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Abstract

Recent studies have shown that fusing text
labels and context sentences is an effective
method for learning prototype representations
in few-shot relation extraction. However, the in-
consistency of prototype representations across
different few-shot tasks persists due to different
context sentences for the same relation, even
with the integration of text labels into proto-
type representations. Conversely, the text la-
bel for each relation is unique and consistent,
1)which prompts us to propose a dual prototype
learning method. Unlike previous methods that
only construct support-based prototypes, we
additionally construct label-based prototypes.
Furthermore, we introduce a graph-based pro-
totype adjustment module to construct topo-
logical information between support-based and
label-based prototypes, thereby generating a
more effective similarity measure through a
simple linear combination. In addition, rela-
tions of different granularities have different
distribution widths in the same semantic space,
the imbalanced distribution in the semantic
space leads to a lack of comparability among re-
lations. To create a more discriminative seman-
tic space, 2)we propose a granularity-aware
prototype learning method that unifies the dis-
tribution width of relations, making relations
of different granularities have similar distribu-
tion widths. Experimental results on two pub-
lic benchmark datasets show that our proposed
methods achieve state-of-the-art performance
in few-shot relation classification. The source
code can be accessed via the following link:
https://github.com/ysulizm/GRADUAL.

1 Introduction

Relation Extraction (RE) is a fundamental task in
Natural Language Processing (NLP) that aims to
extract semantic relations between entities from
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Text Label
label prompt context sentence

where an event or activity is taking place: Paris will hold the 2024 Summer Olympics.

label name label description
country of the origin: where a product or service was created.

label name label description
location of the event: where an event or activity is taking place.

label prompt context sentence
where a product or service was created: Hindu-Arabic Numera is originated in India.

context sentence
Water polo first appeared in England in the late 19th century.

Support Set

Query Instance support

query

label

Figure 1: Data examples in a 2-way-1-shot scenario
using the dual prototype learning method. The head and
tail entities of the context sentence are represented in
red and blue, respectively.

natural language text (Ma et al., 2023). How-
ever, obtaining high-quality RE annotation data
is time-consuming and labor-intensive. To alle-
viate the burden of manual annotation, some re-
searchers have adopted Distant Supervision (DS)
(Mintz et al., 2009) or Semi-Supervised Relation
Extraction (SSRE) (Sun et al., 2011) to obtain an-
notation information. However, these methods can
lead to inaccurate annotations and are not adaptable
to situations with only a few labeled examples. To
solve the problem of data scarcity, inspired by hu-
man cognitive mechanisms, researchers have pro-
posed Few-Shot Learning (FSL) (Han et al., 2018).
FSL is dedicated to leveraging learned prior knowl-
edge to quickly generalize to new tasks that only
contain a few labeled training samples.

As a popular framework widely applied in few-
shot tasks, Meta-Learning methods aim to learn
the ability to learn quickly from experience and
rapidly generalize to new subtasks (also known
as meta-tasks) (Vinyals et al., 2016). Among
them, Prototype Networks is a simple yet effec-
tive metric-based meta-learning method that aims
to learn a metric space, and then classify query in-
stances based on the distance between the query
instances and the prototype representations (Snell
et al., 2017).

Despite the fact that Prototype Networks based
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on Pretrained Language Models (PLMs) have
shown excellent performance in Few-shot Rela-
tion Extraction (FSRE), the prototype representa-
tion can be further enhanced by introducing ex-
ternal information, specifically, relation informa-
tion, which can be achieved by integrating specific
relation representations into the prototype repre-
sentation (Baldini Soares et al., 2019; Peng et al.,
2020). Therefore, many recent studies on introduc-
ing label information into Prototype Networks have
achieved notable achievements. For example, Han
et al. (2021a) proposed a hybrid prototype network
that generates hybrid prototypes based on context
sentences and relation descriptions to learn bet-
ter prototype representations. Recently, Liu et al.
(2022) found that even in the 1-shot setting, di-
rectly adding the embedding of relation descrip-
tions and support sample representations to gen-
erate prototype representations can achieve good
results. As the state-of-the-art model for imple-
menting FSRE tasks, Zhang and Lu (2022) pro-
posed a label prompt dropout method, which fur-
ther enhances the prototype representation by di-
rectly concatenating the label and context sentence
as input.

Although the above methods have achieved good
performance, these works only consider integrating
label information into prototype representations to
learn better prototype representations, ignoring the
fact that different context sentences of the same re-
lation can lead to inconsistent prototype representa-
tions among different few-shot tasks. This inconsis-
tency persists even when text labels are integrated
into the prototype representation. Conversely, the
text label for each relation is unique and consistent
across different few-shot tasks, which prompts us
to propose a novel method called dual prototype
learning method. This method constructs support-
based prototypes using context sentences, while us-
ing text labels to additionally construct label-based
prototypes. Specifically, to enable the generated
label-based prototypes to enhance the consistency
of the support-based prototype in the same seman-
tic space, we provide text labels and context sen-
tences as input to the same encoder. A specific
example of text labels and context sentences is
shown in Figure 1. In addition, to enhance the
consistency of support-based prototypes and better
calculate the similarity between the prototype and
the query instance, we employ a graph-based pro-
totype adjustment module to construct the topology
information between the support-based prototype
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Figure 2: The t-SNE visualization of Prototype Net-
works in few-shot scenarios. The same color points
belong to the same relation, and the dashed circle repre-
sents the distribution area of instances in the semantic
space. (a) In the previous methods, relations of different
granularities have different distribution widths in the
same semantic space. (b) Because instances a and b are
closer to the prototype of the “father” relation than the
prototype of the “part of” relation, they are incorrectly
classified as the “father” relation. (c) After the distri-
bution widths of the “part of” relation and the “father”
relation are unified, instances a and b will be correctly
classified as the “part of” relation. (d) In our granularity-
aware prototype learning method, relations of different
granularities have similar distribution width in the same
semantic space.

and the label-based prototype. Based on the topo-
logical information, the similarity measure between
the support-based prototype, the label-based proto-
type, and the query instance is generated through
a simple linear combination. The new similarity
measure can effectively calculate the similarity de-
gree between the prototype and query instances
by integrating both support-based and label-based
prototype measures.

In addition, we emphasize a potential problem in
previous research, where relations of different gran-
ularities in the same semantic space have different
distribution widths. This imbalanced distribution
leads to a lack of comparability between these re-
lations, thereby influencing the classification re-
sults, as shown in Figure 2(a) and Figure 2(b). To
address this problem, we propose a granularity-
aware prototype learning method based on the
dual prototype learning method. This method uni-
fies the distribution widths of different relations in
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each few-shot task, thus constructing a new seman-
tic space with stronger discrimination, as shown
in Figure 2(c) and Figure 2(d). Specifically, this
method first calculates the area formed by the label-
based prototype, the support-based prototype, and
the query instance. The area’s size indicates the
granularity of the relations, with larger areas de-
noting greater granularity. Then, the distribution
width of relations in the same semantic space is
adjusted according to their granularity. Notably, in
our Granularity-aware Dual Prototype Learning
Method (GRADUAL), relations of different granu-
larities have similar distribution width in the same
semantic space.

The main contributions of this paper are as fol-
lows:

• We propose a novel dual prototype learning
method that includes a graph-based prototype
adjustment module. This simple yet effec-
tive method outperforms previous approaches
that required additional encoders or complex
graph-based network structures to integrate
text labels and context sentences.

• We introduce a granularity-aware prototype
learning method based on the dual prototype
learning method. This method unifies the dis-
tribution width sizes of different granularity
relations for each few-shot task in the same se-
mantic space, leading to the creation of a new
semantic space with stronger discriminative
power.

• We conduct extensive evaluations of GRAD-
UAL under four few-shot settings on popu-
lar large-scale benchmark datasets for FSRE.
The results demonstrate that our method out-
performs existing state-of-the-art methods in
FSRE tasks.

2 Related Work

Few-Shot Relation Extraction. Few-Shot Rela-
tion Extraction (FSRE) is an emerging field that ex-
tends Few-Shot Learning (FSL) to Relation Extrac-
tion (RE), enabling rapid adaptation to unseen rela-
tions with a small number of annotated instances
(Garcia and Bruna, 2018). With the release of the
large-scale benchmark dataset FewRel, FSRE has
received increasing attention (Han et al., 2018; Gao
et al., 2019). Current research on FSRE primar-
ily falls into two categories: (1) Methods based

on Pretrained Language Models (PLMs), which
further train PLMs on RE tasks to obtain better
semantic space representations, such as MTB (Bal-
dini Soares et al., 2019), CP (Peng et al., 2020),
MapRE (Dong et al., 2021), LPD (Zhang and Lu,
2022), and others. (2) Methods based on Metric
Learning, which aim to map the to-be-classified
samples and the known classified samples to the
same semantic space to compare their similarities
(Li et al., 2024). Metric-based methods are non-
parametric, easier to implement, and have shown
strong performance in a series of few-shot tasks
(Triantafillou et al., 2019). Therefore, they have
been widely used in recent FSRE research, in-
cluding Siamese Networks (Chen and He, 2021),
Matching Networks (Han et al., 2020), Graph Neu-
ral Networks (Xie et al., 2020), and Prototype Net-
works (Snell et al., 2017). Among these, Prototype
Networks has become the mainstream method for
FSRE due to its efficiency.
Prototype Networks. Existing methods based on
Prototype Networks often introduce external infor-
mation (such as relation information) to enhance
prototype representation, which is a key part of
improving FSRE performance (Wu et al., 2024).
Some methods add relation information to enhance
prototype representation (Liu et al., 2022; Li et al.,
2022). For example, Zhenzhen et al. (2022) em-
ployed a joint training method to learn the proto-
type encoder from relation definitions to enhance
prototype representation. Other methods utilize
relation information to highlight intra-class similar-
ity and inter-class differences through contrastive
learning (Wang et al., 2022) and graph represen-
tation learning (Yu et al., 2022). For instance, Li
and Qian (2022) constructed a graph-based model
generation framework to generate classification
models according to the context sentence and text
labels. Besides, some methods alleviate the distor-
tion of prototype representation in the prototype
network by storing prototype representations in
memory through continual learning (Chen et al.,
2023).
Summary. All the aforementioned methods have
demonstrated the importance of high-quality pro-
totype representation for FSRE. However, these
methods also overlook the fact that relations of dif-
ferent granularities lead to imbalanced distribution
in the semantic space. This imbalanced distribu-
tion reduces the model’s performance and gener-
alization ability. (1) To avoid introducing a large
amount of irrelevant external information that can
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Figure 3: An overview of our proposed GRADUAL.

mislead the model in learning false relevance, we
only introduce relation information to enhance pro-
totype representation in our dual prototype learning
method. Furthermore, (2) to improve the semantic
space’s expressiveness, we propose a granularity-
aware prototype learning method. This method
transforms the imbalanced distribution of relations
of different granularities in the semantic space into
a similar distribution, thus creating a new semantic
space with greater differentiation for FSRE.

3 Problem Formulation

We follow the typical few-shot task setting, namely
the N -way-K-shot setup (Han et al., 2018). In
each few-shot task, each instance c includes con-
text sentence tokens x = {x0, ..., xm}, head en-
tity ehead = {eheadstart, e

head
end } and tail entity etail =

{etailstart, e
tail
end}. The corresponding label y =

{ytext, ynum} to c contains a textual label ytext

and a label index ynum, where x0 = [CLS] and
xm = [SEP] represent the start and end positions
of tokens, eheadstart and etailstart represent the start posi-
tions of entities, and eheadend and etailend represent the
end positions of entities. Each N -way-K-shot task
contains a support set S = {sij ; i = 1, ..., N, j =
1, ...,K} and a query set Q = {qi; i = 1, ...,M},
where S contains N relations, each relation has K
different labeled instances, and Q contains M unla-

beled instances. The aim of the few-shot task is to
predict the correct label y for each query instance
q in the query set.

Our model follows meta-learning setup during
training (Vinyals et al., 2016), which consists of
two stages: the meta-training stage and the meta-
testing stage. The datasets for the meta-training
and meta-testing stages are respectively referred to
as the meta-training dataset Dtrain and the meta-
testing dataset Dtest, with no overlapping relations
between them. The meta-training dataset is divided
into support instances s and query instances q to
enable the model to gain transferable knowledge
and the ability to “learn to learn”. Unlike traditional
model training methods, FSL, after integrating the
concept of meta-learning, treats the meta-task as
the training unit.

4 Methodology

4.1 Model Overview

The overview of our proposed model, GRADUAL,
is shown in Figure 3. It mainly consists of 3 parts:
(1) An encoder based on Pretrained Language Mod-
els (PLMs). (2) A graph-based prototype adjust-
ment module in the dual prototype learning method.
This module first constructs the topological infor-
mation between the support-based prototype and
the label-based prototype, and then generates a new
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similarity measure by combining different inputs
(similarity measures between the support-based
prototype and query instances, and between the
label-based prototype and query instances) and the
corresponding topological information through a
simple linear combination. (3) A granularity-aware
layer in the granularity-aware prototype learning
method. The granularity-aware layer uses the area
size between the support-based prototype, the label-
based prototype, and the query instance to measure
relations of different granularities in each few-shot
task.

4.2 Encoder

Among various types of encoders used for relation
extraction, encoders based on Pretrained Language
Models (PLMs) have achieved notable results due
to their impressive performance in capturing ex-
tensive general semantic knowledge. According to
existing research, we adopt BERTBASE, CP, and
LPD as encoders to generate semantic informa-
tion for all instances. For each support instance,
to better utilize the implicit knowledge obtained
by the encoder during training, we follow the set-
tings of Zhang and Lu (2022), using the relation
description and colon as label prompts to guide the
output of the PLMs-based encoder. To construct
a natural language sentence for each instance, we
concatenate the label prompt with the context sen-
tence. For example, in Figure 1, the context sen-
tence “Paris will hold the 2024 Summer Olympics”
concatenated with the corresponding label prompt
becomes “where an event or activity is taking place:
Paris will hold the 2024 Summer Olympics”. For
each query instance, we use the context sentence
without any label prompts. For each label instance1,
following the settings of Liu et al. (2022), we con-
catenate the label name with the label description,
separated by a colon. For example, in Figure 1, the
label name “location of the event” concatenated
with the corresponding label description becomes
“location of the event: where an event or activity is
taking place”.

Subsequently, we introduce special tokens in
each instance to distinguish head and tail entities,
as well as to mark the start and end of context
sentences. Specifically, we add [E1][/E1] and
[E2][/E2] tokens at the positions of the head and

1In this study, the terms text label and label instance are
different. Text labels contain label names and label descrip-
tions, and label instances are concatenated by label names and
label descriptions.

tail entities, and insert [CLS] and [SEP] tokens
at the start and end of instances. The support
instance mentioned earlier is thus represented as
“[CLS] where an event or activity is taking place:
[E1] Paris [/E1] will hold the [E2] 2024 Sum-
mer Olympics [/E2]. [SEP]”. The label instance
becomes “[CLS] location of the event: where an
event or activity is taking place. [SEP]”. Finally,
the parsed instances are mapped into the semantic
space through the encoder to obtain the correspond-
ing text embeddings. We follow the settings of Li
and Qian (2022). to obtain each instance represen-
tation. The representations of support and query
instances are as follows:

s = hse1 ⊕ hse2

q = hqe1 ⊕ hqe2
(1)

where s and q represent the representations of sup-
port and query instances respectively, he1 and he2
represent the embeddings of special tokens [E1]
and [E2], and ⊕ represents concatenation opera-
tion. The representation of the label instance as
follows:

r = h0 ⊕
∑n

i=1 hi
n

(2)

where h0 represents the embedding of the special
token [CLS], and n represents the number of tokens
in the text embedding.

4.3 Dual Prototype Learning Method
Obtaining high-quality prototype representations
is crucial to improve the performance of FSRE.
Therefore, existing methods consider integrating
label information into prototype representations
to learn more effective prototype representations.
However, different context sentences of the same
relation can lead to inconsistent prototype represen-
tations across different few-shot tasks.To address
this issue, we propose a dual prototype learning
method that alleviates this inconsistency by gener-
ating consistent label-based prototypes. To more
effectively calculate the similarity between proto-
types and query instances, we introduce a graph-
based prototype adjustment module. This module
first constructs topological information between
support-based prototypes and label-based proto-
types, and then generates a new similarity measure
based on topological information by integrating
both support-based and label-based prototype mea-
sures.

For each N -way-K-shot task, the support-based
prototype ps for each relation is obtained by aver-

13570



aging the representations of K support instances
in that relation, as described by Snell et al. (2017).
The support-based prototype ps as follows:

ps =
1

K

K∑

i=1

si (3)

Meanwhile, The label instance representation for
each relation is directly used as the label-based
prototype pr in that relation. The label-based pro-
totype pr as follows:

pr = r (4)

Subsequently, we use the Euclidean distance as
our similarity measure function to calculate the
degree of similarity between various instances. For
each N -way-K-shot task, the Euclidean distance
between the query instance and the support-based
prototype as follows:

dpsq = d(ps, q) (5)

where d(·) represents the Euclidean distance. The
Euclidean distance between the query instance and
the label-based prototype as follows:

dprq = d(pr, q) (6)

In the graph-based prototype adjustment module,
to construct topological information between the
support-based prototype and the label-based proto-
type, we consider the support-based prototype and
all label-based prototypes as nodes in the graph and
then establish edges between the nodes. Specifi-
cally, for each N -way-K-shot task, we first calcu-
late the Euclidean distance between the support-
based prototype and all label-based prototypes as
follows:

dpspr = d(ps, pr) (7)

and we can get the smallest Euclidean distance as
follows:

dpsmin = arg min
i∈{1,...N}

d(pspri) (8)

We then calculate the ratio of dpsmin to dpspr as
λ, which represents the edge between nodes, as
follows:

λ =
dpsmin

dpspr
(9)

In our graph, the edge represents the ratio of
the similarity measure between two nodes of the

support-based prototype and the label-based proto-
type that need to be reduced to make them belong
to the same label. Finally, according to the topo-
logical information in the graph, we generate a
new similarity measure by integrating both support-
based and label-based prototype measures through
a simple linear combination:

dpsprq = dpsq + λdprq (10)

4.4 Granularity-aware Prototype Learning
Method

To alleviate the imbalanced distribution of dif-
ferent granularity relations in the same semantic
space, we unify the distribution width of differ-
ent relations, thereby constructing a new semantic
space with more discrimination. Specifically, in
the granularity-aware layer, we first calculate the
area A formed by the label-based prototype, the
support-based prototype, and the query instance as
follows:

A =
√
p(p− dpsq)(p− dprq)(p− dprps)

p =
dpsq + dprq + dprps

2

(11)

We then unify the distribution width of different re-
lations in each few-shot task, so that different gran-
ularity relations have similar distribution widths.
Therefore, the new similarity measure dpsprq ob-
tained by our dual prototype learning method be-
comes dApsprq, as follows:

dApsprq =
dpsprq
A (12)

Subsequently, we use dApsprq as the logit in the
cross-entropy loss as follows:

L = −
N∑

i=1

log
exp (dApsipriq)∑N
j=1 exp (d

A
psj prj q

)
(13)

We calculate the gradient by using the cross-
entropy loss and process the gradient update on
the encoder to make our model reach the optimal
point.

5 Experimental Setup

5.1 Datasets
Our GRADUAL is evaluated on the FewRel 1.0
(Han et al., 2018) and the domain adaptation part of
FewRel 2.0 (Gao et al., 2019) datasets. FewRel 1.0
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consists of 100 relations, with each relation con-
taining 700 labeled instances. Our experiments
follow the split used in the official benchmark
test, where the dataset is divided into 64 base rela-
tions for training, 16 relations for validation, and
20 new relations for testing. Unlike FewRel 1.0,
which conducts training and testing in the same
Wikipedia domain, FewRel 2.0, which has domain
adaptation capabilities, conducting training in the
Wikipedia domain and testing in the biomedical do-
main to evaluate the model’s domain transferability.
Since the labels of the test sets for FewRel 1.0 and
FewRel 2.0 are not publicly accessible, we submit
the model’s predicted results to CodaLab to obtain
the accuracy of the test set.

5.2 Compared Methods
We compare GRADUAL with 17 existing base-
lines. According to the type of encoder, we divide
these baselines into three groups: standard BERT-
based baselines, BERT-based baselines that intro-
duce external information, and baselines based on
pre-trained language models (PLMs).

In the group of standard BERT-based baselines,
1) Proto-BERT (Han et al., 2018) is a proto-
type network that uses BERT as the encoder. 2)
MAML (Finn et al., 2017) is an optimization-based
meta-learning method. 3) GNN (Satorras and Es-
trach, 2018) is a graph neural network-based meta-
learning method. 4) BERT-PAIR (Gao et al., 2019)
is a sequence classification model that measures
the similarity between two instances.

In the group of BERT-based baselines that intro-
duce external information, 5) REGRAB (Qu et al.,
2020) and 6) ConceptFERE (Yang et al., 2021)
model different relations by leveraging a global re-
lation graph and the inherent concepts of entities,
respectively. 7) CTEG (Wang et al., 2020) is a
model that decouples high co-occurrence relations
with various external information. 8) TD-Proto
(Yang et al., 2020) enhances the prototype network
by introducing text descriptions of Wikidata. 9)
HCRP (Han et al., 2021a) distinguishes task com-
plexity by introducing relation descriptions. 10)
DRK (Wang et al., 2022) uses a rule-based knowl-
edge method to alleviate prediction confusion. 11)
SimpleFSRE (Liu et al., 2022) directly integrates
relation descriptions into prototype representations.
12) GM_GEN (Li and Qian, 2022) constructs topo-
logical information to generate specific classifica-
tion models.

In the group of PLMs-based baselines, 13) MTB

(Baldini Soares et al., 2019) is a pre-trained model
for matching blank tasks based on BERTLARGE.
14) CP (Peng et al., 2020) proposes an entity mask-
ing pre-trained framework based on contrastive
learning. 15) LDUR (Han et al., 2021b) devel-
ops a supervised contrastive pre-trained method
for learning discriminative representations. 16)
MapRE (Dong et al., 2021) additionally uses a
relation encoder during pre-training to consider re-
lation information. 17) LPD (Zhang and Lu, 2022)
proposes a label prompt dropout method by di-
rectly concatenating labels and context sentences.
In addition, HCRP (CP), SimpleFSRE (CP), and
GM-GEN (CP) are standard CP-based baselines.
To make a fair comparison with these baselines,
our GRADUAL provides experimental results with
BERTBASE, CP, and LPD as encoders.

5.3 Implementation Details

We conduct our experiments on servers equipped
with 24GB NVIDIA RTX 3090. We use uncased
BERTBASE, CP, and LPD as instance encoders
for fair comparison with other models, and opti-
mize our GRADUAL with AdamW (Loshchilov
and Hutter, 2019). BERTBASE, CP, and LPD are
all composed of 12 layers of transformer modules;
in addition, CP is further pre-trained through con-
trastive learning, while LPD introduces a label
prompt dropout method and combines it with con-
trastive learning for further pre-training. Table 5
shows the detailed hyperparameters. To obtain the
accuracy of the test set, we follow the official eval-
uation settings and submit the predicted results to
the FewRel leaderboard. In Table 1 and Table 2, we
report the average accuracy and standard deviation
of 5 runs with different random seeds.

6 Results and Analyses

6.1 Main Results

The comparison results of FewRel 1.0 and 2.0 are
shown in Table 1 and Table 2, respectively. The
detailed information of the baseline methods com-
pared is provided in Chapter 5.2. In addition, we
directly utilize the settings and results from GM-
GEN and LPD for FewRel 2.0. Our findings from
the comparison results are as follows:
(1) GRADUAL effectively addresses the

FSRE problem. As shown in Table 1 and Table
2, our proposed GRADUAL significantly outper-
forms all methods that use the same encoder. More-
over, we find that among the compared baseline
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Model
5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot

val test val test val test val test

MAML♣ (Finn et al., 2017) 82.93 89.70 86.21 83.55 73.20 83.17 86.06 88.51
GNN♣ (Satorras and Estrach, 2018) 75.66 89.06 70.08 76.93
Proto-BERT♣ (Han et al., 2018) 82.92 80.68 91.32 89.60 73.24 71.48 83.68 82.89
BERT-PAIR♠ (Gao et al., 2019) 85.66 88.32 89.48 93.22 76.84 80.63 81.76 87.02

REGRAB (Qu et al., 2020) 87.95 90.30 92.54 94.25 80.26 84.09 86.72 89.93
CTEG (Wang et al., 2020) 84.72 88.11 92.52 95.25 76.01 81.29 84.89 91.33
TD-Proto (Yang et al., 2020) 84.76±0.20 92.38±0.11 74.32±0.12 85.92±0.06

ConceptFERE (Yang et al., 2021) 89.21 90.34 75.72 81.82
HCRP (Han et al., 2021a) 90.90 93.76 93.22 95.66 84.11 89.95 87.79 92.10
DRK (Wang et al., 2022) 89.94 92.42 81.94 85.23
SimpleFSRE (Liu et al., 2022) 91.29 94.42 94.05 96.37 86.09 90.73 89.68 93.47
GM_GEN (Li and Qian, 2022) 92.65 94.89 95.62 96.96 86.81 91.23 91.27 94.30
GRADUAL 92.54±0.51 95.55±0.28 96.28±0.09 97.03±0.09 87.46±0.42 91.70±0.35 92.40±0.29 94.33±0.31

MTB♡ (Baldini Soares et al., 2019) 91.10 95.40 84.30 91.80
CP♡ (Peng et al., 2020) 95.10 97.10 91.20 94.70
LDUR (Han et al., 2021b) 87.21 90.40 94.86 96.95 80.34 84.68 91.36 94.15
MapRE (Dong et al., 2021) 95.73 97.84 93.18 95.64
HCRP (CP) (Han et al., 2021a) 94.10 96.42 96.05 97.96 89.13 93.97 93.10 96.46
SimpleFSRE (CP) (Liu et al., 2022) 96.21 96.63 97.07 97.93 93.38 94.94 95.11 96.39
GM_GEN (CP) (Li and Qian, 2022) 96.97 97.03 98.32 98.34 93.97 94.99 96.58 96.91
GRADUAL (CP) 97.47±0.13 97.64±0.09 98.59±0.04 98.66±0.02 95.30±0.16 95.89±0.22 97.12±0.04 97.35±0.06

LPD_filtered (Zhang and Lu, 2022) 93.51±0.7 95.12±0.2 94.33±0.7 95.79±0.1 87.77±1.1 90.73±0.2 89.19±1.3 92.15±0.3

GRADUAL (LPD_filtered) 94.62±0.34 96.47±0.21 96.22±0.22 97.26±0.12 89.82±0.33 92.63±0.39 92.09±0.11 94.28±0.48

LPD (Zhang and Lu, 2022) 97.76±0.1 98.17±0.0 97.75±0.2 98.29±0.2 96.21±0.2 96.66±0.0 96.28±0.1 96.75±0.2

GRADUAL (LPD) 98.44±0.10 98.71±0.07 98.64±0.05 98.84±0.04 96.99±0.12 97.77±0.06 97.06±0.05 97.79±0.06

Table 1: Accuracy (%) of FSRE on FewRel 1.0 validation/test set. ♠ represents results from the public FewRel
leaderboard, ♣ represents results reported by Qu et al. (2020), and ♡ represents results reported by Peng et al.
(2020). Our GRADUAL provides experimental results using BERTBASE, CP, and LPD as encoders, respectively.
In particular, LPD_filtered represents LPD pretrained on the Wikipedia (filtered) dataset (Zhang and Lu, 2022).
Detailed information can be found in Chapter 5.2. The experimental data from our model are represented in bold.

Model 5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot

Proto-CNN 35.09 49.37 22.98 35.22
Proto-BERT 40.12 51.50 26.45 36.93
Proto-ADV 42.21 58.71 28.91 44.35
BERT-PAIR 67.41 78.57 54.89 66.85
HCRP 76.34 83.03 63.77 72.94
GM-GEN 76.67 91.28 64.19 84.84
GRADUAL 81.71±0.91 91.49±0.08 72.59±0.37 83.72±0.56

CP 79.70 84.90 68.10 79.80
GRADUAL (CP) 84.99±0.42 92.48±0.18 75.02±0.28 86.19±0.46

LPD_filtered 83.41±0.5 90.00±0.3 73.28±0.8 81.80±0.9

GRADUAL (LPD_filtered) 85.76±1.23 92.11±0.27 75.82±0.40 84.62±0.29

LPD 82.81±0.5 88.98±1.4 70.51±1.5 78.76±1.6

GRADUAL (LPD) 84.98±0.98 91.63±0.30 76.13±0.98 84.52±0.43

Table 2: Accuracy (%) of FSRE on FewRel 2.0 test set.

methods, those based on LPD perform better than
those using CP and BERT, and methods based on
CP also perform better than those based on BERT.
However, the accuracy of BERT-based GRADUAL
can be higher than some of the CP-based baseline
methods, and the accuracy of CP-based GRAD-
UAL can be higher than some of the LPD-based
baseline methods. This shows that compared to
these advanced baseline methods, our GRADUAL
can solve the FSRE problem more effectively.
(2) GRADUAL makes better use of external

information. As shown in Table 1, our proposed
GRADUAL outperforms all BERT-based baselines
that introduce external information. This is because
our dual prototype learning method uses label infor-

mation to generate consistent prototype representa-
tions for each relation, and combines support-based
prototype measurements and label-based prototype
measurements into a new similarity measurement
by constructing topological information between
prototypes, which helps the model to obtain higher
quality prototype representations.

(3) GRADUAL has robust generalization ca-
pabilities. As shown in Table 2, compared to other
baseline methods, GRADUAL demonstrates bet-
ter adaptability to unknown data from different
domains. This superior adaptability is due to our
introduction of a granularity-aware prototype learn-
ing method based on the dual prototype learning
method. By transforming the imbalanced distri-
bution of relations of different granularities in the
same semantic space into a similar distribution, we
construct a new semantic space with greater dis-
crimination for FSRE. This new semantic space
shows excellent adaptability to unknown data of
relations of different granularities from different
domains.

To further demonstrate the superiority of our
model, an anomaly analysis is conducted on spe-
cific values of Table 2. Specifically, the accuracy of
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GM_GEN using the BERT encoder is 84.84, which
is lower than the accuracy of our CP-based GRAD-
UAL at 86.19 but higher than our BERT-based
GRADUAL at 83.72. Notably, among the four
paradigms, the 10-way-1-shot and 5-way-1-shot
paradigms are the most challenging, and our model
achieves the highest accuracy in both paradigms
using the same encoder. Therefore, when using the
same BERT encoder in the FewRel 2.0 dataset,
our model’s performance is indeed superior to
GM_GEN.

Model
5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot

1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

DUAL_Base 94.86 75.43 96.98 90.46 91.10 62.87 93.58 84.26
DUAL 94.87 78.12 96.97 91.92 91.09 65.62 93.58 86.48
GRADUAL_Base 95.17 79.59 97.28 90.06 91.75 67.40 94.65 79.35
GRADUAL 95.57 81.71 97.30 91.85 92.01 70.73 94.97 83.97

DUAL_Base (CP) 96.46 79.02 98.25 92.10 92.87 66.75 96.84 85.62
DUAL (CP) 96.48 82.18 98.29 92.52 92.88 73.07 96.75 86.27
GRADUAL_Base (CP) 97.74 83.85 98.68 92.47 95.78 71.82 97.34 85.69
GRADUAL (CP) 97.68 85.24 98.71 92.70 96.00 75.16 97.42 86.38

Table 3: Ablation results in accuracy (%) on FewRel
1.0/2.0 test set.

6.2 Ablation Study
We conduct several ablation experiments on the
Fewrel dataset using GRADUAL to examine the
relative contributions of different components in
the model shown in Table 3. Here, DUAL repre-
sents the dual prototype learning method, GRAD-
UAL represents a granularity-aware prototype
learning method built on DUAL, and DUAL_Base
and GRADUAL_Base represent methods without
the graph-based prototype adjustment module.
(1) Graph-based prototype adjustment mod-

ule. From Table 3, we find that after incorporat-
ing the graph-based prototype adjustment module
into the method, the accuracy of the method sig-
nificantly improved. This suggests that the graph-
based prototype adjustment module in the dual pro-
totype learning method can indeed enhance the
prototype representation, thereby making the gen-
erated similarity measures more appropriate for
FSRE.
(2) Granularity-aware layer. We also find from

Table 3 that the accuracy of GRADUAL increased
relative to DUAL, demonstrating the effectiveness
of the granularity-aware layer in GRADUAL. How-
ever, when BERT is used as the encoder in the ex-
periments on the FewRel 2.0 dataset, we observe
a decrease in accuracy in some results. The de-
crease in accuracy is due to the oversimplification
of the granularity measurement method, indicat-
ing that there is potential for improvement in our

granularity measurement method.

7 Conclusions

In this work, we introduce GRADUAL, an inno-
vative method designed for Few-Shot Relation Ex-
traction (FSRE). GRADUAL enhances the perfor-
mance and generalization capability of the model
by generating more consistent prototype representa-
tions for each relation and constructing a more dis-
criminative semantic space for different relations.
Firstly, we first combine the metrics of support-
based prototypes and label-based prototypes into
a new similarity metric by constructing topologi-
cal information between prototypes, which helps
the model to get high-quality prototype representa-
tions. Secondly, to enhance the expressive power
of the semantic space, we measure the granularity
of different relations by the area size between the
prototype and the query instance. By transforming
the imbalanced distribution of different granularity
relations in the same semantic space into a similar
distribution, we construct a more discriminative se-
mantic space. Extensive experiments have demon-
strated that our GRADUAL significantly outper-
forms previous works. In future research, we plan
to apply GRADUAL to more information extrac-
tion tasks across various domains and examine its
robustness.

8 Limitations

Despite GRADUAL achieves new state-of-the-art
performance in FSRE, it still has several limitations.
Firstly, we combine two prototype representations
using simple topological information, but more ad-
vanced combination methods could yield higher
quality prototype representations. Secondly, our
method for measuring granularity is relatively sim-
ple. Although it is effective, we believe that more
advanced methods for measuring granularity could
further improve the model performance. Lastly, we
have not yet explored the effectiveness of GRAD-
UAL in other text classification tasks, such as in-
tent classification. We believe these areas present
promising directions for future research.
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A Analysis of the Effectiveness of the
granularity-aware layer

Model BERT CP LPD LPD_filter

DUAL 2.10 1.62 1.10 0.56
GRADUAL 1.45 1.09 0.77 0.58

Table 4: Standard deviations of local optimal points
generated during the training process in the 5-way-1-
shot task.

From Figure 4, we can find that the accuracy
of GRADUAL is consistently higher than that of
DUAL, indicating that the granularity-aware layer
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Figure 4: Accuracy of DUAL and GRADUAL in the
training process of 5-way-1-shot task, based on different
encoders. DUAL represents GRADUAL without the
granularity-aware layer.

can effectively help the model construct a more
discriminative semantic space, thereby improving
its performance in FSRE. In addition, due to the su-
perior performance of the LPD encoder over BERT
and CP encoders, the method using LPD gener-
ates fewer local optimal points during the training
process. From Table 4, we find that the standard de-
viation of GRADUAL is generally lower than that
of DUAL, suggesting that the granularity-aware
layer can not only improve the performance of the
model, but also further enhance the stability of the
model.

B Analysis of the Effectiveness of
Graph-Based Prototype Adjustment
Module

To help us study the importance of the graph-based
prototype adjustment module in GRADUAL, we
introduce a hyperparameter α into λ, hence the
original Formula 9 now becomes as follows:

λ = (
dpsmin

dpspr
)α (14)

From Figure 5, we can observe that the variation
of λ indeed significantly impacts the accuracy of
GRADUAL. Since λ mainly affects the label-based
prototype, this shows the necessity of the label-
based prototype, and also shows that our proposed
dual prototype learning method can obtain higher-
quality prototype representations.
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Figure 5: Accuracy of models based on the BERT
encoder during the training process in the 5-way-1-shot
task. Here, GRADUAL_Base represents GRAD-
UAL without the graph-based prototype adjustment
module, while GRADUAL_2.0, GRADUAL_1.5,
GRADUAL_1.0, and GRADUAL_0.5 represent
GRADUAL with α set to 2.0, 1.5, 1.0, and 0.5,
respectively.

C Hyperparameters of GRADUAL

Dataset Parameter Value

Fewrel 1.0

encoder BERTBASE/CP/LPD
random seed 41/42/43/44/45
hidden size 768
max length 128

learning rate 5e− 6
batch size 4

train iteration 20000
val iteration 10000

Fewrel 2.0

encoder BERTBASE/CP/LPD
random seed 41/42/43/44/45
hidden size 768
max length 128

learning rate 2e− 5
batch size 4

train iteration 20000

Table 5: Hyperparameters of GRADUAL.
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