
Findings of the Association for Computational Linguistics: ACL 2024, pages 14696–14707
August 11-16, 2024 ©2024 Association for Computational Linguistics

Sparsity-Accelerated Training for Large Language Models
Da Ma§, Lu Chen§†*, Pengyu Wang§†, Hongshen Xu§, Hanqi Li§

Liangtai Sun§, Su Zhu‡, Shuai Fan‡, Kai Yu§†*

§X-LANCE Lab, Department of Computer Science and Engineering
MoE Key Lab of Artificial Intelligence, SJTU AI Institute

Shanghai Jiao Tong University, Shanghai, China
†Suzhou Laboratory, Suzhou, China
‡AISpeech Co., Ltd., Suzhou, China

{mada123, chenlusz, kai.yu}@sjtu.edu.cn

Abstract

Large language models (LLMs) have demon-
strated proficiency across various natural lan-
guage processing (NLP) tasks but often re-
quire additional training, such as continual pre-
training and supervised fine-tuning. However,
the costs associated with this, primarily due
to their large parameter count, remain high.
This paper proposes leveraging sparsity in pre-
trained LLMs to expedite this training process.
By observing sparsity in activated neurons dur-
ing forward iterations, we identify the poten-
tial for computational speed-ups by exclud-
ing inactive neurons. We address associated
challenges by extending existing neuron im-
portance evaluation metrics and introducing a
ladder omission rate scheduler. Our experi-
ments on Llama-2 demonstrate that Sparsity-
Accelerated Training (SAT) achieves compara-
ble or superior performance to standard train-
ing while significantly accelerating the pro-
cess. Specifically, SAT achieves a 45% through-
put improvement in continual pre-training and
saves 38% training time in supervised fine-
tuning in practice. It offers a simple, hardware-
agnostic, and easily deployable framework for
additional LLM training. Our code is available
at https://github.com/OpenDFM/SAT.

1 Introduction

Large language models (LLMs), such as GPT-
4 (Achiam et al., 2023), Mistral (Jiang et al., 2023),
and Llama-2 (Touvron et al., 2023), have demon-
strated remarkable capabilities across numerous
NLP tasks (Mao et al., 2023; Dillmann et al., 2024).
In general, all these models are initially pre-trained
on massive data by unsupervised learning. Fur-
thermore, such models regularly necessitate addi-
tional training for two primary scenarios: 1) con-
tinual pre-training on new data as the pool of avail-
able pre-training data continuously expands (Gupta

*The corresponding authors are Lu Chen and Kai Yu.

Slower Faster

Input activations Parameters Output activations

Neuron
Importance

Figure 1: Insights into neuron sparsity in large language
models to accelerate training. Left: standard linear
layer. Right: the linear layer after pruning relatively less
important neurons. By omitting computations related
to some less important neurons, training on the right
side proceeds faster compared to the left side, while
maintaining similar performance.

et al., 2023; Cui et al., 2023; Ke et al., 2023). 2)
supervised fine-tuing (SFT) on labeled data to en-
hance the capacity of LLMs to follow human in-
structions (Ouyang et al., 2022; Dong et al., 2023;
Ansell et al., 2024).

In contrast to initial pre-training, the additional
training demands relatively less time and computa-
tional resources. Regrettably, it remains somewhat
challenging to afford, primarily attributable to the
substantial parameter count (Zhao et al., 2024b;
Wu et al., 2023). Fortunately, numerous practition-
ers (Zhao et al., 2024a) are dedicating efforts to
saving such additional training costs. However,
they mainly focus on the Parameter-Efficient Fine-
Tuning (PEFT) methods (Ansell et al., 2024; Lialin
et al., 2023), which is not commonly employed
in the aforementioned continual pre-training (Cui
et al., 2023) scenario. Hence, it is imperative to ex-
plore novel acceleration methods suitable for both
additional training scenes simultaneously.

In this paper, our objective is to leverage the
structural sparsity (Li et al., 2023b) inherent in
pre-trained LLMs to expedite their additional train-
ing scenarios. In detail, researchers (Zhang et al.,
2022b; Liu et al., 2023) have observed that the

14696

https://github.com/OpenDFM/SAT

activated (important) neurons1 exhibit sparsity in
each forward iteration. Intuitively, we can speed
up by omitting the calculation of inactive (unim-
portant) neurons. As depicted in Figure 1, suppose
a neuron corresponds to a particular column of the
weight matrix in a linear layer. In each training it-
eration, a compact and efficient neuron importance
assessment module (right part) would evaluate the
activation status of neurons in advance. By discard-
ing those inactive neurons (columns in the weight
matrix), training speed is enhanced.

Aside from the enhancement in computational
speed, disregarding the computation of inactive
neurons also poses the following three additional
challenges: 1) determining the method of neurons
to discard, 2) assessing whether omitting neurons
harms the model performance, and 3) evaluating
the effectiveness of the approach in real additional
training scenarios of LLMs. For the first challenge,
we borrowed and extended several famous neuron
importance evaluation metrics (Liu et al., 2023;
Han et al., 2015; Sun et al., 2023) within the con-
text of transformer pruning, and unimportant neu-
rons are dropped. Extensive experiments (§ 3.1) on
TinyLlama-1.1B (Zhang et al., 2024) help us deter-
mine (§ 2.2) 1) using maxip (a neuron importance
metric) to assess neuron importance, 2) adopting
sampling (versus top-k) neuron selection strategy,
and 3) introducing a ladder omission rate scheduler.

For the latter two, we separately conduct experi-
ments over Llama-2 (7B and 13B) in both standard
and sparsity-accelerated manners for both contin-
ual pre-training and supervised fine-tuning scenar-
ios (§ 3.2). Evaluation results on several bench-
marks show that SAT achieves comparable some-
times even better performance compared to nor-
mal training. Moreover, it can obtain about 45%
throughput improvement for continual pre-training
and 38% speedup in elapsed time for supervised
fine-tuning (§ 3.3). In summary, this work con-
tributes in the following three aspects:

1. We propose the Sparsity-Accelerated
Training (SAT), a novel, hardware-agnostic,
and easily deployable framework for
additional training of LLMs.

2. We investigate several neuron importance
computation and selection methods and sum-
marize an optimal configuration for SAT. In

1In this paper, a neuron is associated with a specific
row/column in a weight matrix.

addition, a novel ladder omission rate sched-
uler is designed to alleviate the overfitting
problem of SAT.

3. Extensive experiments in both continual pre-
training and supervised fine-tuning demon-
strate that SAT achieves comparable perfor-
mance to standard training of LLMs with
speedup.

2 Methodology

In this section, we first give an overview of SAT.
Next, more details are provided within the context
of transformers, which is the predominant architec-
ture of recent LLMs. Finally, we discuss our im-
plementation and conduct a theoretical efficiency
analysis for the SAT.

2.1 Overview of SAT
Suppose a neural network model is expressed
by f(·;Nθ), where Nθ denotes the set of neu-
rons. Recall that our objective is to disregard
non-essential neurons to accelerate. Consequently,
Sparse-Accelerated Training (SAT) can be delin-
eated into the following two overarching steps for
the t-th training iteration:

• Neuron Importance Computation: compute
the importance scores for each neuron,

stθ = ComputeImportance
(
·,N t

θ

)
, (1)

where stθ ∈ R|N t
θ |.

• Neuron Selction and Optimization: select im-
portant neurons upon stθ and update them,

Ñ t
θ =SelectNeuron

(
stθ, r,N t

θ

)
,

N t+1
θ =

{
nθ

∣∣∣nθ ∈
(
N t

θ − Ñ t
θ

)

∨nθ ∈ Optimize
(
Ñ t

θ

)}
,

(2)

where r ∈ [0, 1) denotes the neuron omission
rate and Ñ t

θ ⊆ N t
θ . Actually, we optimize the

subnetwork expressed by f(·; Ñ t
θ) at training

step t.

2.2 SAT for transformers
As widely recognized, contemporary LLMs are
predominantly based on the Transformer (Vaswani
et al., 2017) architecture. Therefore, our study
primarily explores the SAT for transformers.

14697

Review of Transformers The transformer is
composed of numerous stacked layers, with each
layer consisting of two main modules: Multi-
Head Attention (MHA) and an immediately sub-
sequent Multi-Layer Perceptron (MLP). Formally,
let X = [x1,x2, . . . ,xn] ∈ Rn×d denote the input
activations of the ℓ-th layer2. The MHA can be
formulated as

MHA (X) = Concat (head1, . . . , headh)WO,

headi = Ai ·
(
XWi

V
)
,

Ai = Softmax

(
XWi

Q

)
·
(
XWi

K
)T

√
dk

 ,

(3)
where h ∈ N+ represents the number of heads and
d ∈ N+ is the dimension of hidden states. dk =
d/h, Wi

Q,W
i
K and Wi

V ∈ Rd×dk (1 ≤ i ≤ h),
and WO ∈ Rd×d are trainable parameters.

Subsequently, the MLP takes the output of MHA
with a residual connection as input. Mathemati-
cally,

X = X+ MHA (X) ,

MLP (X) = σ (XWup) ·Wdown,
(4)

where σ (·) is the activation function, Wup ∈
Rd×4d and Wdown ∈ R4d×d are trainable parame-
ters. The output of MLP with a residual connection
is fed into the next layer3. Next, we shall proceed
to a detailed discussion of the two steps of SAT
within the Transformer architecture.

Neuron Importance Computation In this work,
we leverage the structural sparsity of neurons
across all linear layers, i.e., each row or column
of the parameter matrix is conceptualized as a neu-
ron. As our approach solely depends on the signifi-
cance of columnar neurons, we exclusively focus
on devising the methodology for assessing their
importance. To clarify these methods, we first in-
troduce some notations. Assume a column neuron
v ∈ Rd×1 and it takes Z ∈ Rm×d as input. Zi and
Zj are the i-th row and j-th column of Z, respec-
tively. sv denotes the neuron importance score of
v. The activation value of v is y = Z · v. Next,
we first mathematically define four evaluation met-
rics (Liu et al., 2023; Han et al., 2015; Sun et al.,

2To maintain manuscript tidiness, we omit the subscript of
ℓ in this paper.

3We omit the writing of layer norm layer and attention
mask here.

2023) for neuron importance, which are

uniform : sv = 1,

magnitude : sv = ∥v∥2 ,
wanda : sv =

[∥∥Z1
∥∥
2
, . . . ,

∥∥∥Zd
∥∥∥
2

]
· v,

maxip : sv =

(
m∑

i=1

Zi

/
m

)
· v.

(5)
The uniform method is straightforward, as it en-
tails randomly preserving neurons, akin to the well-
known vanilla dropout technique (Hinton et al.,
2012). The other three methods are predicated on
the assumption that neurons with larger activation
values are relatively more important (Liu et al.,
2023). To elucidate this assumption, we can con-
sider an example. In the multi-head self-attention
mechanism of the Transformer, the representation
of each token is weighted by the representations
of all input tokens. At this juncture, the weights
(attention scores) between tokens become pivotal.
These attention scores stem from the dot product
of the representations (activation values) of each
token. The higher the activation value, the greater
the probability of a larger dot product, yielding a
higher attention score, thus indicating greater im-
portance to the token representation.

Based on this assumption, the remaining three
methods posit that neurons more likely to gener-
ate higher activation values (y) are more impor-
tant. In detail, the magnitude (Han et al., 2015)
method solely focuses on the magnitude of the
neuron parameter, i.e., the L2 norm of v. The
remaining two methods consider the influence of
both input and parameters on the activation val-
ues. Concretely, wanda (Sun et al., 2023) considers
the magnitude of the input and parameter product,
while maxip (Liu et al., 2023; Song et al., 2023)
focuses on the input mean and parameter product.

Subsequently, we will delve into separate dis-
cussions regarding neuron selection for MHA and
MLP according to the neuron importance score.

Neuron Selection for MHA For MHA, we op-
erate at the granularity of individual heads, where
we either omit or retain all neurons within a head.
For the i-th head, each of its three linear parame-
ter matrices Wi

Q, Wi
K, Wi

V ∈ Rd×dk includes dk
neurons, and the neuron importance score of the
j-th neuron in each matrix is denoted as si,jQ , si,jK ,
si,jV respectively. We first calculate the importance

14698

Figure 2: Sparsity-Accelerated Training (SAT) for transformers. ①: Process of selecting more important heads for
MHA. ②: SAT for MHA. ③: Process of selecting more important channels for MLP. ④: SAT for MLP. Dashed
parts denote omitted neurons.

score of the i-th head in each parameter matrix via

sheadi
Q =

dk∑

j=1

si,jQ

dk
, sheadi

K =

dk∑

j=1

si,jK
dk

, sheadi
V =

dk∑

j=1

si,jV
dk

.

(6)
Then, the importance score of i-th head is aggre-
gated, as depicted in Figure 2 (①) by

sheadi =
(
sheadi

Q + sheadi
K + sheadi

V

)/
3. (7)

Subsequently, h̃ = ⌊h× (1− r)⌋ heads will be
selected to optimize based on the head importance
score in the following two ways:

• top-k: retain the top h̃ heads with the highest
importance scores.

• sampling: sample h̃ heads according to the
distribution:

headi ∼ p (headi) ,

p (headi) =
exp
(
sheadi/τ

)
∑

j exp
(
sheadj/τ

) , (8)

where 1 ≤ i ≤ h and τ ∈ R+ is the tempera-
ture for sampling (Dupont et al., 2022).

As is shown in Figure 2 (②), only selected h̃ heads
participate in the computation. Moreover, only
the rows corresponding to the selected heads in

WO (referred to as W̃O) will be involved in the
computation. Assuming heads (π1, π2, . . . , πh̃) are
selected, the formula (3) becomes

MHA (X) = Concat
(
headπ1 , . . . , headπh̃

)
W̃O.

(9)

Neuron Selection for MLP For MLP, we op-
erate at the granularity of individual channels,
where each channel (column) in Wup ∈ Rd×4d

corresponds to a neuron and we select c̃ =
⌊4d · (1− r)⌋ neurons (denoted as W̃up ∈ Rd×c̃)
to optimize similarly to MHA (see Figure 2 (③)).
Likewise, rows corresponding to the selected chan-
nels in Wdown ∈ R4d×d (denoted as W̃down ∈
Rc̃×d) will participate in the computation as illus-
trated in Figure 2 (④). Then, the formula (4) turns
into

MLP (X) = σ
(
XW̃up

)
· W̃down. (10)

Ladder Omission Rate Scheduler (LORS) Em-
pirically, pruning some neurons may pose a risk of
overfitting to the model. To mitigate this potential
issue, we plan to divide the training process into
two stages: 1) Train sparsely with a constant omis-
sion rate and 2) Gradually decrease the omission
rate, making the model denser until it fully recov-
ers as a dense model. Through the second stage,
the overfitting problem of certain parameters in the
model is alleviated to some extent.

14699

For the second stage, we experimented with lin-
ear and cosine omission rate schedulers. In terms
of model performance, it is common to employ
these schedulers during training. However, due
to the frequent fluctuations in omission rate, there
is considerable variability in training speed, occa-
sionally resulting in slower progress compared to
training without neuron omission. Therefore, we
considered reducing the frequency of changes in
the omission rate by maintaining a constant rate for
a short period before decreasing to the next con-
stant rate segment. Additionally, similar to curricu-
lum learning (Bengio et al., 2009), we gradually
lengthen the period to allow the model to adapt to
the changes in the omission rate.

Based on these insights, we propose a Ladder
Omission Rate Scheduler. Figure 3 (c) visualizes
an example of LORS. Mathematically, considering
a maximum neuron omission rate r and total train-
ing steps T , supposing the neuron omission rate
initiates its decrease at step η with a ladder number
denoted as L, the neuron omission rate rt at step t
can be formulated as follows:

rt =

r, t ≤ η

max
{
0, r − r

L
· ℓt
}
, t > η

, where

2ℓt−1 − 1

2L − 1
≤ t− η

T − η
<

2ℓt − 1

2L − 1
and ℓt ∈ N+.

(11)

2.3 Implementation and Theoretical
Efficiency Analysis

Implementation Taking into account that we are
accelerating the training of LLMs at the algorith-
mic level, it is imperative for SAT to be com-
patible with lower-level acceleration techniques,
such as operator-level acceleration (e.g., flash at-
tention (Dao et al., 2022; Dao, 2023)) and training
frameworks like DeepSpeed (Rasley et al., 2020).
To accomplish this, we employ an exceedingly sim-
ple and convenient implementation approach: for a
linear layer, during each training iteration, the op-
timizer remains consistent with standard training,
preserving a complete parameter matrix. Neverthe-
less, during computation, we exclusively engage
the sparse portions (several columns or rows) of
the parameter matrix for calculation.

Efficiency Analysis In theory, we compare SAT
and standard training in terms of both memory con-
sumption and FLOPs (floating point of operations).

• Memory: Given that the primary memory-
intensive components on the GPU, namely
the model parameters and optimizer states,
remain consistent with those of standard
training, the actual memory demand of our
SAT during training theoretically should align
closely with that of standard training.

• FLOPs: During both the forward and back-
ward processes, we omit the computation of r
proportion of neurons. Consequently, by disre-
garding the calculation overhead of the second
stage of LORS (mentioned in subsection 2.2),
SAT can save approximately ηr

T FLOPs.

3 Experiments

We conduct comprehensive experiments to address
the following three questions:

Q1: What is the optimal configuration, including
assessment of neurons importance (across var-
ious metrics) and neurons selection (top-k vs.
sampling), with LORS for SAT?

Q2: Does SAT harm the performance of LLMs
in both continual pre-training and supervised
fine-tuning scenarios?

Q3: What is the efficiency achieved by SAT over
popular LLMs in practice?

3.1 Neuron importance assessment and
omission

We first conduct experiments over relatively small
models to answer Q1 due to limitations in comput-
ing resources and time.

Setup We initially continue pre-training
TinyLlama-1.1B (Zhang et al., 2024) over about
12B tokens of Chinese data to augment its
capabilities for understanding and generating
Chinese text. Inspired by Cui et al., we extend
its vocabulary with an additional 33000 Chinese
tokens. Following Wei et al., we validate the
improvement of the Chinese language processing
capability of models by evaluating perplexity over
Skywork (Wei et al., 2023), which is a Chinese
language modeling evaluation benchmark across
6 domains. For neuron importance assessment,
we try the four aforementioned metrics: uniform,
magnitude (Han et al., 2015), wanda (Sun et al.,
2023) and maxip (Liu et al., 2023). For neuron
selection methods, we explore both top-k and

14700

Order CPT NIM NSM Skywork PPL ↓ Avg. ↓
finance game general government movie technology

w/o sparsity
1 % – – 8.40 16.95 11.31 13.00 24.26 11.24 14.19

2 ! – – 4.36 11.39 5.74 5.08 15.54 7.50 8.27
w/ sparsity

3 ! uniform – 6.91 18.25 8.92 8.61 25.58 11.41 13.28

4 ! magnitude top-k 30.92 52.59 33.26 47.71 77.75 34.61 46.14

5 ! wanda top-k 17.16 32.04 16.55 24.62 49.39 21.51 26.88

6 ! maxip top-k 20.60 56.15 23.55 39.25 78.19 31.98 41.62

7 ! magnitude sampling 7.68 21.19 10.06 9.42 29.20 13.27 15.14

8 ! wanda sampling 7.23 18.07 9.06 8.97 25.86 11.45 13.44

9 ! maxip sampling 6.56 17.58 8.59 8.10 24.89 11.03 12.79
w/ sparsity+LORS

10 ! uniform – 5.69 13.51 7.20 6.72 18.79 9.31 10.20

11 ! maxip sampling 4.87 12.54 6.35 5.82 17.25 8.19 9.17

Table 1: Results of continual pre-training of TinyLlama-1.1B with different neuron importance metrics and neuron
selection methods. CPT: continual pre-training; !and %denote continually pre-training the models and not,
respectively. NIM: neuron importance metric. NSM: neuron selection method. LORS: ladder omission rate
scheduler. The omission rate is set to 50%.

(a) Training loss under different neuron
importance metrics with the sampling
neuron selection method.

(b) Traning loss under uniform and
maxip with LORS depicted in the right
subfigure.

(c) The ladder omission rate sched-
uler (LORS). T = 3000, η = 2000, r =
0.5.

Figure 3: Continual pre-training of TinyLlama-1.1B

sampling. All results are obtained by the popular
LM-Evaluation-Harness (Gao et al., 2023) tool.

Hyperparameters We continue pre-training
TinyLlama-1.1B by Megatron-DeepSpeed (Smith
et al., 2022) framework on 32 A800-80G GPUs
with Zero-3 (Rajbhandari et al., 2020) and FlashAt-
tention (Dao et al., 2022; Dao, 2023) techniques.
The batch size is 1024 and the maximum length is
4096. We adopt a cosine learning rate scheduler
with a maximum learning rate of 5e-5. For the
ladder omission rate scheduler, T = 3000, L = 5,
and η = 2000. For the sampling neuron selection
method, we explore three different temperature set-
tings: [0.1, 0.05, 0.01]. The results are shown in
Table 5 of Appendix A. Finally, we set τ = 0.05 in
all our experiments.

Results First, from Table 1 (line 4-6 vs. 7-9),
we discover the neuron selection method of sam-

pling beats top-k under all neuron importance met-
rics (Q1). We suspect the top-k method tends to
concentrate on selecting relatively fixed neurons
which causes overfitting. Then, Figure 3 demon-
strates the continual pre-training loss of TinyLlama-
1.1B. From Figure 3(a), we can find the lowest
losses achieved by all neuron importance metrics
are higher than those of full pre-training due to the
lack of half-trainable parameters in each iteration.
Among all neuron importance metrics, wanda ob-
tains the lowest training loss, while not as smooth
as uniform and maxip during early stages (about
300-500 iterations). Considering the language mod-
eling evaluation results of Table 1 (line 3, 7-9), the
uniform and maxip equipped with sampling neuron
selection method may be reasonable SAT configu-
ration candidates.

Subsequently, we introduce the ladder omission
rate scheduler (see Figure 3(c)). We can observe

14701

Order CPT Skywork PPL ↓ Avg. ↓ CMMLU ↑ AGI-Eval ↑ Avg. ↑
finance game general government movie technology

Llama-2 7B
1 Original 6.48 12.65 7.79 8.60 18.70 8.81 10.51 32.27 30.04 31.16
2 FullCPT 3.37 8.24 4.50 3.77 11.04 5.76 6.11 32.88 31.94 32.41
3 SPDF 3.91 9.35 5.10 4.49 12.79 6.40 7.01 31.89 31.79 31.84
4 SAT (ours) 3.69 8.78 4.80 4.14 11.86 6.07 6.56 32.79 31.84 32.32

Llama-2 13B
5 Original 6.00 11.46 7.26 7.59 17.22 8.09 9.60 38.08 37.73 37.91
6 FullCPT 3.25 7.88 4.38 3.61 10.70 5.54 5.89 44.53 40.02 42.28
7 SPDF 3.73 8.82 4.89 4.24 12.31 6.08 6.68 40.71 37.20 38.96
8 SAT (ours) 3.48 8.23 4.58 3.89 11.22 5.76 6.19 44.36 39.78 42.07

Table 2: Language modeling and Chinese benchmark evaluation results of SAT with optimal configuration in the
continual pre-training scenario. CPT: continual pre-training. SAT: sparsity-accelerated training.

the training loss decreases rapidly to a level com-
parable to full pre-training for both configuration
candidates. However, the maxip metric obtains a
faster rate of loss reduction. Combining with the
results in Table 1 (line 10-11), we conclude maxip
neuron importance metric with sampling neuron
selection method, plus the LORS are optimal config-
urations for SAT (Q1). Furthermore, SAT achieves
comparable perplexity to full pre-training with such
optimal configuration.

3.2 Performance effects of SAT in both
scenarios

Next, we validate whether SAT with the optimal
configuration works in both continual pre-training
and supervised fine-tuning scenarios (Q2).

Setup To better simulate real-world applica-
tion scenarios, we perform experiments on larger
LLMs (7B and 13B). For the continual pre-
training scenario, we adopt the identical pre-
training setup to TinyLlama-1.1B. Besides the
language modeling evaluation on Skywork, we
evaluate LLMs on two additional popular Chi-
nese benchmarks: CMMLU (Li et al., 2023a)
and AGI-Eval (Zhong et al., 2023)4. For the su-
pervised fine-tuning scenario, we instruction-tune
LLMs on 50K subsample of Flan v2 (Longpre
et al., 2023; Wang et al., 2023). Following Ivi-
son et al., we assess the instruction-tuned LLMs
on GPT4ALL (Anand et al., 2023) for reasoning
ability and MMLU (Hendrycks et al., 2020) for
factuality ability.

Hyperparameters For the continual pre-training,
all pre-training hyperparameters are the same as
those of TinyLlama-1.1B. We evaluate models
on CMMLU and AGI-Eval in a 3-shot manner.

4We only evaluate on single-choice problems.

For the supervised fine-tuning, we adopt the Hug-
gingface+DeepSpeed (Wolf et al., 2019; Rasley
et al., 2020) framework with Zero-3 technique. We
instruction-tune models 3 epochs with a cosine
learning rate scheduler whose maximum learning
rate is 1e-5 on 64 A800-80G GPUs. The batch size
is 128. Similar to PEFT methods (Hu et al., 2022;
Liu et al., 2022), we only tune a small proportion of
parameters at each training step. In particular, we
set r = 96%, T = 1200, η = 600, and L = 1. The
models are evaluated in a 5-shot manner for both
GPT4ALL and MMLU. More details of baselines
are in Appendix B.

Results Table 2 shows the results of contin-
ual pre-training. First, the continual pre-training
enhances the Chinese text-processing ability of
LLMs (line 1 vs. 2; line 5 vs. 6). The models per-
form comparably with SAT to full pre-training (line
2 vs. 4; line 6 vs. 8). Furthermore, we adjusted to
adapt SPDF (Thangarasa et al., 2023) for contin-
ual pre-training. Specifically, we conducted sparse
pre-training first, followed by dense continual pre-
training with the model. We can find our SAT
consistently outperforms SPDF (line 3 vs. 4; line
7 vs. 8). We can state the SAT harms little to the
performance of LLMs in the continual pre-training
scenario (Q2).

Table 3 illustrates the results of supervised fine-
tuning. The SFT boosts the performance of Llama-
2 7B a lot (line 1 vs. 2) while contributing minor
improvements to Llama-2 13B (line 7 vs. 8). We
attribute this to the fact that Llama-2 13B, with
its greater number of parameters, has a relatively
strong inherent capacity before SFT (line 1, 2, and
7). Maybe it requires more SFT data to achieve
further performance improvements. Compared to
famous PEFT methods, (IA)3, SpIEL, and LoRA,
our SAT obtains better performance on GPT4ALL

14702

Order SFT Method GPT4ALL Acc ↑ Avg. ↑ MMLU ↑
HellaSwag Obqa WinoGrande ARCc ARCe boolq piqa

Llama-2 7B
1 % Original 58.30 36.40 73.80 49.23 79.29 79.36 78.78 65.02 45.8

2 ! FullFT 62.79 40.00 74.82 49.32 79.17 84.01 77.80 66.84 50.5

3 ! (IA)3 58.46 36.40 74.35 48.46 79.63 80.52 79.27 65.30 46.7

4 ! SpIEL 58.74 37.40 75.30 52.30 81.44 84.37 79.38 66.99 50.7

5 ! LoRA 58.06 37.80 75.30 50.09 79.88 83.27 79.43 66.26 49.3

6 ! SAT (ours) 59.71 40.20 76.01 52.56 81.52 83.85 79.71 67.65 50.5
Llama-2 13B

7 % Original 61.27 37.20 77.11 52.82 82.03 83.70 79.38 67.64 55.3

8 ! FullFT 65.86 40.40 74.66 52.22 80.93 83.73 79.00 68.11 55.6

9 ! SpIEL 61.15 38.40 78.45 54.27 82.95 86.45 79.98 68.81 55.8

10 ! (IA)3 61.62 36.60 77.11 53.16 82.28 85.11 79.98 67.98 54.3

11 ! LoRA 61.01 40.00 78.61 52.05 82.07 86.06 80.20 68.57 55.8

12 ! SAT 62.29 41.60 78.85 56.57 83.12 86.82 81.18 70.06 55.4

Table 3: Factuality and Reasoning evaluation results of SAT with optimal configuration in the supervised fine-tuning
scenario. SFT: supervised fine-tuning. (IA)

3 (Liu et al., 2022), SpIEL (Ansell et al., 2024) and LoRA (Hu et al.,
2022) are popular PEFT methods for SFT. FullFT: full fine-tuning.

Scenario Model Saving (%) 7B 13B
FLOPs FLOPS (↓) Time (h) Speedup (%) PM (GB) Time (h) Speedup (%) PM (GB)

CPT
FullCPT - - 36.5 - 44.7 66.4 - 58.4

SAT (ours) 33 6 26.1 28.5 44.7 45.9 30.9 58.3

SFT

FullFT - - 1.8 - 23.9 3.1 - 36.6
SpIEL - - 1.5 16.7 10.3 3.0 3.2 13.5
LoRA - - 1.2 33.3 8.1 2.7 12.9 13.1

SAT (ours) 48 16 1.1 38.9 23.1 2.0 35.5 36.4

Table 4: Efficiency of SAT on Llama-2 7B and 13B for both continual pre-training (CPT) and supervised fine-
tuning (SFT). FLOPs:floating operations; FLOPS: floating operations per second; PM: Peak Memory.

(a) Throughput of continual
pre-training.

(b) Elapsed time of super-
vised fine-tuning.

Figure 4: Speedup of SAT for both continual pre-
training and supervised fine-tuning.

and comparable results on MMLU. Furthermore,
our SAT achieves comparable results on MMLU
and even better accuracy on GPT4ALL compared
to FullFT. We suspect that this may be due to the
removal of some unnecessary neurons, which al-
leviates the risk of overfitting. Overall, the SAT
has almost no bad effects on the model perfor-
mance (Q2).

After confirming that SAT has little to no detri-
mental effect on model performance, we finally
examine the actual acceleration it can achieve (Q3).

3.3 Efficiency of SAT

Setup We compare the speedup of SAT with stan-
dard training in both continual pre-training and su-
pervised fine-tuning scenarios. All experiments are
performed on identical 4 machines, each equipped
with 8 A800 GPUs under the setup described in
§ 3.1 and § 3.2. For the continual pre-training,
we compare the number of processed tokens per
second since all training samples are truncated or
padded to the same length. For the supervised fine-
tuning, we compare the total elapsed training time
due to the variable lengths of training samples.

Results Figure 4 provides the speedup results
for both continual pre-training and supervised fine-
tuning. For the continual pre-training, we dis-
cover SAT improves throughput increases with the
growth of model sizes (the dashed line in Figure
4(a)) and the maximum throughput improvement
approaches 45%. For the supervised fine-tuning,
the speedup of LoRA decreases significantly when
the model size is relatively large. However, our
SAT is more stable. In general, SAT can obtain

14703

about 38% speedup in elapsed time.
Table 4 presents the results in terms of theo-

retical FLOPs, actual FLOPS, training time, and
memory usage. The FLOPS decrease is attributed
to the reduced computation required for each iter-
ation. As we can see, SAT achieved the optimal
acceleration effect; however, there was no improve-
ment in memory usage, which is consistent with
the theoretical analysis and experimental results in
the previous discussion. Finally, we can determine
SAT indeed accelerates both continual pre-training
and supervised fine-tuning (Q3).

4 Related Works

Transformer Pruning Pruning has demon-
strated considerable potential in augmenting the
inference speed and reducing the memory foot-
print of transformers, as highlighted in prior re-
search (Kwon et al., 2022). Broadly speaking,
transformer pruning techniques can be delineated
into two principal categories (Chitty-Venkata et al.,
2023): unstructured pruning and structured pruning.
Unstructured pruning methods (Gordon et al., 2020;
Campos et al., 2022; Zhang et al., 2022a) possess
the capability to substantially diminish the num-
ber of parameters due to their fine-grained pruning
granularity. Nonetheless, they frequently encounter
challenges in achieving significant improvements
in inference speed across diverse hardware plat-
forms (Sanh et al., 2020).

Hence, numerous researchers are embracing
structured pruning methods at the granularity level
of entire layers, filters, channels, or heads (Li et al.,
2021). For instance, Liu et al. prunes the unimpor-
tant heads within multi-head attention layers and
insignificant channels in feed-forward networks on
BERT (Kenton and Toutanova, 2019). Liu et al.
and Song et al. extend such a method and scale it
for large language models. In this study, distinct
from their focus on the inference of large language
models (LLMs), we draw upon the principles of
structured pruning and apply them to the training
of LLMs.

Sparse Fine-Tuning Sparse fine-tuning is a tech-
nique aimed at expediting model fine-tuning and
diminishing model memory demands by selectively
updating only a small subset of parameters (Ansell
et al., 2022; Li et al., 2024). For relatively small
language models, such as BERT, Guo et al. devise
a binary mask controlled by a regularization term
to manage the parameters for updating. Sung et al.

induce the mask by retaining parameters exhibiting
higher Fisher information over numerous iterations
and subsequently maintain the mask to sparsely
fine-tune models. Additionally, Ansell et al. re-
tain parameters that undergo the most significant
changes during an initial round of full fine-tuning.

With the widespread adoption of LLMs, Ansell
et al. and Zhao et al. commence scaling sparse
fine-tuning to LLMs. However, to mitigate the
memory overhead of LLMs, they both incorporate
the parameter-efficient fine-tuning (PEFT) meth-
ods (Houlsby et al., 2019; Li and Liang, 2021;
Lialin et al., 2023), which may not always be en-
tirely suitable (Cui et al., 2023; Zhao et al., 2024b).
In this work, instead of employing the PEFT meth-
ods, we place greater emphasis on conventional
sparse training techniques, making it applicable to
common scenarios such as continual pre-training
and supervised fine-tuning for LLMs.

5 Conclusion

In this paper, we aim to accelerate two regular ad-
ditional training scenarios of LLMs, i.e., contin-
ual pre-training and supervised fine-tuning. Our
main intuition is to leverage the sparsity of neu-
rons in large models, as discovered by previous
researchers, to accelerate training by disregarding
computations for unimportant neurons and pro-
pose a sparsity-accelerated training (SAT) frame-
work. Extensive experiments on several bench-
marks demonstrate SAT can accelerate the train-
ing of LLMs and maintain performance simultane-
ously.

Limitations

On one hand, this work primarily focuses on large
language models and can explore even larger and
more diverse model structures in the future. Fur-
thermore, several other neuron importance metrics
are necessary to explore. On the other hand, train-
ing numerous large-scale models requires substan-
tial computational resources, incurring high costs
and resulting in significant carbon emissions.

Acknowledgements

We thank all the reviewers for their valu-
able suggestions on this work. This work is
funded by the China NSFC Projects (92370206,
U23B2057,62106142 and 62120106006) and
Shanghai Municipal Science and Technology Ma-
jor Project (2021SHZDZX0102).

14704

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yuvanesh Anand, Zach Nussbaum, Adam Treat, Aaron
Miller, Richard Guo, Ben Schmidt, GPT4All Com-
munity, Brandon Duderstadt, and Andriy Mulyar.
2023. Gpt4all: An ecosystem of open source com-
pressed language models.

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan
Vulić. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1778–1796,
Dublin, Ireland. Association for Computational Lin-
guistics.

Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korho-
nen, and Edoardo M Ponti. 2024. Scaling sparse
fine-tuning to large language models. arXiv preprint
arXiv:2401.16405.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Daniel Campos, Alexandre Marques, Tuan Nguyen,
Mark Kurtz, and ChengXiang Zhai. 2022. Sparse*
bert: Sparse models are robust. arXiv preprint
arXiv:2205.12452.

Krishna Teja Chitty-Venkata, Sparsh Mittal, Murali
Emani, Venkatram Vishwanath, and Arun K Somani.
2023. A survey of techniques for optimizing trans-
former inference. Journal of Systems Architecture,
page 102990.

Yiming Cui, Ziqing Yang, and Xin Yao. 2023. Efficient
and effective text encoding for chinese llama and
alpaca. arXiv preprint arXiv:2304.08177.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Marc Dillmann, Julien Siebert, and Adam Trendow-
icz. 2024. Evaluation of large language models
for assessing code maintainability. arXiv preprint
arXiv:2401.12714.

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng-
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv
preprint arXiv:2310.05492.

Robin Dupont, Mohammed Amine Alaoui, Hichem
Sahbi, and Alice Lebois. 2022. Extracting effective
subnetworks with gumbel-softmax. In 2022 IEEE In-
ternational Conference on Image Processing (ICIP),
pages 931–935. IEEE.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884–4896, Online. Association for Computational
Linguistics.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim,
Mats L Richter, Quentin Anthony, Eugene Belilovsky,
Irina Rish, and Timothée Lesort. 2023. Continual pre-
training of large language models: How to (re) warm
your model? arXiv preprint arXiv:2308.04014.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,

14705

http://arxiv.org/abs/2311.04931
http://arxiv.org/abs/2311.04931
https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Joel Jang, David Wadden, Noah A Smith, Iz Belt-
agy, et al. 2023. Camels in a changing climate: En-
hancing lm adaptation with tulu 2. arXiv preprint
arXiv:2311.10702.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi,
Gyuhak Kim, and Bing Liu. 2023. Continual pre-
training of language models. In The Eleventh Inter-
national Conference on Learning Representations.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
2022. A fast post-training pruning framework for
transformers. Advances in Neural Information Pro-
cessing Systems, 35:24101–24116.

Hanqi Li, Lu Chen, Da Ma, Zijian Wu, Su Zhu, and
Kai Yu. 2024. Evolving subnetwork training for
large language models. In Forty-first International
Conference on Machine Learning.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023a. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. 2021.
Differentiable subset pruning of transformer heads.
Transactions of the Association for Computational
Linguistics, 9:1442–1459.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank Reddi, Ke Ye, Fe-
lix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar.
2023b. The lazy neuron phenomenon: On emergence
of activation sparsity in transformers. In Conference
on Parsimony and Learning (Recent Spotlight Track).

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A guide
to parameter-efficient fine-tuning.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng.
2021. Ebert: Efficient bert inference with dynamic
structured pruning. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4814–4823.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137–22176. PMLR.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: designing data and methods for
effective instruction tuning. In Proceedings of the
40th International Conference on Machine Learning,
ICML’23. JMLR.org.

Rui Mao, Guanyi Chen, Xulang Zhang, Frank Guerin,
and Erik Cambria. 2023. Gpteval: A survey on
assessments of chatgpt and gpt-4. arXiv preprint
arXiv:2308.12488.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems,
33:20378–20389.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-
speed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

14706

http://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=m_GDIItaI3o
https://openreview.net/forum?id=m_GDIItaI3o
https://openreview.net/forum?id=DbMm8pmoAP
https://openreview.net/forum?id=DbMm8pmoAP
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=IgvJxt7Mn1
https://openreview.net/forum?id=IgvJxt7Mn1
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
2023. Powerinfer: Fast large language model serv-
ing with a consumer-grade gpu. arXiv preprint
arXiv:2312.12456.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems,
34:24193–24205.

Vithursan Thangarasa, Abhay Gupta, William Marshall,
Tianda Li, Kevin Leong, Dennis DeCoste, Sean Lie,
and Shreyas Saxena. 2023. Spdf: Sparse pre-training
and dense fine-tuning for large language models. In
Uncertainty in Artificial Intelligence, pages 2134–
2146. PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, et al. 2023. How far can camels go?
exploring the state of instruction tuning on open re-
sources. arXiv preprint arXiv:2306.04751.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu,
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lü, Rui Hu, Chenxia Li, Liu Yang, Xilin Luo,
Xuejie Wu, Lunan Liu, Wenjun Cheng, Peng Cheng,
Jianhao Zhang, Xiaoyu Zhang, Lei Lin, Xiaokun
Wang, Yutuan Ma, Chuanhai Dong, Yanqi Sun, Yifu
Chen, Yongyi Peng, Xiaojuan Liang, Shuicheng Yan,
Han Fang, and Yahui Zhou. 2023. Skywork: A more
open bilingual foundation model.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang,
Yanfeng Wang, and Weidi Xie. 2023. Pmc-llama:
Towards building open-source language models for
medicine. arXiv preprint arXiv:2305.10415, 6.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022a. Platon: Pruning large transformer
models with upper confidence bound of weight im-
portance. In International Conference on Machine
Learning, pages 26809–26823. PMLR.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022b. MoEfication:
Transformer feed-forward layers are mixtures of ex-
perts. In Findings of the Association for Compu-
tational Linguistics: ACL 2022, pages 877–890,
Dublin, Ireland. Association for Computational Lin-
guistics.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao.
2024a. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference.
arXiv preprint arXiv:2401.12200.

Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao
Li, Hongshen Xu, Zichen Zhu, Su Zhu, Shuai Fan,
Guodong Shen, Xin Chen, and Kai Yu. 2024b.
Chemdfm: Dialogue foundation model for chemistry.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

A Temperature Exploration

Temperature
Skywork PPL ↓ Avg. ↓

finance game general government movie technology
0.1 6.71 18.05 8.74 8.32 25.68 11.24 13.12
0.05 6.56 17.58 8.59 8.10 24.89 11.03 12.79
0.01 9.87 23.16 11.51 14.06 34.90 14.74 18.04

Table 5: Perplexity scores on the Skywork benchmark
of TinyLLaMA (1.1B) after continual pre-training with
different temperature settings with the maxip neuron
importance metric

B Baselines Hyperparameters in
Supervised Fine-tuning

Model
7B 13B

lr r λ lr r λ

(IA)3 3e-4 - - 1e-4 - -
LoRA 1e-4 64 - 3e-5 64 -
SpIEL 1e-4 64 30 1e-5 64 30
FullFT 1e-5 - - 1e-5 - -

SAT (ours) 1e-5 - - 1e-5 - -

Table 6: Baselines hyperparameters in supervised fine-
tuning for LLaMA-2 7B and 13B. lr: learning rate; r:
rank in LoRA; λ: weight decay strength in SpIEL

14707

http://arxiv.org/abs/2310.19341
http://arxiv.org/abs/2310.19341
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
http://arxiv.org/abs/2401.14818

