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Abstract
In-Context Learning (ICL) and Instruction Tun-
ing (IT) are two primary paradigms of adopt-
ing Large Language Models (LLMs) to down-
stream applications. However, they are sig-
nificantly different. In ICL, a set of demon-
strations is provided at the inference time, but
the LLM’s parameters are not updated. In IT,
a set of demonstrations is used to adjust the
parameters of the LLM during training, but
no demonstrations are provided at the infer-
ence time. Although a growing body of lit-
erature has explored ICL and IT, studies on
these topics have largely been conducted in iso-
lation, leading to a disconnect between these
two paradigms. In this work, we explore the
relationship between ICL and IT by examin-
ing how the hidden states of LLMs change in
these two paradigms. Through carefully de-
signed experiments conducted with LLaMA-2
and LLaMA-2-Chat (7B and 13B), we find that
ICL and IT converge in LLM hidden states
despite their apparent differences in implemen-
tation. Specifically, ICL changes an LLM’s
hidden states as if its accompanying demon-
strations were used to instructionally tune the
model. Furthermore, the convergence between
ICL and IT is largely contingent upon several
factors related to the demonstration. Overall,
this work offers a unique perspective to explore
the connection between ICL and IT and sheds
light on understanding the behaviors of LLMs.

1 Introduction

Large language models (LLMs), such as ChatGPT
1, GPT-4 (OpenAI, 2023), PaLM (Chowdhery et al.,
2022), and LLaMA-2 (Touvron et al., 2023), have
significantly changed the paradigm of natural lan-
guage processing and have great potential for ar-
tificial general intelligence (Bubeck et al., 2023).
In real-world applications, the success of deploy-
ing LLMs can largely be attributed to the effec-
tiveness of two important learning paradigms: 1)

1https://openai.com/chatgpt

In-Context Learning (ICL) and 2) Instruction Tun-
ing (IT). ICL, a paradigm introduced in the GPT-3
paper (Brown et al., 2020), involves utilizing a set
of demonstrations provided at the inference time
to guide the model’s responses, but the model’s
parameters are not updated during this process. In
contrast, IT refers to the process of further train-
ing LLMs on ("input", "output") pairs, along with
instructions in a supervised fashion. IT has been
shown to be effective in enhancing an LLM’s gen-
eralizability on unseen tasks (Longpre et al., 2023)
and a viable strategy for LLM alignment (Taori
et al., 2023; Zhou et al., 2023). We illustrate ICL
and IT using sentiment analysis in Figure 1.

A growing body of literature has examined the
inner workings of ICL and IT, such as looking
for the conditions under which ICL emerges (Liu
et al., 2021; Lu et al., 2021; Su et al., 2022; Wang
et al., 2023; Chan et al., 2022; Xie et al., 2021),
and identifying the training data or tasks for ef-
fective instruction tuning to enhance the zero-shot
generalizability of LLMs (Longpre et al., 2023).
Although ICL and IT are both effective strategies
for improving the capability of LLMs, studies on
ICL and IT have been conducted in isolation. This
has led to a research question: What are the con-
nections between ICL and IT, and in which way do
they enhance an LLM’s capability? This question
further extends a more recent discussion on rep-
resentation convergence across training objectives
(Bansal et al., 2021) and the platonic representation
hypothesis (Huh et al., 2024).

In this work, we empirically examine the con-
nections between ICL and IT from a hidden state
perspective. In an autoregressive model, the hid-
den state of the last input token summarizes the
information of the entire input sequence and deter-
mines the logit vector for sampling the following
token. In the context of ICL and IT, three situa-
tions arise, each producing a different hidden state
compared to the others. The first situation involves
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Figure 1: Illustration for ICL and IT using sentiment analysis. Through ICL, the LLM infers a "Negative" sentiment
for "Many pointless." conditioned on the provided demonstrations (Left). In contrast, IT involves further tuning the
LLM’s parameters on the training data, and the tuned LLM is subsequently used for inference (Right).

zero-shot learning for an LLM. In this case, the
hidden state of the last token in the input sequence
is determined by the LLM, conditioned on the infer-
ence example. Since this is the basic case — where
no demonstrations are provided and the LLM’s
parameters are not updated — we denote this hid-
den state as the anchor hidden state, hanchor. The
second situation is ICL, where demonstrations are
provided to guide the LLM’s responses. Since ICL
does not modify the LLM’s parameters, the hidden
state is determined by the LLM, conditioned on
the provided demonstrations and the inference ex-
ample. We denote this hidden state as hICL. The
third situation is IT, where demonstrations are used
to adjust the LLM’s parameters, transforming the
LLM into a tuned-LLM. Here, the hidden state
is determined by the tuned-LLM, conditioned on
the inference example, and we denote this hidden
state as hIT . Comparing the similarity between
hanchor and hICL allows to quantify the effect of
the demonstrations through ICL, while comparing
the similarity between hanchor and hIT allows to
assess the impact of IT on such demonstrations.
If a demonstration is effective for ICL and IT, we
would observe little similarity between hanchor and
hICL, as well as between hanchor and hIT because
this demonstration gears the LLM to produce a
guided (either through ICL or through IT) response.
Moreover, measuring the similarity between hICL

and hIT allows us to quantify the extent to which
ICL and IT converge in hidden states. Figure 2
illustrates our analysis framework involving the
above three situations.

In our main experiment, we choose LLaMA-
2 (7B) (Touvron et al., 2023) as the foundation
LLM and sentiment analysis as the downstream
task. We compile a data set D consisting of tuples
like (instruction, text, label). We then apply ICL
and IT to the LLM using same demonstrations and
inference example drawn from D and examine the
similarities among hanchor, hICL, and hIT . We re-
peat the experiment multiple times with variations
in the wording of instructions and demonstrations
by sampling D repeatedly using different random
seeds. The results reveal a high similarity between
hICL and hIT , while the similarity of each of the
two hidden states with hanchor is low. This sug-
gests that ICL and IT essentially guide the LLM to
a similar status, although IT tunes the LLM’s pa-
rameters while ICL does not. To further investigate,
we manipulate the demonstrations used in ICL and
IT; for example, we vary the number of demonstra-
tions (from one-shot ICL to few-shot ICL), alter
the semantic similarity between the demonstration
and the inference example, demonstrate the LLM
with incorrect labels, and ask the LLM to perform
a task different from the one shown in demonstra-
tions. The results consistently support the finding
that using a demonstration in ICL has a similar ef-
fect as using this demonstration to instructionally
tune the LLM. In the additional analyses examin-
ing the robustness and generalizability of our find-
ings, we change the downstream task to machine
translation and text summarization, apply differ-
ent tuning strategies, and replace LLaMA-2 (7B)
with LLaMA-2 (13B) and LLaMA-2-Chat (7B);
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the results remain consistent.
In summary, this work makes three important

contributions. First, we provide empirical evidence
that ICL and IT are closely related. Although ICL
does not alter model parameters — unlike IT —
the instructions and demonstrations they employ
drive the model towards convergent hidden states.
Second, we introduce a generic analysis framework
that facilitates conducting controlled experiments
to study LLM behaviors empirically. Third, our
findings shed light on compiling dataset for effi-
cient ICL and IT (as discussed in later sections),
potentially advancing the alignment of foundation
models. 2

2 Analysis Framework

We illustrate the analysis framework in Figure 2.
Building upon this framework, we examine the
impact of different demonstrations (zero-shot vs.
few-shot ICL) and learning paradigms (ICL vs. IT)
on the model’s hidden states separately. Although
LLMs maintain hidden states for every input token,
we primarily focus on the hidden states associated
with the last input token of the sequence in this
study. This is consistent with the majority of work
studying how a decoder-only-LLM’s internal states
(activations) affect its behavior (Zou et al., 2023).

We denote the instruction as X (such as, what
is the sentiment of this review?), demonstration as
A = (Text A, Label A) (such as, Review: This is a
wonderful movie. Sentiment: Positive), and infer-
ence example as B = (Text B) (such as, Review: I
like this movie.). We then consider the following
three situations.
Basic situation. This is the basic zero-shot learn-
ing setting where no demonstrations are provided
to guide the model’s inference. In this situation,
we concatenate the instruction with the inference
example (i.e., Instruction X + Text B) and feed it
through the LLM. We collect the final hidden state
of the last input token, denoted as hanchor.
ICL situation. In ICL, demonstration, along with
the inference example (i.e., Instruction X + Text A
+ Label A + Text B), are provided as input to the
LLM, which then directly infers the distribution of
the next token. Similarly, we collect the final hid-
den state of the last token, denoted as hICL. Com-
paring the similarity between hanchor and hICL

allows us to examine the effect of the provided

2The code is available at https://github.com/
hduanac/ICL-vs-IT

demonstration through ICL. If the similarity is low,
it indicates that the demonstration information is
incorporated by the LLM so that the final hidden
state is geared away.
IT situation. In IT, unlike the ICL situation where
the demonstration is used as a part of the input se-
quence, we instead use the demonstration (i.e., In-
struction X + Text A + Label A) to instructionally
tune the LLM, leading to a tuned LLM. We then
send the inference example (i.e., Instruction X +
Text B) through the tuned LLM, and the associated
hidden state is denoted as hIT . Note that the input
sequences to the LLM are exactly the same (i.e.,
Instruction X + Text B) in both the basic situation
and the IT situation. The only difference is that the
basic situation involves the vanilla LLM while the
IT situation involves the instruction-tuned LLM.
Therefore, by comparing hanchor with hIT , we can
quantify the effect of IT with the demonstration.

Since same demonstrations are used in both ICL
and IT, measuring the similarity between hICL

and hIT allows us to precisely quantify the conver-
gence between them. Moreover, by manipulating
the demonstrations, we can examine how closely
ICL is connected to IT in different situations. In the
following analyses, we denote the cosine similarity
between hanchor and hICL as sanchor−ICL, and de-
note that between hanchor and hIT as sanchor−IT .
Similarly, we calculate the similarity between hICL

and hIT , denoted as sICL−IT , which quantifies
how much ICL and IT aligns from the hidden state
perspective. If sICL−IT is very high, it suggests
that ICL and IT guide the model status towards the
same direction although the model parameters are
not updated in ICL but adjusted in IT.

3 Experiments

3.1 Experiment Setup

Datasets. In the experiments, we use SST2 for
sentiment analysis (Socher et al., 2013), EN-CS of
WMT16 for English-Czech translation (Bojar et al.,
2016), and XSum for text summarization (Narayan
et al., 2018). For each task, we manually craft
the relevant instructions which are then employed
randomly in the repeated experiments, alleviating
the concern that the experimental results are driven
by a specific instruction. Instructions used for each
task are presented in Appendix C.
LLMs. We use LLaMA-2-Base/Chat as the foun-
dation model (Touvron et al., 2023), including 7B
(32 layers with a hidden size of 4,096) and 13B (40
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Figure 2: Analysis framework using sentiment analysis for illustration. The framework accommodates variations by
manipulating the instructions, demonstrations, and changing the foundation model and the downstream task.

layers with a hidden size of 5,120). The models
are downloaded from Meta AI 3, and implemented
using the transformers library 4.
Instruction tuning. We use LoRA (Hu et al., 2021)
to instruction-tune the LLaMA-2 model due to its
efficiency. Specifically, we target modules Q and
V 5, and set the dropout probability 0.05, learning
rate 1e-4, scaling factor 32, and use a rank of 8.
We use AdamW optimizer (Loshchilov and Hutter,
2017). Without further specification, we tune the
model with 10 epochs and use bf16 precision.
Repeated experiments. Our empirical findings
are based on 30 repeated runs of experiments with
different random seeds, differing in instructions,
demonstrations, and the inference example.

3.2 Empirical Findings

We present the empirical findings as follows.
In-Context Learning (ICL) and Instruction Tun-
ing (IT) result in a converged model state. We
show the cosine similarity between each pair of
hidden states in Figure 3a. First, we observe that
the similarity between hanchor and either hICL or
hIT is almost zero, indicating that the model un-
dergoes significant changes in its hidden represen-
tations when exposed to in-context demonstrations
or when tuned by the demonstrations. Furthermore,
the high similarity between hICL and hIT (approx-
imately 0.9) suggests that the model is indeed ori-
ented toward a similar state in ICL and IT. This

3https://ai.meta.com/resources/
models-and-libraries/llama-downloads/

4https://github.com/huggingface/transformers
5Please refer to Appendix B.2 for the results regarding

tuning other modules.

provides the first evidence that ICL acts as implicit
IT regarding the behavior within hidden represen-
tations. We provide more supporting evidence by
analyzing the attention allocation in Appendix A.

Prior studies have shown that high-quality output
can be achieved with minimal training data by IT
(Zhou et al., 2023), highlighting the importance of
developing efficient data selection techniques for
instruction tuning. Along this line of research, our
finding suggests that, without any training, com-
paring hidden states in an ICL setting may offer
a viable solution for pinpointing redundant data
in instruction tuning. This aligns closely with the
recent research endeavors into selecting efficient
IT data with minimal computational cost without
model update (Xia et al., 2024). Besides, Lin et al.
(2023) suggest another potential application of this
finding by demonstrating that strategic prompting
with ICL can achieve comparable performance to
IT in terms of foundation model alignment.
The convergence between ICL and IT is pos-
itively correlated with the semantic similarity
between the demonstration and the inference
example. We further investigate how the semantic
similarity between the demonstration and the infer-
ence example (i.e., Text A and Text B respectively
in Figure 2) affects the ICL-IT convergence. To do
this, we use the sentence-transformer model "all-
MiniLM-L6-v2" 6 to measure the demonstration-
inference similarity (Reimers and Gurevych, 2019).
We consider 10 levels of similarity ranging from
0 to 1 and experiment with same inference exam-
ples across the 10 similarity levels to allow fair

6https://www.sbert.net
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(a) ICL-IT Convergence (b) Incorrect Demonstration Labels (c) Different Demonstration Task

Figure 3: Hidden state similarity. Each box plot summarises the similarity scores of 30 repeated experiments. We
report the average (ICL and IT) classification accuracy in the upper right corner of each plot.

(a) Anchor-IT (b) Anchor-ICL (c) ICL-IT

Figure 4: Averaged similarity scores between hidden states across 10 demonstration-inference similarity levels.

comparison. The results are shown in Figure 4.
Clearly, the similarity between hICL and hIT in-
creases as the similarity between the demonstra-
tion and the inference example increases (Figure
4c). One potential explanation is that a demon-
stration closely resembling the inference example
might better stimulate the model’s ICL ability and
enhance the effectiveness of IT, ultimately result-
ing in higher convergence. It is worth noting that
the similarity between hICL and hIT varies sig-
nificantly, spanning from approximately 0.4 when
the demonstration and the inference example are
entirely dissimilar to 0.8 when they are identical.

In contrast, the similarity between hanchor and
hIT exhibits an opposite trend, as shown in Figure
4a, suggesting that a demonstration that is more
similar to the inference example is able to change
the model’s state to a greater extent through IT.
This finding is consistent with previous studies
indicating that instruction tuning becomes more
effective when finetuning the LLM on examples
similar to the inference instances (Gudibande et al.,
2023). Put it another way, finetuning the model
with semantically different examples does not sub-
stantially alter the model’s inference capability.

Interestingly, we observe that the similarity be-
tween hanchor and hICL remains consistently low,

regardless of the demonstration-inference similar-
ity, as illustrated in Figure 4b. This suggests
that incorporating demonstrations into the ICL in-
put can consistently and significantly impact the
model’s inference. Previous studies on ICL have
indicated that higher demonstration-inference sim-
ilarity leads to improved inference accuracy. It is
important to emphasize that Figure 4b does not
contradict this observation; in fact, a low similarity
may very likely imply that the model’s inference
ability is improved with ICL.
The convergence between ICL and IT increases
as the number of provided demonstrations in-
creases. In the previous analyses, we use a single
demonstration in both ICL and IT. In this experi-
ment, we vary the number of demonstrations (i.e.,
the few-shot setting) in ICL and IT. Specifically, we
experiment with 1-shot, 2-shot, 5-shot, and 10-shot
scenarios. For a fair assessment, we keep the num-
ber of parameter updates consistent by instruction-
tuning the model with 10, 5, 2, and 1 epoch(s),
respectively. Besides, across these few-shot set-
tings, we use the same set of inference examples to
ensure a fair comparison.

We present the results in Figure 5a and observe
a clear upward trend in convergence between ICL
and IT as we utilize more demonstrations. This is
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(a) Multiple Demonstrations (b) Wrong Labels vs. Right Labels (c) Loss Reduction by Token Identity

Figure 5: Miscellaneous results involving manipulated demonstrations and token loss analysis.

intuitive since ICL with multiple demonstrations
(i.e., the few-shot setting) can better help the model
discover patterns in the context and quickly adapt to
the required task. Similarly, using more examples
related to the same task for IT can better tune the
model for that specific task, resulting in a higher
level of convergence between ICL and IT.
Demonstrated with wrong labels slightly affects
the convergence between ICL and IT. Prior stud-
ies on ICL have shown that the correctness of the
demonstration label is not crucial; what matters
most is the task format for ICL (Min et al., 2022).
Therefore, it prompts us to examine how the label
correctness of demonstrations affects the ICL-IT
convergence. To this end, we invert the labels of
demonstrations (e.g., switching "Positive" to "Neg-
ative"), and repeat the ICL and IT procedures. The
results are shown in Figure 3b.

Interestingly, we find that while ICL and IT still
exhibit a high level of convergence, the degree is
slightly lower than their counterpart when using
correct labels as compared to the results shown in
Figure 3a. Moreover, the variation in the degree of
ICL-IT convergence increases significantly, as evi-
denced by the larger interquartile range and longer
whiskers of the box plot. As a sanity check, we
examine if using wrong labels to do IT hurts the
model performance, and present the results in Fig-
ure 5b. Although we do observe a performance
drop, the decrease is not statistically significant 7,
aligned with (Kung and Peng, 2023).
Demonstrating the LLM with a different task
than that at the inference time would not affect
the ICL-IT convergence. In the previous experi-
ments, the demonstration task and the inference

7We conduct a one-tailed Wilcoxon signed-rank test, where
the null hypothesis posits that there is no accuracy improve-
ment by using correct demonstration labels compared to using
incorrect ones.

task are identical, focusing on sentiment analy-
sis. In this experiment, we alter the demonstra-
tion task to machine translation using the EN-CS
subset of WMT16, translating English to Czech
8, while maintaining sentiment analysis as the in-
ference task. We present the results in Figure 3c.
Clearly, the notable convergence in similarity be-
tween ICL-IT, Anchor-ICL, and Anchor-IT suggest
that the machine translation task demonstrations
do not affect the model’s inference capability for
sentiment analysis.
The convergence between ICL and IT begins to
rise in later transformer layers. Unlike our previ-
ous analyses, where we measure the hidden state
similarity in the final transformer block, this ex-
periment examines such similarity across different
transformer layers. The results are shown in Fig-
ure 6. Interestingly, we notice a U-shaped pattern
across various layers. The high similarity between
ICL and IT in the earlier layers is primarily due to
the fact that the hidden states are both similar to
the anchor hidden state, indicating minimal influ-
ence from the demonstrations. As the layer count
increases, the LLM progressively incorporate in-
fluences from the demonstrations, leading to lower
similarity between ICL and IT in the middle layers.
Eventually, as the input progresses towards the up-
per layers, which are nearer to the final output, the
hidden states of ICL and IT begin to converge.

4 Additional Analyses

4.1 LLaMA-2 (13B)

We examine if ICL and IT still converge in a larger
model. We choose LLaMA-2 (13B) as the founda-
tional model and repeat the analysis procedure to

8We use the following template: ”Instruction X. English:
English text A. Czech: Czech text A. Instruction X. English:
English text B. Czech:”.

3202



Figure 6: ICL-IT convergence across different transformer layers.

(a) LLaMA-2 (13B) (b) Classic Supervised Learning (c) Machine Translation Task

Figure 7: Hidden state similarity measured in different model, downstream task, and training configurations.

assess the similarity for each pair of hidden states.
The results, displayed in Figure 7a, indicate the
ICL-IT convergence persists at a high level. How-
ever, Anchor-IT and Anchor-ICL also exhibit a
high level of convergence, meaning that the larger
model is more capable of understanding the task
even without any demonstrations given (note that
in the basic situation, an instruction is given, which
could provide sufficient information for the larger
LLM to do zero-shot learning). We also exper-
iment with the instruction-tuned LLaMA-2-Chat
(7B) and present our findings in Appendix B.4.

4.2 Classic Supervised Learning

Instruction tuning differs from classic supervised
learning in that the former employs additional in-
structions to enhance an LLM’s generalizability,
while classic supervised learning typically teaches
the LLM to specialize in a specific task.

To further understand the role of instruction in
IT and its influence on the ICL-IT convergence, we
conduct experiments with classic supervised learn-
ing for comparison. Specifically, we remove the
Instruction X from the training input and use only
task examples to finetune the LLM. We denote this

classic supervised situation as SL. We repeat the
same analysis procedure and present the results in
Figure 7b. Clearly, while the convergence between
ICL and SL still exists, the similarity score is sig-
nificantly lower than that of its IT counterpart (as
shown in Figure 3a). This observation underscores
the critical role of instructions in triggering ICL-IT
convergence within the representation space.

4.3 Understanding IT from ICL

Our findings discussed above suggest that ICL
might implicitly perform IT. In this subsection, we
take an opposite view and look at IT through the
lens of ICL instead.

Specifically, we examine the loss associated with
each token, referred to as per token loss, which is
defined as the cross-entropy loss between every
predicted token and its respective ground truth to-
ken within a sequence (Olsson et al., 2022). We
depict our analysis procedure in Figure 8, com-
prising three steps. First, employing the template
used in Figure 2, we compile the input with an
Instruction X and an Example A in the format:
"Instruction X . Review: Text A. Sentiment: La-
bel A.", then pass it through the LLM (LLaMA-2
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(7B)) to collect the per token loss. Second, we
instruction-tune the model with Example A using
Instruction X , send the same input through the
tuned model, and once again collect the per token
loss. Finally, we compute the loss reduction for
each token and average them based on the token’s
identity (i.e., "Instruction" or "Example"). We re-
peat this process 30 times, varying the Instruction
X and Example A each time. We plot the aver-
age loss reduction by token identity in Figure 5c,
which reveals a more substantial decrease in loss
for "Example" tokens compared to "Instruction"
tokens. Note that this is not straightforward, as
during finetuning, only the loss associated with the
label is minimized, while the losses of the "Exam-
ple" tokens are not directly targeted. This finding
suggests that IT facilitates the LLM in continuing
instructions with task-relevant examples (demon-
strations). Intuitively speaking, after IT, presenting
the LLM with the instruction as if it were shown the
demonstrations, akin to the setting of ICL where
demonstrations are provided within the context.

4.4 Generalizability of Findings
One remaining concern is that the convergence of
ICL and IT may stem from them making highly
similar predictions, due to the saturation to the sim-
ple binary sentiment classification task. Although
we only tune the LLM with a single or a few ex-
amples in the experiments, which may somewhat
alleviate this concern, to fully rule out this possi-
bility and as a robustness check, we experiment
with more complex generative tasks, specifically
machine translation from English to Czech using
EN-CS of WMT16 (Bojar et al., 2016) and text
summarization using XSum (Narayan et al., 2018).

We show the results of the translation task in
Figure 7c and include the summarization outcomes
in Appendix B.1. First, the high similarity between
ICL and IT supports our earlier finding that ICL,
when using demonstrations, significantly alters an
LLM’s inference capability in a manner similar
to finetuning the LLM with such demonstrations.
Unlike in sentiment analysis, where Anchor-IT and
Anchor-ICL show as low as zero similarity, their
counterparts are much higher in the two generative
tasks. However, a one-tailed Wilcoxon signed-rank
test reveals that the similarity between ICL and
IT is significantly greater than that of Anchor-IT
and Anchor-ICL, ruling out the possibility that all
three hidden states are similar to each other. We
provide additional robustness checks by varying the

model, tuning strategy, and the wording of prompt
in Appendix B.

5 Related Work

In-Context Learning (ICL) is a phenomenon
emerged in large language models (Brown et al.,
2020). A growing body of literature has investi-
gated the ICL phenomenon in LLMs. Some studies
have focused on identifying the conditions under
which ICL emerges in LLMs, predominantly by
finding good demonstrations (Liu et al., 2021; Lu
et al., 2021; Su et al., 2022; Wang et al., 2023) and
identifying pre-training data distributions that can
lead to the emergence of ICL (Chan et al., 2022;
Xie et al., 2021). Another line of research aims
to explain ICL through building the relationship
with the model training stage (Akyürek et al., 2022;
Dai et al., 2022; Li et al., 2023; Von Oswald et al.,
2023). For instance, Akyürek et al. (2022) find ICL
implicitly updates smaller models encoded in the
activations. Olsson et al. (2022) provide evidence
that the so-called "induction heads" contribute to
the majority of the ICL behaviors in LLMs.

Our work differs from existing studies in two
ways. First, we attempt to understand ICL by inves-
tigating its connection with IT, which is new and
opens up the possibilities for harnessing the com-
plementary advantages of ICL and IT. Second, we
empirically study off-the-shelf LLMs with more
complex model structures (LLaMA-2 7B and 13B),
whereas most prior works conduct experiments us-
ing simplified models (Li et al., 2023).

Instruction Tuning (IT) is an efficient tech-
nique to adapt LLMs to downstream tasks by fur-
ther tuning the model on ("input", "output") pairs
with instructions in a supervised manner. The in-
tuition behind IT is to bridge the gap between the
language modeling objective in pre-training and
the users’ objective in downstream tasks, such that
the model can follow the instructions from users.
The effectiveness of IT is well-demonstrated by a
variety of instruction-tuned LLMs, with represen-
tatives such as InstructGPT (Ouyang et al., 2022),
Alpaca (Taori et al., 2023), Flan-T5 (Longpre et al.,
2023), and Vicuna 9. A growing body of literature
focuses on designing tasks and datasets for effec-
tive instruction tuning. For example, LIMA (Zhou
et al., 2023) shows that a small set of high-quality
instruction data is sufficient for foundation model
alignment. Our work aims to provide empirical

9https://lmsys.org/blog/2023-03-30-vicuna/
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Figure 8: Illustration of collecting per token loss for understanding IT through the lens of ICL.

evidence to further understand IT, through the lens
of its connection with ICL.

6 Conclusions

In this work, we explore the connection between
in-context learning (ICL) and instruction tuning
(IT). Through carefully designed experiments, we
provide strong evidence suggesting ICL and IT
implicitly converge in LLM hidden states. That
is, ICL changes an LLM’s hidden states as if the
demonstrations were used in IT. This finding sheds
light on the behaviors of the two very different
learning paradigms (ICL vs. IT), potentially bene-
fiting the development and alignment of foundation
LLMs to downstream real-world applications.

7 Limitations

This work has several limitations that can be im-
proved in future research. First, we only examine
the ICL-IT relationship by measuring the hidden
state similarity, since this is our main focus. Future
work can build upon our analysis framework and
further investigate the ICL-IT convergence from
distinct angles. For example, in Appendix A, we
provide preliminary evidence suggesting that ICL
and IT lead to similar attention weights over the
inference example. Potential avenues include iden-
tifying similar neuron activation patterns, delving
into the QKV matrices, and studying how the en-
coded knowledge is used by ICL and IT through
topic modeling. Second, we do not look into the
hidden states in the model’s intermediate layers and
those of other input tokens in detail, since the final
state of the last token is much more crucial and
directly influences the model’s response. Delving
deeper into the intermediate layers and examining
the representations of other tokens may constitute

an interesting future direction. Third, our experi-
ments are conducted on common NLP tasks (i.e.,
sentiment analysis, machine translation, and text
summarization). How the analysis framework can
be generalized to other real-world NLP settings
where the tasks are more complex, such as mathe-
matical reasoning, or perhaps even going beyond
textual data to incorporating multimodal features,
warrants further investigation. Finally, as we men-
tion earlier, our empirical findings offer great po-
tential to contribute to efficient ICL and IT. Future
work may be needed to design more efficient ICL
and IT datasets, tasks, and learning strategies for
better deploying and aligning foundation models to
downstream applications drawing upon the insights
from this work.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, et al. 2016. Findings of the
2016 conference on machine translation. In Proceed-
ings of the First Conference on Machine Translation:
Volume 2, Shared Task Papers, pages 131–198.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

3205



learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Stephanie Chan, Adam Santoro, Andrew Lampinen,
Jane Wang, Aaditya Singh, Pierre Richemond, James
McClelland, and Felix Hill. 2022. Data distributional
properties drive emergent in-context learning in trans-
formers. Advances in Neural Information Processing
Systems, 35:18878–18891.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui,
and Furu Wei. 2022. Why can gpt learn in-context?
language models secretly perform gradient descent as
meta optimizers. arXiv preprint arXiv:2212.10559.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and
Dawn Song. 2023. The false promise of imitating
proprietary llms. arXiv preprint arXiv:2305.15717.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and
Phillip Isola. 2024. The platonic representation hy-
pothesis. arXiv preprint arXiv:2405.07987.

Po-Nien Kung and Nanyun Peng. 2023. Do mod-
els really learn to follow instructions? an empir-
ical study of instruction tuning. arXiv preprint
arXiv:2305.11383.

Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopou-
los, and Samet Oymak. 2023. Transformers as
algorithms: Generalization and implicit model se-
lection in in-context learning. arXiv preprint
arXiv:2301.07067.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-
dra Bhagavatula, and Yejin Choi. 2023. The unlock-
ing spell on base llms: Rethinking alignment via in-
context learning. arXiv preprint arXiv:2312.01552.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

3206

http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, João Sacramento, Alexander Mordvintsev, An-
drey Zhmoginov, and Max Vladymyrov. 2023. Trans-
formers learn in-context by gradient descent. In In-
ternational Conference on Machine Learning, pages
35151–35174. PMLR.

Xinyi Wang, Wanrong Zhu, and William Yang Wang.
2023. Large language models are implicitly topic
models: Explaining and finding good demon-
strations for in-context learning. arXiv preprint
arXiv:2301.11916.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
arXiv preprint arXiv:2402.04333.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
et al. 2023. Representation engineering: A top-
down approach to ai transparency. arXiv preprint
arXiv:2310.01405.

3207



A Understanding ICL-IT Convergence
from Attention Allocation

Besides comparing hidden states in our main anal-
ysis, we take a distinct angle by looking into the
attention heads within LLMs. Specifically, for each
situation (i.e., basic, ICL, and IT), we collect their
respective attention scores associated with the last
input token over the inference example from the fi-
nal transformer block. We concatenate the attention
scores of the 32 attention heads, leading to aanchor,
aICL, and aIT . We present the cosine similarity be-
tween each pair of them in Figure 9 (averaged over
30 repeated experiments with LLaMA-2 (7B) of the
sentiment analysis task). The results suggest that
ICL and IT drive the model to put similar attention
weights over the tokens of the inference example.
This lends additional credence to our earlier finding
of the ICL-IT convergence, now examined through
a unique lens of attention allocation.

Figure 9: Similarity between attention allocations.

B Robustness Check

B.1 Text Summarization

We replace the sentiment analysis task (inference
task) with a text summarization task (generation
task), and implement the same procedure to ex-
amine whether the relationship between ICL and
IT still holds. We use the XSum dataset that sum-
marizes news articles (Narayan et al., 2018). The
instructions used can be found in Table 3. The
results are shown in Figure 10. Clearly, the high
level of similarity between the ICL state and IT
state maintains, whereas the similarity of each of
them with the Anchor sate is relative low. The re-
sults further support our earlier finding that ICL,
using the demonstrations, orients the LLM’s in-
ference ability as if using such demonstrations to
instructionally tune the model.

Figure 10: Text summarization task.

B.2 LoRA Target Modules
In the main experiment, as done in the original
LoRA paper (Hu et al., 2021), we finetune the Q
and V attention matrices of the LLM. Here, we
vary the tuning module by targeting 1) the feed-
forward module (i.e., gate_proj, up_proj, and
down_proj), and 2) the feed-forward module as
well as the attention module. We repeat the same
procedure as depicted in Figure 2, and present the
results in Figure 11a and 11b. Consistent with our
earlier observations, we find the similarity between
the ICL state and IT state is remarkably high, mean-
ing that the ICL-IT convergence is not driven by
fine-tuning on specific target modules.

B.3 The Last Token
Given that our conclusions are based on comparing
the last input token in a sequence, the impact of
its semantic meaning on the ICL-IT convergence
is also an important consideration. To rule out
the possibility that the convergence is driven by a
particular token appearing in the last position, we
replace the last token with 1) "is" and 2) ">" respec-
tively, and repeat the experiment. The results are
shown in Figure 12a and Figure 12b, respectively,
revealing similar patterns.

B.4 LLaMA-2-Chat
We consider LLaMA-2-Chat (7B) and repeat the
same procedure to measure the similarity between
hidden states. Unlike LLaMA-2-Base, LLaMA-
2-Chat is instruction-tuned for dialogue use cases.
The results appear in Figure 13. Different from the
base version (Figure 3a), we observe higher simi-
larity for Anchor-IT and Anchor-ICL, suggesting
that the influence of either ICL or IT, conditioned
on the demonstrations, is relatively small. This is
expected since the chat version is instruction-tuned
to better understand and follow instructions, even
without exposure to demonstrations. Although both
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(a) Feed-forward Module (b) Feed-forward Module + Attention Module

Figure 11: Hidden state similarity across targeting different modules for LoRA.

(a) "is" as the Last Token (b) ">" as the Last Token

Figure 12: Hidden state similarity across different last tokens.

the ICL and IT hidden states do not deviate much
from the Anchor hidden state, the ICL hidden state
is still significantly more similar to the IT hidden
state relative to the Anchor one. This further sup-
ports our earlier notion that ICL and IT result in
similar model status.

Figure 13: Hidden state similarity (LLaMA-2-Chat).

C Instruction Sets

Can you express this English phrase in Czech?
Can you present this English sentence in Czech?
Please make this English sentence into a Czech sentence.
Please convert this English text into Czech.
Help me interpret this English phrase in Czech.
Translate this English sentence into Czech.
Please provide a Czech translation for this English sentence.
I need your help to change this English sentence into Czech.
Could you help convert this English phrase into Czech?
Could you translate this English text into Czech?
Please, translate the following English sentence into Czech.
Rephrase this English sentence in Czech for me, please.
Please give me the Czech version of this English sentence.
Can you assist in translating this English sentence into Czech?
Can you change this English sentence into Czech?
How would you say this English sentence in Czech?
Please convert this English phrase into Czech.
Can you convert this English sentence into Czech, please?
Please interpret this English sentence into Czech for me.
Please provide a Czech version of this English sentence.
Can you give me a Czech translation of this English text?
Could you kindly convert this English text into Czech?
Could you rewrite this English phrase in Czech?
I require this English sentence to be translated to Czech.
I need this English phrase translated to Czech.
Translate this English content into the Czech language, please.
Translate this English phrase into Czech for me, please.
Can you provide a Czech interpretation of this English sentence?
Can you render this in the Czech language, please?
Can you transcribe this English text into Czech?

Table 1: Instructions for machine translation.
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What is the sentiment of the movie review below? Is it negative or positive?
Determine whether the sentiment expressed in this movie review is negative or positive:
Identify whether this movie review contains negative or positive opinions.
Classify whether this movie review conveys negative or positive opinions.
Rate whether the viewpoint on the costumes is more negative or positive.
Based on the review content, would you say the sentiment is negative or positive?
Analyze the sentiment expressed in this movie review. Is it positive or negative?
Identify negative or positive of the content.
Evaluate the sentiment of this movie critique. Is it negative or positive?
Determine the sentiment conveyed in this movie review. Is it negative or positive?
Classify the overall sentiment of this movie review as negative or positive.
Determine if the tone of this movie review is negative or positive.
Assess if the tone of this movie review is negative or positive.
Detect whether this movie review contains negative or positive sentiment.
Determine whether this movie review expresses negative or positive sentiment.
Identify whether the sentiment expressed in this movie review is negative or positive.
Distinguish whether the evaluation in this movie review is negative or positive.Provide your answer as either negative or positive:
Infer whether the tone of this movie review is negative or positive.
Grade if the perspective in this movie review is negative or positive.Provide your answer as either negative or positive:
What’s the emotional tone of this movie review? Would you describe it as negative or positive?
Infer whether this movie review expresses negative or positive emotion.
Estimate if the analysis in this movie review is negative or positive.Provide your answer as either negative or positive:
Determine whether the opinions in this movie review are negative or positive.
Identify the sentiment of the following movie review text. Is it negative or positive?
Assess the sentiment expressed in the following movie review. Is it positive or negative?
Determine the sentiment expressed in this movie review. Negative or positive?

Table 2: Instructions for sentiment analysis.

Provide a brief synopsis of the key events in this news cycle.
Please give me a summary of the content in this document.
Provide a short summary highlighting the important information in this news journal.
Provide a simplified summary of this news analysis piece.
Can you give me a high-level summary of this news channel’s coverage?
Could you give a snapshot summary of this article?
Could you provide a short summary of the critical details from this news segment?
Please summarize this news article for me.
Summarize the critical information I need to know from this news.
Please summarize this breaking news update, hitting only the key points.
Summarize just the main points from this news outlet’s live coverage.
Provide a simplified rundown of the top headlines across these news sites.
Give me a recap of the main points from this news column.
I need the main takeaways from this news report summarized.
Please condense this news interview into a short summary for me.
Please make a brief summary of this document.
Summarize this news article in your own words.
I need a short synopsis of the key ideas in this press release from a news agency.
Could you present a short summary of this article?
Provide a broad overview summarizing this breaking news alert.
Give me a quick high-level summary of this news commentary.
Give me a high-level summary of this developing news event.
Please summarize this manuscript for me.
Could you simplify this text into a summary?
Please summarize the key takeaways from this news dataset.
Outline the important details from this newscast.
Summarize the crucial details from this daily newspaper.
Give me a quick abstract of the concepts in this opinion editorial.
I need the main takeaways from this news article summarized.
Can you summarize the key content from this news podcast?

Table 3: Instructions for text summarization.
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