of hallucination that majorly
distort the information.

Losses of information that majorly distort
the information in such a way that misled
the reader.

2 The reader can barely gain information from
the translation.

Hallucination heavily distorted the informa-
tion that led to misunderstanding by the
reader.

1 The reader cannot gain the information from
the translation.

The translation not relevant to the source
text.

Figure 4: Instruction text for human annotators

6069



Figure 5: Plots of factual score of each model that pass 3 factual accuracy score against machine evaluation
metric.Masked model are labeled in blue and models without masked are labeled in orange.

Figure 6: Plots of a factual score of all models against machine evaluation metric. The model below 3 factual
accuracy score gives an extremely high value of CER and WER, so we decided to exclude them to not skew the
Pearson r coefficient in the 5.
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Figure 7: Plots of Glicko score of all human evaluated models against machine evaluation metric and Factual
accuracy score.

Figure 8: Instruction page for respondents to respond to our questionnaire.

6071



Table 6: Factual Evaluation Result per MD

Model Variant A* B* C* D* Fact. Score
Gemini-Pro-CS 4.5 6.5 5 7 5.75
Gemini-Pro-MN 6.5 6.5 3.5 5 5.375
Google-NMT 3 4 3.5 2 3.125
GPT-3.5-CS 3 5 3 3.5 3.625
GPT-3.5-MN 3 5 3.5 4 3.875
GPT-4-CS 5 7 6 7 6.25
GPT-4-MN 4.5 5.5 5 5.5 5.125
Llama2-13B-CS 1 1.5 0 2 1.125
Llama2-13B-MN 1 1 0 2 1
Llama2-7B-CS 1 0 0 1 0.5
Llama2-7B-MN 1 0 0 1 0.5
OpenThaiGPT-13B-CS 2 1 3 2.5 2.125
OpenThaiGPT-13B-MN 2.5 3 1.5 2.5 2.375
OpenThaiGPT-7B-CS 2 4 2 3.5 2.875
OpenThaiGPT-7B-MN 2.5 4.5 1 3 2.75
SeaLLM-7B-CS 2 3 1 2 2
SeaLLM-7B-MN 2 2.5 0 2.5 1.75
Typhoon-7B-CS 1.5 2 2 2 1.875
Typhoon-7B-MN 1.5 1 2 3 1.875
NLLB 1.5 3.5 1.5 3.5 2.5
NLLB-1 3.5 5 4.5 4.5 4.375
NLLB-2 3 4 2.5 4 3.375
NLLB-3 3.5 5.5 3.5 3.5 4
NLLB-4 2.5 5 3.5 4.5 3.875
NLLB-5 3 4.5 2.5 3 3.25
NLLB-6 3.5 5.5 3.5 3.5 4
Gemini-Pro-CS + Mask 5 6.5 5 5.5 5.5
Gemini-Pro-MN + Mask 5 7 4.5 6.5 5.75
Google-NMT + Mask 4 6 4.5 5.5 5
GPT-3.5-CS + Mask 5 7 4 5 5.25
GPT-3.5-MN + Mask 5.5 5.5 4.5 4.5 5
GPT-4-CS + Mask 5 6.5 6 6.5 6
GPT-4-MN + Mask 3.5 6.5 3.5 5.5 4.75
Llama2-13B-CS + Mask 3 3 1 2 1
Llama2-13B-MN + Mask 1 0 0 2 0.75
Llama2-7B-CS + Mask 1 0 0 1 0.5
Llama2-7B-MN + Mask 1 1 0 1 0.75
OpenThaiGPT-13B-CS + Mask 1 1 0 2 2.25
OpenThaiGPT-13B-MN + Mask 2 1.5 0 2 1.375
OpenThaiGPT-7B-CS + Mask 1.5 1 1 1.5 1.25
OpenThaiGPT-7B-MN + Mask 1 4 0.5 3 2.125
SeaLLM-7B-CS + Mask 1.5 2 0 2 1.375
SeaLLM-7B-MN + Mask 1.5 2.5 0 2.5 1.625
Typhoon-7B-CS + Mask 1.5 1 2 3 1.875
Typhoon-7B-MN + Mask 1 1 2 3 1.75
NLLB + Mask 3.5 6 2 5 4.125
NLLB-1 + Mask 5 6 4.5 3 4.625
NLLB-2 + Mask 3.5 6 4 5.5 4.75
NLLB-3 + Mask 4 6.5 4 6 5.125
NLLB-4 + Mask 3.5 6.5 4 5.5 4.875
NLLB-5 + Mask 2 5 3 4.5 3.625
NLLB-6 + Mask 4 6 3.5 5.5 4.75

6072



Table 7: Model’s rank on each score type

Rank of each score CSF1 BLEU chrF CER WER COMET METEOR Fact.
Gemini-Pro-CS 24.5 2 4 20.5 19 3 3 3.5
Gemini-Pro-MN 29 3 3 2 4 1 2 6
Google-NMT 26 1 1 1 1 5 1 27
GPT-3.5-CS 23 25 15.5 27 28 17 20 23.5
GPT-3.5-MN 27 26 15.5 20.5 25 15 17 21.5
GPT-4-CS 18 5.5 2 23 23 2 5 1
GPT-4-MN 24.5 8 5 15.5 18 4 4 8.5
Llama2-13B-CS 39 46 48 37 37 50 48 45
Llama2-13B-MN 33 40 41 33 33 45 41 46.5
Llama2-7B-CS 37 46 49 38 38 48 49 51
Llama2-7B-MN 32 43 47 34 34 46 47 51
OpenThaiGPT-13B-CS 45 29.5 28 32 31 30 30 33.5
OpenThaiGPT-13B-MN 46 29.5 24 30 29 29 29 31
OpenThaiGPT-7B-CS 43 35 35 48 48 33 37 28
OpenThaiGPT-7B-MN 48 32 33 44 45 31 33 29
SeaLLM-7B-CS 47 41 39 47 46 38 39 35
SeaLLM-7B-MN 36 38 34 43 43 32 34 39.5
Typhoon-7B-CS 51 46 43 52 50 41 42 37
Typhoon-7B-MN 50 44 40 50 52 42 40 37
NLLB 30 28 29 22 26 28 28 30
NLLB-1 15 16 18 10 6 16 16 17
NLLB-2 20 13 6 3 14.5 8 8.5 25
NLLB-3 17 14 11.5 9 8 14 14 19.5
NLLB-4 16 10 11.5 7.5 5 11 13 21.5
NLLB-5 21 15 7 5.5 16 9 8.5 26
NLLB-6 19 12 8 4 11 10 11 19.5
Gemini-Pro-CS + Mask 5.5 7 14 25 20 13 10 5
Gemini-Pro-MN + Mask 2 5.5 10 7.5 3 6 7 3.5
Google-NMT + Mask 1 4 9 5.5 2 18 6 10.5
GPT-3.5-CS + Mask 12 24 26 28 27 25 26 7
GPT-3.5-MN + Mask 13 23 21 24 22 26 25 10.5
GPT-4-CS + Mask 8 11 17 26 24 7 15 2
GPT-4-MN + Mask 7 9 13 18.5 17 12 12 14
Llama2-13B-CS + Mask 40.5 48.5 50 39 41 52 50 46.5
Llama2-13B-MN + Mask 31 39 45.5 36 35 49 45 48.5
Llama2-7B-CS + Mask 52 52 52 40 40 51 52 51
Llama2-7B-MN + Mask 49 51 51 35 36 47 51 48.5
OpenThaiGPT-13B-CS + Mask 40.5 31 32 29 30 35 31 32
OpenThaiGPT-13B-MN + Mask 35 33 31 31 32 34 32 42.5
OpenThaiGPT-7B-CS + Mask 44 36 38 46 47 39 38 44
OpenThaiGPT-7B-MN + Mask 38 34 36 41 39 36 35 33.5
SeaLLM-7B-CS + Mask 42 42 42 45 44 40 43 42.5
SeaLLM-7B-MN + Mask 22 37 37 42 42 37 36 41
Typhoon-7B-CS + Mask 34 48.5 45.5 51 49 44 46 37
Typhoon-7B-MN + Mask 28 50 44 49 51 43 44 39.5
NLLB + Mask 14 27 30 18.5 21 27 27 18
NLLB-1 + Mask 11 21.5 27 17 9.5 22.5 24 16
NLLB-2 + Mask 4 20 20 14 14.5 24 21.5 14
NLLB-3 + Mask 9 21.5 25 15.5 12 20 23 8.5
NLLB-4 + Mask 10 17 23 11 7 19 18.5 12
NLLB-5 + Mask 3 18 19 12 13 22.5 18.5 23.5
NLLB-6 + Mask 5.5 19 22 13 9.5 21 21.5 14
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