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Abstract
Large Language Models (LLMs), often show
strong performance on English tasks, while ex-
hibiting limitations on other languages. What
is an LLM’s multilingual capability when it is
trained only on certain languages? The under-
lying mechanism remains unclear. This study
endeavors to examine the multilingual capabil-
ity of LLMs from the vocabulary sharing per-
spective by conducting an exhaustive analysis
across 101 languages. Through the investiga-
tion of the performance gap before and after
embedding fine-tuning, we discovered four dis-
tinct quadrants. By delving into each quadrant
we provide actionable and efficient guidelines
for tuning these languages. Extensive experi-
ments reveal that existing LLMs possess mul-
tilingual capabilities that surpass our expecta-
tions, and we can significantly improve the mul-
tilingual performance of LLMs based on these
attributes of each quadrant 1.

1 Introduction

Large Language Models (LLM), such as
GPT (Brown et al., 2020; OpenAI, 2023),
PaLM (Chowdhery et al., 2022), and LLaMA (Tou-
vron et al., 2023a,b), are trained on massive
amounts of text data. While these models show
strong capabilities on English tasks, their perfor-
mance in other languages is often limited (Zhu
et al., 2023a; Bang et al., 2023).

Significant research effort has been dedicated to
enhancing multilingual capabilities by using meth-
ods such as continued training with abundant mono-
lingual data (Cui et al., 2023; Yang et al., 2023),
or employing instruction-tuning 2 techniques (Zhu
et al., 2023b; Li et al., 2023). Despite the encour-
aging results, the underlying mechanism of LLM’s
multilingual capability remains mysterious.

1https://github.com/CONE-MT/
Vocabulary-Sharing-Facilitates-Multilingualism.

2Instruction tuning is a method used to train large language
models to follow specific instructions to solve a task. We pro-
vide an example of instruction tuning format in Appendix A.

Figure 1: Multilingual capability quadrant. This graph,
based on the TED dataset, plots the performance of mod-
els fine-tuned with bilingual instructions. Each point
represents a model’s performance gain over the original
LLaMA. The horizontal axis measures the improvement
in bilingual performance, while the vertical axis indi-
cates the enhancement in multilingual performance.

Multilingual capability (Lin et al., 2019) refers
to how effectively models that have been fine-tuned
in one source language can be applied to tasks in
other languages and achieve decent performance.
This ability has been extensively studied in ma-
chine translation (Johnson et al., 2017; Gu et al.,
2018; Neubig and Hu, 2018; Aharoni et al., 2019;
Zhang et al., 2020) and multilingual pre-trained
models (Pires et al., 2019; Libovický et al., 2019;
Wu and Dredze, 2020). However, it has not been
investigated for English-centric LLMs, given that
the pre-training data is predominantly in English.
We aim to address this issue by focusing on the
multilingual foundation of pre-trained LLMs and
providing some guidance to help other people train
LLMs more efficiently for non-English languages.
Generally, multilingual capabilities are built on two
key foundations: the volume of multilingual data
used during the pre-training stage (Touvron et al.,
2023a,b; Li et al., 2023; Scao et al., 2022), and the
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vocabulary (Pires et al., 2019; Chung et al., 2020;
Liang et al., 2023). In this work, we focus on the
latter: vocabulary.

To investigate the multilingual foundation pro-
vided by the vocabulary of an existing LLM, we
only fine-tune the embedding layer and keep the
rest of the parameters frozen, denoted as Embed
FT. This approach requires fewer adjustments to
the model parameters than full fine-tuning, and
unlike LoRA (Hu et al., 2021), it doesn’t require
any additional model structure. In our experiments,
we focus on the LLaMA as a case study, but the
analysis method can be applied to other LLMs.

To examine the multilingual capabilities of
LLMs without loss of generality, we applied Em-
bed FT to a 10k en→x bilingual instruction trans-
lation dataset generated by 10k sentences pairs
across four distinct datasets: Lego-MT (Yuan et al.,
2023), Wikimatrix (Schwenk et al., 2021) and
Newscommentary (Tiedemann, 2012), and Ted (Ye
et al., 2018). We evaluated the bilingual perfor-
mance (refers to the performance of the fine-tuning
languages) and multilingual performance (refers to
the performance of other languages) of each model
to determine if there was a significant positive or
negative change compared to the original model.
From the results, all languages can be categorized
into four distinct quadrants.

The multilingual capability quadrant of the TED
dataset, illustrated in Figure 1, includes four quad-
rants: the reciprocal quadrant, the altruistic quad-
rant, the stagnant quadrant, and the selfish quadrant.
The full definition of each quadrant is in Section 3.
The selfish quadrant refers to scenarios where the
fine-tuned model only improves on the fine-tuning
language directions but not other languages. It is
considered a default quadrant, as languages that fall
into the selfish quadrant exhibit behavior that aligns
intuitively with the effects of bilingual fine-tuning.

Certain languages such as Bulgarian fall into the
reciprocal quadrant, where training with bilingual
data (e.g. English→Bulgarian) not only enhances
bilingual performance but also boosts the multi-
lingual capabilities of other languages. The ma-
jority of these languages in this quadrant are from
the Indo-European family, benefiting from the pre-
training data and vocabulary sharing. For these
languages, we find that there is no need to fine-tune
all parameters, which could lead to overfitting to a
specific language. We recommend fine-tuning only
the embedding layer, which yields bilingual perfor-

mance on par with full fine-tuning while preserving
the model’s multilingual capabilities.

Remarkably, certain languages exhibit altruis-
tic characteristics. When we use these languages
as training data, their primary effect is to enhance
multilingual performance. Upon further analysis,
we discovered that the decline in bilingual perfor-
mance is primarily due to a change in error types:
from those that are easy to score to those that are
more challenging. The improvement in multilin-
gual performance, on the other hand, stems from
vocabulary sharing. For such languages, employ-
ing a small dataset for full fine-tuning can be more
effective for multilingual capabilities.

Indeed, there are certain languages located in
the stagnant quadrant that are quite stubborn. This
means that using data from these languages doesn’t
improve bilingual performance or bring about
multilingual benefits. Regardless of parameter-
effective tuning strategies (LoRA) or extensive
fine-tuning on large datasets, the results are still
disappointing. Interestingly, even expanding the
vocabulary for full fine-tuning doesn’t lead to bet-
ter results. Then, we find that existing LLMs of-
ten over-tokenized these languages, which reduces
the density of information they carry. By simply
removing the common prefix of tokenized repre-
sentation, we have seen an average improvement
of 2.5 spBLEU points. Our main contributions are:

• We conduct a systematic analysis of the impacts
of LLM’s vocabulary on their multilingual ca-
pabilities, and discover four quadrants based on
their embedding fine-tuning performance gap.

• We provide practical and efficient technical
guides to improve multilingual capabilities for
each quadrant.

• We perform extensive experiments to verify the
effectiveness of quadrant-specific fine-tuning
techniques (e.g. 2.5 spBLEU improvement in
stagnant quadrant).

2 Background

Multilingual Large Language Model Large lan-
guage models (LLMs; OpenAI, 2023; Zhang et al.,
2022; Brown et al., 2020; Chowdhery et al., 2022;
Touvron et al., 2023a,b have shown demonstrated
performance in English, but the performance in
other languages is limited. To address this limita-
tion, researchers have proposed multilingual lan-
guage models (MLLMs) that can handle multiple
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languages simultaneously. The first line of re-
search proposes to learn a shared representation
space for multiple languages by first pre-training
on multilingual data and then fine-tuning for spe-
cific tasks or languages. Representative works in-
clude mBERT (Devlin et al., 2019), XLM (Lam-
ple and Conneau, 2019), XLMR (Conneau et al.,
2020), BLOOM (Scao et al., 2022), XGLM (Lin
et al., 2022b), and PolyLM (Wei et al., 2023). An-
other line of research adopted existing monolin-
gual LLMs to multilingual using techniques such
as prompt engineering (Muennighoff et al., 2023;
Yong et al., 2023), instruction tuning (Zhu et al.,
2023b; Li et al., 2023; Jiao et al., 2023), or continue
training (Cui et al., 2023; Yang et al., 2023).

The Multilingual Foundation of LLM The ro-
bust multilingual capabilities of LLM are founded
on: the presence of diverse multilingual data (Tou-
vron et al., 2023a,b; Li et al., 2023; Scao et al.,
2022) and vocabulary (Pires et al., 2019; Chung
et al., 2020; Liang et al., 2023).

The size of multilingual data is a critical factor in
the multilingual capabilities of LLM. LLaMA (Tou-
vron et al., 2023a) is pre-trained on a vast scale,
with over 1.6 trillion tokens, of which less than
9% is multilingual data, 3 spanning 20 different
languages. LLaMA2 (Touvron et al., 2023b) fur-
ther enhances the proportion of multilingual data
to approximately 11% and increases the number
of languages to around 26. PolyLM (Wei et al.,
2023) is trained on 640 billion tokens and sup-
ports 18 of the most commonly spoken languages.
BLOOM (Scao et al., 2022) is trained with data
from 46 natural languages. The existing language
data in the pre-training phase provides LLM with a
robust foundation for multilingual capabilities.

Another key factor is vocabulary construction.
A common approach to constructing vocabulary
involves tokenizing text into subwords: includ-
ing Byte-level Byte-Pair-Encoding (BBPE), Byte-
Pair-Encoding (BPE), SentencePiece (SP) (Sen-
nrich et al., 2016; Kudo and Richardson, 2018;
Wang et al., 2019), which are units smaller than
words that can encapsulate morphological varia-
tions. Nevertheless, in a multilingual context en-
compassing a diverse range of scripts, the base

3The original wording (4.5%) in the LLaMA paper, which
only mentioned the inclusion of 20 languages of Wikipedia
data. After meticulously checking the datasets involved in the
LLaMA pre-training to provide a rigorous account of the quan-
tity of non-English data, we discovered that the Gutenberg
dataset includes some multilingual data.

vocabulary comprising subwords can become ex-
ceedingly large, leading to inefficiency and sparsity.
Further Information on BBPE is in Appendix B.

3 Inherent Multilingual Capabilities

In this section, we begin by exploring the inherent
multilingual capabilities of LLMs and give some
fascinating observations detailed in Section 3.1.
Drawing on these insights, we then proceed to con-
duct an in-depth examination of the multilingual
capability of LLM in Section 3.2.

3.1 Observation

Setting We fine-tune a single LLaMA model us-
ing en→x data on the Lego-MT dataset, yield-
ing 101 bilingual-tuned models. We train the
LLaMA-7B with en→ro, en→no, en→ms, and
en→luo data separately, and then thoroughly evalu-
ate each bilingual-tuned model on all 101 language
pairs (en→x) to probe its multilingual translation
performance on Flores-101’s devtest set. Addition-
ally, we follow the same settings for all models
throughout the paper. Over 50 bilingual models
were tuned using the Wikimatrix and Newscom-
mentary datasets, and more than 55 bilingual mod-
els were tuned using the Ted dataset. All these
models were trained with identical parameter set-
tings, specifically a learning rate of 2e-5 and a total
of 3 epochs, and evaluated bilingual and multilin-
gual performance with beam size = 4.

Phenomena We observe that LLM demonstrates
superior multilingual capabilities far beyond expec-
tation. Some interesting phenomena are:

Phenomenon 1: LLaMA can support additional
languages beyond those explicitly mentioned in
their pretraining corpus. In the leftmost part of
Figure 2, it is evident that the bilingual-finetuned
en→ro, en→ms, and en→no models exhibit a sig-
nificant improvement over the original model in
en→af translation. This outcome is quite surpris-
ing considering that neither LLaMA’s pretraining
corpus 4 nor our fine-tuning data contain any text
related to af. Similar observations can be made for
numerous other languages, as depicted in Figure 2.
This indicates the LLaMA may possess a more
robust capability for handling multiple languages
than previously expected.

4LLaMA utilizes Wikipedia for its pre-training data which
includes 20 languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it,
nl, pl, pt, ro, ru, sl, sr, sv, uk.
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Figure 2: We evaluated the multilingual capabilities of various models on the Flores-101 dataset. The bar graph
represents the direct inference results from the original LLaMA, while the line graph illustrates the multilingual
performance of models trained on bilingual instruction data from en→ro, en→ms, en→no, and en→luo.

Phenomenon 2: The performance distribution
of bilingual-tuned models across multiple lan-
guages exhibits remarkable consistency. Intu-
itively, different bilingual models shall have very
different multilingual performance distributions.
However, from line plots in Figure 2, we ob-
serve that three bilingual models (en→ro, en→no,
and en→ms) showcase an exceptional level of
consistency. We speculate such a phenomenon
might be caused by a similar instruction-tuning pro-
cess. However, further experiments on the en→luo
model reject the above hypothesis. Therefore, we
hypothesize that such a phenomenon only occurs
in certain languages and might be related to certain
underexplored mechanisms.

3.2 Quantify Multilingual Capability at Scale

Given the phenomena above, we scale our evalua-
tion to more languages to validate our findings.

Setting We conduct experiments on LLaMA with
3 epochs on all 101 language pairs(en→x) in
Flores-101 using parallel multilingual corpora. For
each language pair, we sample at most 10k sen-
tence pairs at random unless it has fewer than 10k
sentence pairs. We then train models using the Em-
bed FT method. For evaluation on Flores-101’s
devtest including 12 respective languages (details
provided in Appendix E), we use a beam size of 4
and spBLEU (SentencePiece BLEU) as the metric.

Observation Inspecting the large-scale evalua-
tion results, we make the following observation:
some bilingual models exhibit highly similar yet
surprising behaviors. As a counterintuitive ex-
ample, we showcase a group of “selfless” bilin-
gual models (see Table 1). In common belief,
fine-tuning LLM on one language pair shall def-

initely improve its performance. However, to
our surprise, fine-tuning these “selfless” bilingual
models(column LG) might even hurt their perfor-
mance(comparing en→LG column with LLaMA
column). What’s even more interesting is that the
multilingual performance of these models is signif-
icantly improved.

Type LG LLaMA en→af en→ro en→LG Multilingual

af 3.5 15.6 20.0 15.6 17.8
ro 3.6 18.6 28.7 28.7 23.7

selfless

ln 2.9 7.9 20.9 0.9 14.4
ns 3.3 7.9 22.6 1.4 15.3
lo 1.8 8.7 17.8 0.1 13.3
km 1.1 9.7 21.3 0.1 15.5
ig 2.0 9.7 19.8 1.2 14.7
ps 0.9 8.9 17.2 0.5 13.1
my 0.3 11.2 22.8 0.0 17.0
lv 0.7 10.5 22.5 0.4 16.5
xh 2.3 9.4 21.7 2.0 15.5
mn 0.2 12.0 22.8 0.0 17.4
am 0.2 8.3 14.9 0.0 11.6
pa 0.3 8.8 18.8 0.1 13.8

Table 1: Consistent performance gains in translation
across multiple languages. Each row represents a model
that has been trained using en→LG bilingual dataset.
Multilingual performance refers to the average result of
en→af and en→ro.

To quantitatively investigate the language cluster-
ing behavior, as well as dig the root of the phenom-
ena mentioned above, we propose to categorize lan-
guages into four quadrants using a two-dimensional
Cartesian system. As shown in Figure 1, the x-axis
represents bilingual performance, and the y-axis
represents multilingual performance. Before clus-
tering, we first establish a categorization criteria.

Criteria We use the bilingual/multilingual per-
formance changes before and after fine-tuning to
measure whether the tuning results in gain or loss:

∆lg =

{
Ppost
Ppre

− 2, if Ppre ≥ T
Ppost−2T

Ppre
, otherwise

(1)
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where the Ppost represents the translation perfor-
mance after fine-tuning, Ppre indicates the perfor-
mance before the fine-tuning process, T serves as
a threshold for smoothing, and 2 is a hyperparam-
eter quantifies the extend for significant changes.
We select based on a preliminary study, for further
information see Appendix D. The calculation of
∆lg for bilingual performance is straightforward,
for the multilingual performance, we consider the
average performance of en→af and en→ro trans-
lations. This is primarily due to our observation
that changes in multilingual performance are sig-
nificantly mirrored in that of en→af and en→ro,
details are in Appendix E.

Quadrant Details We calculate the above crite-
ria on four multilingual corpora: Lego-MT (Yuan
et al., 2023), Wikimatrix (Schwenk et al., 2021) and
Newscommentary (Tiedemann, 2012), and Ted (Ye
et al., 2018), and obtain a consistent language
classification results as in Table 2. The details
of datasets and categorization are in Appendix E.
We summarize the behavior of four quadrants be-
low (also shown in Figure 1):

• Reciprocal Quadrant: Models trained on lan-
guages from reciprocal quadrant, demonstrate
strong bilingual and multilingual performance at
the same time.

• Altruistic Quadrant: Models trained on these lan-
guages prioritize enhancing others, with minimal
impact on their bilingual performance.

• Stagnant Quadrant: Existing tuning strategies ap-
pear to have minimal impact on these languages.

• Selfish Quadrant: The selfish quadrant is the most
intuitive one: training in a specific language typi-
cally improves the performance of that language
and merely affects other languages.

Please note that the categorization proposed is
merely one possibility derived from certain crite-
ria, and there might exist alternatives that lead to
slightly different classification results. Nonethe-
less, We only focus on the consistent classification,
produced by Eq. 1, across four distinct datasets for
our later analysis. We leave the exploration of a
better classification metric as future work.

4 Enhancing Multilingual Capability

This section conducts a comprehensive analysis
of the properties and training strategies of each

Figure 3: Comparing the Embed FT and Full FT Strate-
gies. In the realm of bilingual performance, both strate-
gies prove equally effective. However, when it comes to
multilingual performance, the Embed FT strategy stands
out for its adaptability across various languages, while
the Full FT strategy tends to over-specialize the model
to a single language. The numerical results for each
language pair can be found in Appendix G.

quadrant to effectively enhance the multilingual
capability of LLMs.

4.1 Reciprocal Quadrant

Language within the reciprocal quadrant indicates
that using any of these languages as training data in-
variably improves performance in other languages
within the same group. We will delve into this
relationship to uncover some intriguing insights.

Interpretation: Reciprocal quadrant consists
of linguistically similar languages. The recip-
rocal quadrant is predominantly occupied by Indo-
European languages. These languages are grouped
mainly due to their shared vocabulary and gram-
matical affixes. Furthermore, the original 20 lan-
guages supported by LLaMA are predominantly
Indo-European, providing a solid foundation. Con-
sequently, tuning one language within the Indo-
European family can effectively enhance the perfor-
mance of other languages within the same family.

Practice Guidance 1: The recommended train-
ing strategy for reciprocal languages is Em-
bed FT, which achieves the best performance-
generalization trade-off. Figure 3 illustrates the
performance disparity between the models obtained
through Embed FT and Full FT strategies under
varying amounts of training data. We randomly
selected 11 languages from the reciprocal quadrant
for testing, including es, pt, ca, de, da, cs, bg, pl,
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Dataset Reciprocal Quadrant Selfish Quadrant Altruistic Quadrant Stagnant Quadrant

Lego-MT af, bs, bg, ca, hr, cs, da, mk, ms, no, oc, pl, pt, ro, sk,
sl

ast, be, tl, fr, gl, de, hu, id, it,
ky, lt, ml, mt, mi, ny, fa, ru,
sr, es, sw, sv, tg, uk

am, ar, hy, as, bn, my, ceb, zh, et, fi, gu, he, is,
ig, ga, jv, km, ko, lo, lv, ln, mr, mn, ne, ns, ps,
pa, sd, so, tr, ur, uz, vi, cy, xh, zu

te, zhtrad, ff, lg, el, ja, kam,
kk, luo, lb, or, om, sn, ku, ta,
th, umb, wo, yo

New bs, bg, ca, hr, cs, da, nl, fr, gl, de, el, hi, hu, id, it, ja,
mk, no, pl, pt, ro, ru, sr, sk, sl, es, sv, uk

ar, az, be, zh, et, tl, fi, ka, he, is, jv, kk, ko, lt, lb,
mr, ne, oc, fa, sw, tg, te, tr, vi

bn, ml, ta

Ted bg, hr, cs, da, nl, fr, de, el, hu, id, it, ja, mk, pl, pt, ro,
ru, sk, sl, es, sv

hi ar, et, fi, gl, ka, he, ko, lt, mr, fa, sr, th, tr, uk, vi hy, az, be, bn, bs, my, zh, kk,
ms, mn, ku, ta, ur

Summary bg, id, de, ru, da, mk, hu, it, pl, cs, hr, sl, es, sk, sv, ro, pt, fr mr, ko, he, fi, et, vi, tr, ar -

Table 2: The distribution of various languages across different quadrants. Various factors such as data influence
and tuning strategy can lead to instability in some language quadrants. However, we concentrate on languages
that demonstrate consistent stability within these quadrants. In the stagnant quadrant, given that different datasets
encompass varying numbers of languages, we also take into account the observations.

fr, ru, nl, and averaged the bilingual/multilingual
performance across all 11 languages.

For bilingual performance, the Embed FT strat-
egy works as well as the Full FT strategy. As de-
picted by the bar in Figure 3, the results indicate
that when working with a limited dataset, the model
trained by Embed FT demonstrates a slightly infe-
rior performance compared to Full FT. However,
as the size of the dataset increases, the model de-
veloped using Embed FT not only matches but may
even exceed the performance of Full FT.

For multilingual performance, the Embed FT
strategy excels in adapting to various languages,
while the Full FT strategy tends to make the model
overly specialized to a particular language. As illus-
trated by the line in Figure 3, the findings suggest
that full fine-tuning of a bilingual dataset may lead
to overfitting, but this can be effectively mitigated
by using the Embed FT strategy.

Practice Guidance 2: While the Full FT model’s
multilingual capabilities are influenced by lan-
guage quantity, the Embed FT model remains
unaffected. Considering Phenomenon 3, which
observes a consistent multilingual distribution, we
are curious to explore whether a richer language
number could bring additional performance gains.
To investigate this, we randomly select some lan-
guages from the reciprocal quadrant to establish a
multilingual setting, and the results of this experi-
ment are displayed in Table 3. In the Full FT, the
performance of the multilingual model improves
with an increase in the number of languages. How-
ever, in the Embed FT, the number of languages
does not have a significant impact.

4.2 Altruistic Quadrant
Languages that fall into this quadrant demonstrate a
"selfless" characteristic. Training based on the data
from these languages does not necessarily improve,
and may even decrease their performance. Inter-

estingly, it can lead to performance enhancements
in other languages. We will conduct a thorough
examination of the underlying causes of this phe-
nomenon and propose potential solutions.

Interpretation for bilingual performance de-
cline: The model transitions from an error type
that is easy to score to a less score-friendly error
type. The primary error for LLaMA is “source
copy”, which simply duplicates the source sentence
as the translation. This error often leads to mod-
erate scores when there are names, numbers, and
punctuation in the translation tasks. However, after
tuning, the main error shifts to “oscillatory hallu-
cination” (Li et al., 2023), a state where the model
becomes stuck in a specific translation state and
generates repeated n-grams until it reaches the max-
imum length. This error makes it challenging to
earn the score of spBLEU. Therefore, the perfor-
mance of the fine-tuned model is lower than that of
the original model.

Interpretation for multilingual performance im-
provement: Those languages’ vocabulary en-
compasses the majority of English tokens. We
estimate the linguistics of these languages on the
Flores-101 benchmark, a multilingual parallel cor-
pus translated by professional translators through
a controlled process. For an altruistic language,
LG we first employ LLaMA’s tokenizer to segment
the words in both the LG and English data from
Flores. This allows us to compile the sets of tokens
that belong to the LG language, denoted as SLG,
and the English language, denoted as SEn. Finally,
we calculate the ratios of the size of SLG

⋂
SEn to

the size of SLG and the size of SEn respectively.
Intriguingly, as shown in Figure 4, we discovered
that most tokenized results used in these languages
exhibit a high degree of consistency with English.

Practice Guidance: Full FT with a minimal
dataset can effectively enhance bilingual per-
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# Lang Data Size en→hr en→da en→no en→ro en→ca en→cs en→bg en→pl en→es en→fr en→de en→pt en→nl AVG.

Bilingual Full Fine-Tuning

20k 20.2 32.2 22.2 28.8 35.8 24.5 26.5 18.4 23.8 31.7 24.8 41.1 18.9 26.8
40k 21.2 32.8 24.0 29.6 37.0 25.4 27.4 18.8 25.2 34.1 25.9 41.3 22.1 28.1
80k 22.4 34.8 25.6 30.8 38.5 26.4 29.3 19.1 23.6 32.9 30.8 40.6 23.5 29.1

Multilingual Full Fine-Tuning

2 160k 22.9 17.2 8.7 19.0 24.9 17.8 5.1 8.7 10.7 4.5 5.4 9.6 23.7 13.7
4 40k 20.0 31.1 18.6 28.6 35.6 24.0 20.6 18.4 26.4 36.2 27.3 38.3 23.6 26.8
8 80k 20.2 28.1 21.7 28.8 36.4 24.9 27.1 19.4 25.9 37.1 25.5 41.2 24.8 27.8

Multilingual Embedding Fine-Tuning

2 160k 21.5 33.1 18.5 29.5 36.0 25.6 20.5 18.8 26.9 41.8 30.7 41.5 24.8 28.4
4 40k 19.9 33.3 19.2 29.7 37.1 24.9 26.7 19.6 26.8 42.8 30.8 41.0 25.3 29.0
8 80k 20.3 32.8 19.2 28.6 34.6 24.6 27.0 19.1 27.0 40.0 29.9 40.7 24.5 28.3

Table 3: Performance comparison of bilingual and multilingual models. In full fine-tuning, multilingual models
improve with more languages. However, in embedding fine-tuning, language quantity doesn’t significantly affect
performance. Notably, multilingual models slightly underperform compared to bilingual models. In the table, a
data size of 80k for 8 languages implies that each language contributes 10k sentence pairs. Out of curiosity about
the performance of LLaMA in Indo-European languages, which it does not claim to support, we have added two
additional languages, hr and no, during the inference process, based on Guidance 1.

Figure 4: Analyzing linguistics in altruistic languages.
A significant overlap in tokenized results with English
may enhance performance in Indo-European languages.

formance and maintain a robust multilingual
effect. As shown in Table 4, the altruistic trait
is exemplified across different training strategies.
However, with Full FT and LoRA, as the dataset
size increases, the model tends to overfit the spe-
cific language, thereby diminishing its multilingual
capabilities. For Embed FT, an increase in data
volume does not significantly alter bilingual perfor-
mance, but it does markedly enhance the multilin-
gual effect. Interestingly, the multilingual effect is
not significantly different from that of Full FT with
a small dataset. In summary, by employing a small
dataset for full fine-tuning, we can strike a balance
between bilingual and multilingual performance.

4.3 Stagnant Quadrant

Languages in this quadrant exhibit remarkable iner-
tia, as training with their data neither enhances their
own performance nor influences the performance

Setting Size en→vi en→tr en→ar AVG.
B M B M B M B M

LLaMA 1.9 3.6 2.4 3.6 0.26 3.6 1.5 3.6

FT
10k 14.8 24.4 7.2 19.9 5.4 24.7 9.1 23.0
20k 18.5 22.3 8.3 9.3 6.9 22.9 11.2 18.2
40k 22.3 15.9 10.1 6.6 9.3 21.5 13.9 14.7

LoRA
10k 4.9 24.8 4.1 23.8 4.3 23.3 4.4 24.0
20k 6.5 24.4 4.6 23.0 5.3 23.5 5.5 23.6
40k 7.2 18.0 5.1 17.0 5.8 21.0 6.0 18.7

Embed
10k 3.1 14.5 2.7 14.2 3.1 11.9 3.0 13.5
20k 3.6 23.3 2.8 23.5 4.2 23.0 3.5 23.3
40k 3.5 24.7 2.9 24.8 4.5 23.6 3.6 24.4

Table 4: The altruistic characteristic is evident in a
range of training strategies when trained with the en→vi,
en→tr, and en→ar bilingual datasets. Here, “B” denotes
the bilingual performance, while “M” signifies the aver-
age performance of en→af and en→ro.

of other languages. In this section, we will delve
deeper into the inertia phenomenon, examining its
potential causes and proposing possible solutions.

Interpretation: Most languages in the stag-
nant quadrant are characterized by over-
tokenization. The LLaMA tokenizer, based on
the BBPE algorithm, is fundamental for multilin-
gual language processing tasks. Its universal ap-
plicability to all languages and the lack of a need
for an ‘unknown’ token make it optimal for vocab-
ulary sharing and increase its robustness. Despite
being suitable for multilingual learning, BBPE re-
sults in byte sequence representation of text that is
often much longer (up to 4x) than a character se-
quence representation. Upon investigation, we find
that the over-tokenization phenomenon is prevalent
in LLaMA. In an extreme case, a sentence in lo
that contains 6 words expands to 352 tokens after
tokenization. Additional details in Appendix F.

A comparison between active and stagnant lan-
guages, as shown in Table 5, reveals that:
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Setting Ratio LLaMA Full Bilingual Fine-Tuning LoRA Bilingual Tuning
10k 20k 40K 80k 160k 10k 20k 40K 80k 160k

en→es 1.7 4.8 23.5 23.8 25.2 23.6 25.9 26.4 25.8 26.6 26.3 26.9
en→pt 1.9 6.0 41.3 41.1 41.3 40.6 39.7 42.0 42.0 42.4 42.0 41.6
en→ca 1.9 5.7 34.9 35.7 37.0 38.5 39.2 37.3 37.7 38.1 38.6 39.2
en→de 2.0 4.7 22.5 24.8 25.9 30.8 31.2 27.8 26.8 27.3 31.9 32.6
en→no 2.2 3.2 21.2 22.2 24.0 25.6 28.4 19.6 20.1 21.0 22.1 24.0
en→ro 2.3 3.5 28.3 28.7 29.6 30.8 34.3 29.8 30.0 30.9 31.2 32.7
en→da 2.3 4.9 31.9 32.2 32.8 34.8 36.4 33.4 34.0 34.5 35.3 36.1
en→bs 2.6 2.0 23.2 25.2 26.5 28.5 30.0 21.7 22.8 24.2 25.0 25.2

en→gu 15.0 0.3 2.3 2.2 4.4 10.0 13.2 1.0 1.1 1.5 1.9 3.1
en→kn 16.9 0.3 1.0 1.5 3.0 5.6 9.9 0.5 0.4 0.5 0.8 1.0
en→te 17.4 0.7 4.2 8.2 12.8 17.3 20.3 0.6 0.8 1.7 2.9 5.3
en→ku 17.6 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
en→my 21.7 0.3 1.0 2.0 4.1 7.3 9.4 0.1 0.1 0.3 0.3 0.4
en→mr 38.8 0.3 5.0 7.2 10.7 13.7 15.8 1.8 1.9 2.2 2.0 1.7
en→lo 39.8 1.8 1.5 2.3 3.7 7.1 9.8 0.4 0.7 0.7 0.6 0.7
en→km 43.0 1.1 1.6 3.1 6.2 10.1 13.4 0.2 0.2 0.5 0.9 1.5

Table 5: The relationship between stagnant languages and the characteristic of over-tokenization. The “Ratio” is
defined as the number of tokens in a sequence after applying the tokenizer, divided by the sentence length, which is
measured by the number of words for space-separated languages and characters.

• activating a stagnant language with full fine-
tuning requires more data;

• the performance improvement with increasing
data is modest;

• certain parameter efficiency fine-tuning strategies,
like LoRA, do not affect them.

Practice Guidance 1: Expanding the vocabu-
lary is not an effective strategy for stagnant lan-
guages. Over-tokenization leads to an increased
demand for data. When a language is not ade-
quately represented by its vocabulary, the common
approach is to expand the lexicon (Tai et al., 2020;
Cui et al., 2023; Ji et al., 2023). Regrettably, in
most instances, this strategy of vocabulary enlarge-
ment proves ineffective for stagnant languages. As
shown in Table 6, we present three distinct methods
to expand the vocabulary:

• BBPE (Wang et al., 2019): This follows the ap-
proach used in LLaMA for vocabulary construc-
tion and involves learning a vocabulary for stag-
nant language;

• BPE (Sennrich et al., 2016)): This utilizes the
BPE algorithm and is based on subword units to
learn a vocabulary;

• SP (Kudo and Richardson, 2018): This learns a
vocabulary using the SentencePiece algorithm.

Meanwhile, to mitigate potential issues from
data quality, we have utilized both MC4 and Flores-
101 dev to construct vocabulary.

After training LLaMA on Lego-MT 80k bilin-
gual data, the experimental results indicate that:

Source Type 3k 6k 12k Source Type 3k 6k 12k

km - 10.1 lo - 7.1

MC4
BBPE 5.2 3.7 2.3

MC4
BBPE 6.2 1.7 3.6

BPE 4.7 11.0 2.1 BPE 6.7 1.8 3.6
SP 6.2 11.8 10.3 SP 7.0 6.4 4.9

Flores
BBPE 4.6 3.5 8.5

Flores
BBPE 4.6 3.9 1.5

BPE 4.4 3.7 8.8 BPE 4.3 1.5 1.6
SP 5.5 4.4 - SP 2.4 4.2 -

gu - 10.0 te - 17.3

MC4
BBPE 0.4 0.3 0.3

MC4
BBPE 9.6 8.4 6.0

BPE 0.4 0.2 0.3 BPE 9.7 7.7 6.7
SP 0.3 0.2 0.4 SP 10.0 9.7 8.1

Flores
BBPE 0.3 0.3 0.3

Flores
BBPE 9.0 8.8 7.1

BPE 0.3 0.3 0.3 BPE 8.9 8.2 7.2
SP 0.4 - - SP 9.8 - -

Table 6: Exploring various strategies for vocabulary
expansion: The term “km - 10.1” denotes the bilin-
gual performance (10.1) of full fine-tuning on Lego-MT
80k bilingual data (en→km) without any vocabulary
extension. “3k”, “6k”, and “12k” refer to the extended
vocabulary size. Most vocabulary expansion methods
do not significantly enhance the performance of stag-
nant languages. Due to the limited data in Flores dev,
some settings are missing in the table.

• When there is a substantial amount of data, the
impact of data quality on vocabulary expansion
can be disregarded;

• Among all the vocabulary expansion methods, SP
tends to yield better results compared to other
solutions;

• Almost all vocabulary expansion techniques fail
to enhance the performance of stagnant languages
significantly.

Practice Guidance 2: Shortening the subword
sequences can significantly boost the perfor-
mance of stagnant languages. Given the exis-
tence of the over-tokenization problem, we find that
among these over-tokenized languages, there are a
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Setting en→km en→lo en→gu en→te AVG.

Ratio 47.6% 67.0% 66.8% 73.8% 63.8%

Full FT 10.1 7.1 10.0 17.3 11.1
Extend (Best) 11.8 7.0 0.4 10.0 7.3
Our Strategy 12.6 9.2 11.3 21.5 13.7

∆ + 2.5 + 2.1 + 1.3 + 4.2 + 2.6

Table 7: Over-tokenization leads to a decrease in infor-
mation density for LLM. However, by simply removing
the over-tokenized character that shares the same prefix,
we can enhance performance, achieving results that sur-
pass both full fine-tuning and vocabulary extension.

large amount characters. For example, a Chinese
character “饕” is encoded into three code units
“[227, 234, 260]”. We refer to such characters
as ‘over-tokenized characters’ for the sake of sim-
plicity. We then gather all these over-tokenized
characters along with their three-byte represen-
tations. Interestingly, these over-tokenized char-
acters constitute a significant proportion, about
63.8%, of the corpus, as indicated in Table 7. More-
over, in the case of over-tokenized languages, all
over-tokenized characters begin with the same to-
ken (e.g., 227). Therefore, the obtained three-byte
representations are very sparse and result in low
information density in representation.

Furthermore, we propose a post-tokenization
technique to address the over-tokenization prob-
lem. We simply remove the shared prefix of over-
tokenization characters and obtain the shortened
yet lossless new representations. As a concrete ex-
ample, we remove饕’s prefix [227] from its three-
byte representation [227, 234, 260] to get a more
compact two-byte representation [234, 260]. Sub-
sequently, we utilized this adjusted representation
to train LLaMA on the 80k Lego-MT bilingual
dataset. Remarkably, our method outperforms both
direct fine-tuning of LLaMA and vocabulary ex-
tension, achieving a substantial performance boost
with an average of 2.5 points.

4.4 Guidance Summary

Guidance for reciprocal languages For lan-
guages, primarily Indo-European languages, situ-
ated in the reciprocal quadrant, the optimal strategy
is to solely fine-tune the embedding layer and keep
the remaining parameters frozen. This is primarily
due to these languages having shared vocabulary
and grammar rules.

Guidance for altruistic languages For lan-
guages residing in the altruistic quadrant, applying
full fine-tuning with a minimal dataset can effec-

tively enhance bilingual performance while main-
taining a robust multilingual effect. This is mainly
because the tokens in the vocabulary of these lan-
guages highly overlap with English.

Guidance for stagnant languages Shortening
subword sequences can markedly enhance the per-
formance of stagnant languages. Most languages
in the stagnant quadrant are over-tokenized, which
refers to a situation where a text in this language is
typically segmented by a tokenizer into an exces-
sively large number of tokens on average. Expand-
ing the vocabulary does not necessarily enhance
the performance of these languages. However, in
this paper, we demonstrate that simply removing
the identical prefix from over-tokenized characters
can significantly improve performance.

We provide more analysis about stagnant lan-
guages (in Appendix F), tuning analysis (in Ap-
pendix G), and different NLP tasks (in Appendix H)
of LLaMA experiments in the Appendix.

5 Conclusion

In this study, we performed a comprehensive anal-
ysis of 101 languages, categorizing them based on
shared characteristics into four distinct quadrants:
reciprocal, altruistic, selfish, and stagnant quad-
rants. Upon examining each quadrant in-depth, we
identified the primary reasons for the placement of
languages within their respective quadrants and pro-
vided some practical guidance for training. How-
ever, the primary focus of this study is the analysis
of persistent language characteristics within each
quadrant. A thorough investigation into the condi-
tions that trigger language migration across various
phenomena is a subject for our future research.

Limitation

In this paper, we find some interesting phenom-
ena in LLaMA. After expanding our evaluation to
include more languages, we found that many of
them demonstrated remarkably similar behaviors
on translation tasks. Then we grouped them with
categorization criteria. Although language classi-
fication is not our primary focus, our main inter-
est lies in understanding the reasons behind these
classifications and enhancing the multilingual ca-
pabilities of LLM. Meanwhile, to delve deeper into
the role of Embed FT, we provide a more detailed
analysis in Appendix H.
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A Instruction Tuning

Instruction Tuning is a method used to train large
language models to follow specific instructions to
solve a task. It’s a form of supervised learning
where the model is trained on a dataset consisting
of pairs of instructions and corresponding outputs.

Table 8 shows a simple example in the Lego-MT
dataset, presented in the format used for instruction
tuning:

Below is an instruction that describes a task, paired with
an input that provides further context. Write a response
that appropriately completes the request.
Instruction: Translate the following sentences from En-
glish to French.
Input: Dogs are the main source of transmission of rabies
to humans.
Response: Les chiens sont la principale source de trans-
mission de la rage.

Table 8: Instruction tuning case based on Lego-MT
dataset.

B BBPE

In a multilingual context encompassing a diverse
range of scripts, the base vocabulary comprising
subwords can become exceedingly large, leading to
inefficiency and sparsity. To mitigate this problem,
BBPE has emerged as the standard practice in most
modern language modeling efforts (Muennighoff
et al., 2022; Scao et al., 2022; Zhang et al., 2022;
Touvron et al., 2023a,b), which leverages UTF-8
encoding that encodes each Unicode character into
1 to 4 one-byte (8-bit) code units. BBPE is a tok-
enization algorithm capable of tokenizing any word
in any language, thereby eliminating the necessity
for an unknown token. It optimizes vocabulary
sharing across numerous languages and delivers su-
perior performance, facilitating knowledge transfer
between languages with non-overlapping character
sets.

C Language Information

In this section, we classify languages according
to their respective language families, as depicted
in Table 9. We standardize all language codes us-
ing the ISO 639-1 standard. For clarity, we list all
languages by their full names and shade the corre-
sponding languages in gray for easy identification.

D Hyper-parameter Setting

We use the criteria to measure the bilin-
gual/multilingual performance changes before and

Figure 5: Hyper-parameter setting. “Threshold” refers
to the significant changes before and after tuning, which
are calculated by dividing the performance after tuning
by the performance before the tuning. “# Reciprocal”
denotes the count of languages in the Reciprocal quad-
rant. The experimental result demonstrates that a sub-
stantial increase in the threshold value could lead to all
languages being classified into the Stagnant quadrant.

after fine-tuning:

∆lg =

{
Ppost
Ppre

− 2, if Ppre ≥ T
Ppost−2T

Ppre
, otherwise

The threshold term, T , is used to smooth the
dramatic numerical change that might be caused
by low-performing languages(e.g., performance
change from 0.01 to 0.02, although negligible, will
be considered significant without re-balancing us-
ing T ). We set T to the vanilla model’s average
translation performance on the Flores-101 dataset.

The hyper-parameter, set to a value of 2, defines
the thresholds for determining significant changes
before and after tuning. Here, we consider a lan-
guage to have significant bilingual/multilingual per-
formance changes if the performance after tuning
is twice that of the performance before tuning. In
Figure 5, we have thoroughly tested different sig-
nificance thresholds and found that if we consider
a 20-fold difference (a very large value) in perfor-
mance before and after tuning, then all languages
would be regarded as stagnant languages.

E Quadrant Division

We use some different publicly multilingual
datasets: Lego-MT, Wikimatrix & Newcommen-
tary, and Ted, which come from a different domain,
as shown in Table 10.

Conducting a comprehensive evaluation of the
translation performance for all en→x pairs in
Flores-101 across all models is a task that demands
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Family-1 Family-2 Family-3 ISO Language Lang Family-1 Family-2 Family-3 ISO Language

Indo-European

Armenian hy Armenian Kartvelian Karto-Zan Georgian ka Georgian

Balto-Slavic

Baltic lt Lithuanian Koreanic Korean ko Korean
lv Latvian Kra–Dai Tai Southwestern Tai lo Lao

Slavic

be Belarusian th Thai
bg Bulgarian Mongolic Central Mongolian mn Mongolian
bs Bosnian

Niger–Congo Atlantic–Congo

Atlantic wo Wolof
cs Czech Benue–Congo ln Lingala
hr Croatian ns Northern Sotho
mk Macedonian

Volta-Congo

lg Luganda
pl Polish ny Nyanja
ru Russian sn Shona
sk Slovak sw Swahili
sl Slovenian umb Umbundu
sr Serbian xh Xhosa
uk Ukrainian yo Yoruba

Celtic Insular Celtic cy Welsh zu Zulu
ga Irish ig Igbo

Germanic

North Germanic is Icelandic kam Kamba
sv Swedish West Atlantic ff Fulani

Northwest Germanic da Danish Nilo-Saharan Eastern Nilotic luo Dholuo
no Norwegian Portuguese Afro-Portuguese Upper Guinea Creole kea Kabuverdianu

West Germanic

af Afrikaans
Sino-Tibetan Sinitic Chinese zh Chinese

de German zhtrad Chinese
en English Tibeto-Burman Lolo-Burmese my Burmese
lb Luxembourgish

Turkic Common

Karluk uz Uzbek
nl Dutch Kipchak kk Kazakh

Graeco-Phrygian Hellenic el Greek ky Kyrgyz
Indo-Aryan Eastern bn Bengali Oghuz az Azerbaijani

Indo-Iranian

Indo-Aryan

as Assamese tr Turkish
gu Gujarati

Uralic
Finno-Permic Finno-Samic et Estonian

hi Hindi Finno-Ugric Finnic fi Finnish
mr Marathi Ugric hu Hungarian
ne Nepali

Afro-Asiatic

Chadic West Chadic ha Hausa
or Odia Cushitic Lowland East Cushitic om Oromo
pa Punjabi so Somali
sd Sindhi

Semitic West Semitic

am Amharic
ur Urdu ar Arabic

Iranian

fa Persian he Hebrew
ku Kurdish mt Maltese
ps Pashto Austroasiatic Khmer km Khmer
tg Tajik Vietic Viet–Muong vi Vietnamese

Italic Latino-Faliscan

ast Asturian

Austronesian Malayo-Polynesian

Javanese jv Javanese
ca Catalan Malayic id Indonesian
es Spanish ms Malay
fr French Oceanic mi Maori
gl Galician Philippine ceb Cebuano
it Italian tl Tagalog
oc Occitan

Dravidian

South-Central Telugu te Telugu
pt Portuguese

Southern Tamil–Kannada
kn Kannada

ro Romanian ml Malayalam
Japonic Japanese ja Japanese ta Tamil

Table 9: This table provides information on the language families of all 101 languages included in FLores-101. The
language family information is presented at three levels, denoted as “Lang Family-x”, where ‘x’ stands for the level
(1, 2, or 3). For ease of reference, we also provide the ISO code and the full name of each language. Languages that
are used in the inherent multilingual analysis are highlighted with a gray background.

Dataset # Language Domain

Lego-MT 100 Web
Wikimatrix & 50 Wikipedia and NewsNewscommentary
Ted 55 TED talk

Table 10: Statistics of various publicly accessible paral-
lel multilingual corpora.

significant labor and resources. Therefore, we ran-
domly select one representative language from each
language family for subsequent testing, as shown
in Table 11.

The bilingual and multilingual performance of
the model trained on the TED dataset on Flores-101
devtest is shown in Table 12.

Lang Language Family Lang Language Family

ha Afro-Asiatic he Afro-Asiatic
mi Austronesian ta Dravidian
af Indo-European ro Indo-European
th Kra–Dai ns Niger–Congo

luo Nilo-Saharan zh Sino-Tibetan
tr Turkic et Uralic

Table 11: Representative languages information. Within
the Indo-European language family, we choose to in-
clude af in addition to ro, which is a first language in
South Africa and not initially listed as a supported lan-
guage by LLaMA.

F Stagnant Quadrant

The LLaMA tokenizer, built on the BBPE algo-
rithm, serves as the foundation for multilingual
language processing tasks. Its universal applicabil-
ity across all languages, coupled with the elimina-
tion of the need for an “unknown” token, enhances
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LG en→mi en→luo en→ns en→ha en→ta en→tr en→he en→af en→ro en→th en→zh en→et en→LG

LLaMA 2.3 3.1 3.3 3.1 0.4 2.4 0.5 3.5 3.6 0.8 0.5 1.6 -

ar 0.9 1.5 0.8 0.3 0.4 1.9 2.5 7.8 16.1 0.3 1.4 1.4 2.2
hy 1.0 0.9 0.6 0.0 0.3 1.9 1.2 3.7 4.3 0.1 0.9 1.1 0.9
az 1.2 2.1 1.9 1.3 0.0 1.8 0.0 2.5 0.1 0.0 0.5 1.1 0.0
be 0.9 2.4 1.9 2.1 0.0 1.3 0.0 2.0 0.0 0.0 0.5 0.9 0.0
bn 0.6 2.0 1.4 1.5 0.0 0.9 0.0 1.8 0.0 0.0 0.5 0.7 0.1
bs 1.1 2.2 1.9 1.7 0.0 1.4 0.0 1.8 0.0 0.0 0.4 0.9 0.4
bg 1.5 1.7 1.3 0.5 0.3 2.1 2.0 8.2 12.1 0.2 1.1 1.5 18.8
my 0.3 0.3 0.4 0.0 0.2 1.5 1.1 3.0 0.9 0.1 1.0 0.8 0.0
zh 0.8 1.7 1.4 1.3 0.0 1.7 0.0 1.7 0.1 0.0 0.5 0.9 0.5
hr 2.0 2.6 2.2 1.8 0.4 2.6 2.8 10.4 19.2 0.5 1.5 1.9 13.8
cs 1.6 2.1 1.3 0.9 0.4 2.1 2.0 9.1 14.4 0.3 1.1 1.7 16.5
da 2.2 2.7 2.3 2.1 0.4 2.6 2.6 10.8 18.2 0.5 1.3 1.9 24.5
nl 1.6 2.3 1.6 1.3 0.4 2.0 2.1 10.4 15.8 0.4 1.3 1.7 23.1
et 1.3 2.0 1.7 1.1 0.4 2.5 2.6 8.7 16.9 0.4 1.3 1.9 1.9
fi 1.5 2.4 2.0 1.6 0.4 2.3 2.2 8.0 15.7 0.3 1.2 1.7 2.0
fr 2.2 2.9 2.7 2.3 0.4 2.9 2.6 9.5 18.4 0.5 1.6 1.8 36.8
gl 1.7 2.3 2.0 0.7 0.4 2.7 2.4 8.9 14.9 0.3 1.1 1.8 3.1
ka 0.9 0.7 0.3 0.0 0.4 1.7 1.8 6.7 11.8 0.2 1.2 1.4 0.1
de 1.8 2.4 1.9 1.6 0.4 2.2 2.4 10.1 16.7 0.5 1.6 1.8 25.9
el 1.4 2.2 1.7 0.9 0.4 2.3 2.8 11.2 21.4 0.3 1.8 1.7 5.4
he 1.7 2.4 2.0 1.1 0.4 2.6 3.4 8.2 21.4 0.5 2.3 1.8 3.4
hi 0.3 0.4 0.2 0.0 0.3 1.4 1.6 3.6 5.8 0.1 1.2 0.8 4.1
hu 1.6 2.3 1.6 1.1 0.4 2.2 1.6 8.4 14.2 0.3 1.1 1.6 6.4
id 2.4 3.1 2.9 2.5 0.4 3.0 2.9 9.1 19.9 0.6 1.4 1.8 7.3
it 2.2 2.7 2.5 2.0 0.4 2.7 2.4 9.7 18.6 0.5 1.5 2.0 23.8
ja 1.6 2.0 1.8 1.1 0.4 1.9 3.0 6.7 19.2 0.5 2.3 1.6 5.4
kk 1.2 2.8 2.6 2.6 0.1 1.9 0.1 2.9 0.6 0.3 0.5 1.3 0.3
ko 1.0 1.9 1.4 1.1 0.4 1.9 1.8 7.4 17.3 0.3 1.9 1.5 2.9
lt 1.6 2.3 2.1 1.6 0.4 2.5 2.4 8.9 19.6 0.5 1.4 1.9 1.0

mk 1.1 0.2 0.2 0.0 0.3 1.7 1.9 7.7 9.8 0.2 1.2 1.2 4.4
ms 1.3 2.6 2.1 1.9 0.1 1.7 0.0 2.5 0.1 0.0 0.5 1.1 2.7
mr 0.8 2.5 2.5 1.3 0.3 2.2 2.2 5.8 9.4 0.4 1.1 1.4 1.1
mn 1.1 1.5 1.2 0.1 0.2 2.0 0.7 4.3 2.3 0.1 0.9 1.1 0.0
fa 0.7 0.9 0.3 0.1 0.4 1.6 1.8 7.3 15.9 0.2 1.7 1.3 2.6
pl 1.8 2.4 2.1 1.7 0.4 2.3 2.3 9.2 15.0 0.4 1.4 1.7 12.6
pt 2.0 2.6 2.2 1.9 0.3 2.6 2.5 11.6 20.7 0.5 1.7 1.9 36.1
ro 1.8 2.3 1.6 1.1 0.4 2.1 2.1 8.9 15.5 0.4 1.2 1.6 15.5
ru 1.3 2.0 1.3 0.7 0.4 1.9 1.5 7.2 9.7 0.3 1.1 1.5 16.6
sr 1.8 2.2 1.7 1.3 0.4 2.3 2.6 10.3 17.7 0.5 1.3 1.7 2.0
sk 1.9 2.3 2.1 1.5 0.4 2.5 2.5 9.0 16.9 0.4 1.2 1.9 5.7
sl 1.8 2.4 1.9 1.4 0.3 2.3 2.3 8.3 16.1 0.4 1.3 1.8 8.0
ku 0.4 1.2 1.5 0.4 0.3 1.6 2.0 4.5 6.1 0.3 1.2 1.2 0.0
es 2.2 2.8 2.5 2.1 0.4 2.8 2.8 11.3 20.8 0.6 1.8 1.9 24.8
sv 1.9 2.6 2.1 1.9 0.4 2.3 2.6 10.4 18.2 0.5 1.3 1.8 24.7
ta 1.3 2.9 2.4 2.1 0.1 2.1 0.0 2.9 0.4 0.0 0.6 1.5 0.1
th 0.7 0.8 0.7 0.1 0.4 2.2 1.8 4.5 13.2 0.4 1.5 1.3 0.4
tr 1.7 2.3 1.8 1.4 0.4 2.4 2.3 8.2 17.1 0.4 1.4 1.7 2.4
uk 1.3 1.9 1.4 0.8 0.4 1.8 1.4 7.0 8.8 0.2 0.9 1.3 3.0
ur 0.6 0.9 0.5 0.3 0.0 1.0 0.0 0.7 0.0 0.0 0.6 0.4 0.0
vi 1.8 2.7 2.4 1.9 0.3 2.5 2.6 8.5 15.6 0.5 1.2 1.8 2.6

Table 12: Assessing the bilingual and multilingual capabilities: a performance evaluation of the model trained on
the TED dataset across all representative languages using the Flores-101 devtest. The experimental results show the
significant improvement in multilingual performance embodied in the en→af and en→ro.

vocabulary sharing and boosts its robustness. How-
ever, a phenomenon known as over-tokenization,
marked by excessive segmentation of text into to-
kens, may occur in certain languages, which could
potentially affect the efficiency of language pro-
cessing tasks.

To thoroughly examine the “over-tokenization”,
we conduct our research using the MC4 (Xue et al.,
2021) and Flores-101 (Goyal et al., 2022) dataset.
Despite having only 1012 samples, Flores-101 pro-
vides a high-quality multilingual parallel corpus
that allows for an in-depth exploration of the varia-
tions in expressing the same sentence across differ-
ent languages.

The over-tokenization phenomenon is observ-
able across various datasets and LLMs. For certain
languages, such as te and lo, the length of the tok-
enized sequence that LLaMA processes can extend

to 300 or even more. Interestingly, analysis results
from the Flores-101 dataset reveal that languages
prone to over-tokenization require more tokens to
express the same meaning. The magnitude of this
phenomenon is notably larger than what was ob-
served in the MC4 dataset, as shown in Figure 6.

We also present tuning results based on our anal-
ysis of the Flores-101 dataset, where we examined
the effects of full bilingual fine-tuning and Lora
tuning on varying amounts of data, as shown in
Table 13. Interestingly, we found that the charac-
teristics of stagnant language are preserved.

G Single-layer Tuning

To determine whether fine-tuning parameters of
layers other than the embedding layer in the model
is equally effective, we conducted a bilingual trans-
lation task on eight language pairs in the Flores101
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(a) Tokenization analysis on MC4 dataset.

(b) Tokenization analysis on Flores-101 dataset.

Figure 6: An over-tokenization phenomenon in low-resource languages across different datasets and LLMs. The
tokenization ratios of LLaMA, ChatGLM2, and MPT are calculated by dividing the length of the tokenized sequence
by the sentence length. For space-separated languages, the sentence length is measured by the number of words,
while for other languages it is measured by the number of characters. The length of the tokenized sequence refers
to the number of tokens obtained after applying the tokenizer. Languages characterized by over-tokenization will
exhibit this trait across various LLMs.

Setting Ratio LLaMA Full Bilingual Fine-Tuning LoRA Bilingual Tuning
10k 20k 40K 80k 160k 10k 20k 40K 80k 160k

en→es 1.7 4.8 23.5 23.8 25.2 23.6 25.9 26.4 25.8 26.6 26.3 26.9
en→pt 1.9 6.0 41.3 41.1 41.3 40.6 39.7 42.0 42.0 42.4 42.0 41.6
en→ca 1.9 5.7 34.9 35.7 37.0 38.5 39.2 37.3 37.7 38.1 38.6 39.2
en→de 2.0 4.7 22.5 24.8 25.9 30.8 31.2 27.8 26.8 27.3 31.9 32.6
en→no 2.2 3.2 21.2 22.2 24.0 25.6 28.4 19.6 20.1 21.0 22.1 24.0
en→ro 2.3 3.5 28.3 28.7 29.6 30.8 34.3 29.8 30.0 30.9 31.2 32.7
en→da 2.3 4.9 31.9 32.2 32.8 34.8 36.4 33.4 34.0 34.5 35.3 36.1
en→bs 2.6 2.0 23.2 25.2 26.5 28.5 30.0 21.7 22.8 24.2 25.0 25.2

en→as 10.0 0.2 3.2 4.7 6.8 8.2 9.6 0.5 0.6 0.9 1.4 2.2
en→ta 11.0 0.4 2.2 4.3 9.6 15.3 21.4 0.4 0.6 1.0 1.9 3.4
en→pa 11.4 0.3 2.3 4.2 6.8 9.7 14.5 0.4 0.8 1.2 1.7 2.7
en→ml 11.6 0.2 3.1 7.4 13.5 20.3 22.5 0.6 0.9 1.7 3.3 4.1
en→am 13.1 0.2 1.3 4.6 9.6 14.5 18.2 0.1 0.1 0.2 0.4 1.1
en→gu 15.0 0.3 2.3 2.2 4.4 10.0 13.2 1.0 1.1 1.5 1.9 3.1
en→or 18.4 0.3 0.9 1.6 1.6 1.0 0.8 0.3 0.5 0.5 0.1 0.1
en→te 19.7 0.7 4.2 8.2 12.8 17.3 20.3 0.6 0.8 1.7 2.9 5.3
en→kn 21.1 0.3 1.0 1.5 3.0 5.6 9.9 0.5 0.4 0.5 0.8 1.0
en→my 25.7 0.3 1.0 2.0 4.1 7.3 9.4 0.1 0.1 0.3 0.3 0.4
en→th 45.9 0.8 2.6 4.0 6.0 8.4 12.3 1.2 1.5 1.9 2.8 4.1

en→km 73.3 1.1 1.6 3.1 6.2 10.1 13.4 0.2 0.2 0.5 0.9 1.5
en→lo 86.5 1.8 1.5 2.3 3.7 7.1 9.8 0.4 0.7 0.7 0.6 0.7

Table 13: This refers to the relationship between stagnant languages and the characteristic of over-tokenization.
Here, the "Ratio" is defined as the number of tokens in a sequence after applying the tokenizer, divided by the
sentence length. The sentence length is measured by the number of words for space-separated languages and
characters for others.

dataset. These models were fine-tuned on the
Alpaca-En dataset, which was primarily used as

the training set to minimize any potential impact
from language variations. The results of these tests

12127



are displayed in Table 14. In these tests, English
served as the source language, while the target lan-
guages comprised eight different languages.

As observed from the table, the average scores
of fine-tuning the embedding layer and Layer 0 are
the highest, and they are very close to each other.
The model’s performance gradually decreases as
the layer number increases, with a noticeable drop
around the middle layers (Layers 15-17). This
trend is remarkably consistent across all language
pair tests.

The aforementioned results suggest that solely
fine-tuning the parameters of the lower layers can
also activate the model’s multilingual capabilities,
and its effectiveness is comparable to that of em-
bedding fine-tuning. Furthermore, the activation of
different language capabilities in the model through
single-layer fine-tuning occurs synchronously.

Additionally, we fine-tuned all the lower layers,
from Layer 0 to Layer 14, together. As shown in
Table 15, this strategy did not yield any additional
gains compared to the other tuning strategies.

H More Analysis

The performance of Embed FT remains stable
across reciprocal languages, regardless of the
dataset being utilized. As depicted in Table 16,
the Embed FT strategy delivers performance that
is competitive with the FT and LoRA strategies
across all training sets: Alpaca-En, Alpaca-X, and
Bilingual. Alpaca-En is a comprehensive English
dataset with 52k instructions and demonstrations.
Alpaca-X is derived from Alpaca-En through trans-
lation, with X denoting the target languages. The
Bilingual dataset comprises 52k instruction data for
translation tasks, based on the open-source Lego-
MT dataset. Unlike the FT strategy, which updates
all model parameters. Furthermore, it avoids the
need for an additional model structure, like the
LoRA strategy. This implies that Embed FT is a
more effective strategy for activating multilingual
capabilities.

In the Flores-101 dataset, the same evaluation
metric, spBLEU, is used. Before calculating
BLEU, all data is de-tokenized and sentence piece
tokenization is applied to each language. This
allows for a more accurate assessment of model
quality on the long tail of low-resource languages.
NLU: We evaluate various tasks to test different as-
pects of the model. These include XCOPA (Ponti
et al., 2020), a multilingual common reasoning

task supporting 11 languages; XStoryCloze (Lin
et al., 2022a), a story completion task in 11 lan-
guages; XNLI (Conneau et al., 2018), a cross-
lingual natural language inference task for 15 lan-
guages; PAWS-X (Yang et al., 2019), a paraphrase
identification task in 7 languages; and MGSM (Shi
et al., 2022), a mathematical reasoning task in 11
languages.
Besides fine-tuning the embedding layer, adjust-
ing the lower layers can also be effective. To
further investigate the functionality of the Embed
FT strategy, we separately fine-tuned each layer
of LLaMA using the Alpaca-En dataset and then
tested on the Flores-101 en→ro devtest. The layers
of the LLaMA model, excluding the embedding
layer, are numbered from 0 to 31, with 0 being the
closest to the embedding layer and 31 being the
furthest. The bilingual performance of en→ro is
illustrated in Table 16. Our experiments showed
that fine-tuning the lower layers is just as effec-
tive as fine-tuning the embedding layer. However,
we found that fine-tuning the higher layers did not
produce satisfactory results.

I Used Scientific Artifacts

Below lists scientific artifacts that are used in our
work. For the sake of ethic, our use of these arti-
facts is consistent with their intended use.

• Stanford Alpaca (Apache-2.0 license), a
project that aims to build and share an
instruction-following LLaMA model.

• Lego-MT (MIT license), a dataset for machine
translation.

• Transformers (Apache-2.0 license), a frame-
work that provides thousands of pretrained
models to perform tasks on different modali-
ties such as text, vision, and audio.
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Setting en→ro en→es en→de en→ca en→pt en→da en→no en→bs AVG.

FT 27.1 23.5 24.5 34.3 40.5 32.3 20.9 22.4 28.2
LoRA 28.8 26.6 30.3 36.6 40.3 31.5 18.2 20.3 29.1
Embed FT 29.1 26.8 31.0 35.9 41.1 32.1 18.3 19.4 29.2

Layer 0 29.2 26.6 30.9 37.2 41.5 32.4 18.7 20.8 29.7
Layer 1 28.9 26.2 30.1 36.2 40.5 32.1 19.0 20.3 29.2
Layer 2 28.9 26.7 30.6 36.4 40.6 32.2 18.9 21.4 29.5
Layer 3 28.8 26.6 30.4 36.6 40.6 31.8 18.6 20.6 29.2
Layer 4 29.0 26.8 30.4 36.7 40.5 32.1 18.9 20.4 29.3
Layer 5 28.9 27.0 30.9 37.1 41.3 32.1 19.0 20.8 29.6
Layer 6 29.0 26.8 30.5 36.7 40.8 31.5 19.0 20.3 29.3
Layer 7 28.7 26.4 30.7 36.1 40.3 32.0 18.7 19.6 29.1
Layer 8 29.1 26.2 30.0 36.4 40.4 31.6 19.2 19.7 29.1
Layer 9 28.8 26.3 30.2 35.8 40.2 31.6 19.1 19.5 28.9
Layer 10 27.8 25.8 29.7 35.5 39.9 30.8 18.7 16.1 28.0
Layer 11 28.0 25.6 29.9 35.5 39.4 30.9 18.8 17.1 28.2
Layer 12 27.9 25.5 29.2 34.8 38.2 30.6 17.2 15.4 27.4
Layer 13 27.8 25.6 29.1 34.1 38.3 30.4 17.3 16.5 27.4
Layer 14 25.1 24.7 28.5 32.1 36.2 29.4 15.8 10.1 25.2

Layer 15 15.7 22.6 25.4 27.2 27.7 24.2 11.2 2.5 19.6
Layer 16 15.2 20.3 23.2 26.5 18.9 20.2 10.4 3.2 17.2
Layer 17 19.0 21.0 23.1 23.6 22.1 20.2 11.1 5.0 18.1
Layer 18 7.1 6.7 8.9 7.5 5.8 10.1 5.6 3.1 6.8
Layer 19 6.2 4.0 6.4 3.0 4.5 4.7 3.9 1.7 4.3
Layer 20 6.1 5.4 4.0 3.9 6.0 5.9 4.7 2.5 4.8
Layer 21 5.0 5.0 3.2 2.5 4.2 5.1 3.9 2.2 3.9
Layer 22 5.4 5.3 2.9 3.7 6.6 7.7 3.9 2.6 4.8
Layer 23 4.2 2.6 0.8 1.4 2.8 6.1 3.2 1.7 2.9
Layer 24 4.3 3.5 2.9 1.8 5.2 5.1 3.4 2.1 3.5
Layer 25 4.7 2.7 2.0 1.9 7.7 6.3 3.1 2.0 3.8
Layer 26 4.7 2.7 3.8 2.2 6.3 4.7 3.0 2.4 3.7
Layer 27 5.1 1.3 4.4 2.5 6.3 5.6 4.6 2.3 4.0
Layer 28 4.6 1.6 4.3 2.7 4.9 3.8 3.3 2.6 3.5
Layer 29 4.1 2.9 5.2 4.3 6.7 6.8 3.6 2.9 4.6
Layer 30 4.8 2.6 5.6 4.2 6.1 5.3 4.1 2.8 4.4
Layer 31 4.3 2.8 3.8 4.2 4.6 6.3 3.9 2.8 4.1

Table 14: Single-layer fine-tuning results on Alpaca-En dataset. The layers of the LLaMA-7B model, excluding the
embedding layer, are numbered according to their distance from the embedding layer, with the closest being Layer
0 and the furthest being Layer 31. The term “+ Layer i” indicates that only the i th layer is fine-tuned, with the other
parts of parameters fixed.

Size en→da en→ca en→cs en→bg en→pl en→es en→fr en→de en→pt en→ru en→nl AVG.

Bilingual Full Fine-Tuning

10k 31.9 34.9 23.9 26.0 17.0 23.5 32.5 22.5 41.3 24.3 18.7 27.0
20k 32.2 35.8 24.5 26.5 18.4 23.8 31.7 24.8 41.1 24.2 18.9 27.4
40k 32.8 37.0 25.4 27.4 18.8 25.2 34.1 25.9 41.3 24.1 22.1 28.6

160k 36.4 39.2 27.1 31.8 19.7 25.9 39.1 31.2 39.7 24.6 24.3 30.8

Bilingual Embedding Fine-Tuning

10k 26.4 30.1 16.6 19.6 12.6 23.7 34.7 23.1 33.3 19.1 21.2 23.7
20k 33.1 37.3 24.4 26.5 18.6 26.4 41.1 30.4 40.8 24.7 24.4 29.8
40k 33.9 36.9 25.5 27.3 19.5 26.7 39.7 28.3 40.7 25.4 22.6 29.7

160k 34.7 37.7 26.2 28.2 19.9 27.0 40.9 31.3 40.7 25.7 24.9 30.7

Bilingual Lower Layers [0-14] Fine-Tuning

10k 33.4 36.2 25.6 27.1 18.4 24.2 32.8 23.1 42.1 25.5 18.5 27.9
20k 33.1 36.9 25.4 27.2 18.3 24.1 33.1 25.6 41.8 25.1 19.3 28.2
40k 33.9 37.8 25.6 27.5 19.2 25.7 34.8 25.8 41.2 25.3 21.7 29.0

160k 35.5 39.3 27.0 30.1 19.7 25.9 39.4 31.3 39.9 25.2 24.6 30.7

Table 15: The bilingual performance under different training strategies shows that fine-tuning the embedding layer
performs as well as full fine-tuning in terms of bilingual performance. Interestingly, fine-tuning all lower layers
does not yield additional gains.
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Models XCOPA MGSM XStoryCloze PAW-X XNLI Flores-101 AVG.

Parrot-7B 54.2 3.7 56.1 56.5 39.0 25.2 46.9
LLaMA-7B 53.9 5.8 55.5 53.2 37.1 4.4 35.0

LLaMA-7B + Alpaca-En

FT 54.5 4.5 57.6 57.1 40.3 28.2 48.4
LoRA 54.4 6.0 57.0 54.1 38.4 29.1 47.8
Embed FT 54.0 6.2 55.9 54.4 38.0 29.2 47.6

LLaMA-7B + Alpaca-X

FT 54.4 4.9 57.2 57.1 40.2 28.0 48.4
LoRA 54.5 5.6 57.0 53.8 38.3 28.0 47.4
Embed FT 54.1 5.9 55.9 54.6 38.3 27.9 47.3

LLaMA-7B + Bilingual

FT 53.9 3.4 55.6 55.9 38.8 30.1 47.6
LoRA 54.3 4.7 55.9 54.3 38.0 31.1 47.6
Embed FT 54.3 4.7 55.9 54.3 38.0 31.4 47.7

Table 16: Comparative analysis of training strategies.
XCOPA, MGSM, XStoryCloze, PAW-X and XNLI
are natural language understanding tasks, evaluated on
all languages with accuracy metric; Flores-101 is an
NLG task, each score in the cell represents an aver-
age spBLEU, encompassing bilingual translation perfor-
mances from en→{ro, es, de, ca, pt, da, no, bs}. The
experimental result reveals that Embed FT can perform
as well as another strategy.
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