Self-Consistency Boosts Calibration for Math Reasoning

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Lifeng Jin, Haitao Mi, Jinsong Su, Dong Yu


Anthology ID:
2024.findings-emnlp.349
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2024
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
6023–6029
Language:
URL:
https://aclanthology.org/2024.findings-emnlp.349
DOI:
10.18653/v1/2024.findings-emnlp.349
Bibkey:
Cite (ACL):
Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Lifeng Jin, Haitao Mi, Jinsong Su, and Dong Yu. 2024. Self-Consistency Boosts Calibration for Math Reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6023–6029, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
Self-Consistency Boosts Calibration for Math Reasoning (Wang et al., Findings 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/dois-2013-emnlp/2024.findings-emnlp.349.pdf