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Abstract

Thanks to recent advances in generative AI,
we are able to prompt large language models
(LLMs) to produce texts which are fluent and
grammatical. In addition, it has been shown
that we can elicit attempts at grammatical error
correction (GEC) from LLMs when prompted
with ungrammatical input sentences. We evalu-
ate how well LLMs can perform at GEC by
measuring their performance on established
benchmark datasets. We go beyond previous
studies, which only examined GPT∗ models on
a selection of English GEC datasets, by evalu-
ating seven open-source and three commercial
LLMs on four established GEC benchmarks.
We investigate model performance and report
results against individual error types. Our re-
sults indicate that LLMs do not always outper-
form supervised English GEC models except in
specific contexts – namely commercial LLMs
on benchmarks annotated with fluency correc-
tions as opposed to minimal edits. We find that
several open-source models outperform com-
mercial ones on minimal edit benchmarks, and
that in some settings zero-shot prompting is
just as competitive as few-shot prompting.

1 Introduction

Grammatical error correction (GEC) of second lan-
guage learner English text is an important task in
Educational AI. Its main applications include: i) en-
abling learners to receive instant feedback on their
written work, ii) providing features for automark-
ing, and iii) profiling learners’ grammatical knowl-
edge in such a way as to facilitate personalised
learning (Andersen et al., 2013; Yannakoudakis
et al., 2018; Zaidi et al., 2019).

There is a long history of GEC research in the
field of computational linguistics, developing from

rule-based to statistical approaches to neural net-
work models, as has happened with other tasks in
natural language processing (Bryant et al., 2023).
Given the recent emergence of large language mod-
els (LLMs), such as OpenAI’s GPT∗ and Meta’s
Llama LLMs, it is natural to ask how well they can
perform at GEC and how they compare to exist-
ing state-of-the-art supervised approaches (Caines
et al., 2023).

To answer this question, we aim to elicit mini-
mal edit style corrections from LLMs through zero-
shot and few-shot prompting. Minimal edit correc-
tion of text aims to resolve any grammatical errors
in a text while staying as close as possible to the
phrasing and lexical choices of the original. This
is sometimes held up as a distinct alternative to
fluency correction – where texts are rewritten for
naturalness – though in reality the two annotation
methods are not completely separable from each
other (Bryant et al., 2023). The tendency so far has
been to annotate GEC datasets with minimal edits
only, and so that is the way past systems have been
trained. This is an important point to note, as LLMs
by default will output a transformative fluency cor-
rection of ungrammatical text (Coyne et al., 2023;
Fang et al., 2023; Loem et al., 2023). In this paper,
we attempt to prompt LLMs to perform minimal
edit correction rather than fluency correction, so
that the outputs are comparable to previous systems.
Minimal edit corrections are additionally valuable
within an educational setting, for example display-
ing grammatical errors to a learner (Yannakoudakis
et al., 2018).

We evaluate three commercial and seven open
source LLMs on four publicly available GEC
benchmarks: CoNLL 2014 (Ng et al., 2014), the
FCE Corpus (Yannakoudakis et al., 2011), JFLEG
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(Napoles et al., 2017), and Write&Improve + LOC-
NESS (W&I) from the BEA-2019 shared task
(Bryant et al., 2019). This builds on previous work,
which involved GPT∗ models only and at most
three GEC benchmarks (Coyne et al., 2023; Fang
et al., 2023; Loem et al., 2023). We find that some
of our chosen open-source models outperform GPT-
3.5 Turbo on English GEC benchmarks which have
been annotated in a minimal edit fashion. In con-
trast, GPT-3.5 performs best on a test set annotated
with fluency corrections.

We evaluate several zero-shot and few-shot
prompts, but find that different models require dif-
ferent styles of prompting. Some models appear
to respond better to few-shot prompting than oth-
ers, and certain prompt templates work best with
a specific LLM and dataset rather than universally
across the board. We provide strong empirical evi-
dence that LLMs do not always outperform existing
state-of-the-art, supervised GEC models – though
the search space over LLMs, prompt templates,
and few-shot learning is so great that our results
can only be considered a building block in the full
picture of LLM evaluation on English GEC. Our
investigations can serve as a comparison point for
future work on GEC with LLMs. We make our
code, prompt templates, few-shot examples, and
model predictions publicly available.1

2 Related work

Grammatical error correction (GEC). GEC is
the task of returning an edited version of an input
text such that any errors are corrected. It is a long-
standing task in research on NLP for educational
applications.

Thanks to large-scale annotation projects and the
public release of labelled data, GEC systems can
be built aiming at general correction of all error
types. Machine translation GEC systems pioneered
this general purpose approach, at first with statisti-
cal and later neural models (Brockett et al., 2006;
Junczys-Dowmunt et al., 2018; Yuan and Bryant,
2021). More recently, edit-based approaches have
been proposed in which corrections are applied on
a sequence labelling (Omelianchuk et al., 2020) or
sequence-to-sequence basis (Stahlberg and Kumar,
2020). Bryant et al. (2023) offers a comprehensive
survey of the history and current state of GEC.

1https://github.com/chrisdavis90/
gec-prompting-public

GEC with large language models (LLMs). The
term ‘large language model’ is currently used to
refer to a variety of neural networks developed by a
number of organisations and businesses. These
models reached the mainstream media through
GPT-3 and ChatGPT, and as a result there is now
a widespread awareness of ‘generative AI’ – in
particular relating to text generation – amongst
the general public. OpenAI’s GPT∗ models fea-
ture in this paper, alongside others for comparison.
We have selected ten open-source and proprietary
LLMs for reasons described in Section 4.

Recent studies indicate that LLMs from Open-
AI can be prompted to generate corrected ver-
sions of ungrammatical inputs. Wu et al. (2023)
compares ChatGPT to Grammarly and GECToR
(Omelianchuk et al., 2020) on a sample of 100
sentences from the CoNLL-14 test set. Coyne
et al. (2023) compares GPT-3.5 and GPT-42 to
two GEC systems on English benchmarks (Ya-
sunaga et al., 2021; Liu et al., 2021), whilst Fang
et al. (2023) compare ChatGPT with multiple
baselines including TagGEC (Stahlberg and Ku-
mar, 2021) and T5 (Rothe et al., 2021). Finally
Loem et al. (2023) compare ChatGPT and GPT-
3.5 (text-davinci-003) with models trained
on synthetic data (Grundkiewicz and Junczys-
Dowmunt, 2019; Grundkiewicz et al., 2019).

Coyne et al. (2023); Fang et al. (2023); Loem
et al. (2023) all perform evaluation of English GEC
on some combination of the JFLEG, CoNLL-14
and W&I+LOCNESS test sets. They find that the
GPT∗ models set new state-of-the-art (SOTA) per-
formance on the JFLEG dataset in which the an-
notators were permitted to carry out naturalistic
fluency rewrites (Napoles et al., 2017). However,
they perform worse than SOTA on CoNLL-14 and
W&I+LOCNESS, which are much larger, more
popular datasets that were annotated on the basis
of minimal edit corrections. Coyne et al. (2023)
and Fang et al. (2023) found through further in-
vestigation that the GPT∗ models have a tendency
to over-correct and make extraneous fluency edits.
This explains why it is that they can score so highly
on JFLEG but not on minimal edit data. Loem
et al. (2023) meanwhile investigated the possibility
of prompting for minimal edits rather than fluency
rewrites, and obtained promising improvements
which motivate further work.

2Specifically the text-davinci-003 GPT-3.5 model,
and a GPT-4 model gpt-4-0314.
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Dataset Split # Tokens # Sentences

W&I+LOCNESS Dev 86,973 4,384
CoNLL-14 Test 30,144 1,312
JFLEG Dev 14,010 754

Test 14,096 747
FCE Dev 34,748 2,191

Test 41,932 2,695

W&I+LOCNESS Train 628,719 34,308
Sampled 18,386 1,000

FCE Train 454,736 28,350
Sampled 16,112 1,000

Table 1: Grammatical error correction datasets.

Both Wu et al. (2023) and Coyne et al. (2023)
additionally carried out human evaluation to rate
the output from each system and found a prefer-
ence amongst human raters for the GPT∗ outputs
because they were considered to be more fluent.
They also found instances of under-correction in
the reference sentences derived from human anno-
tators: in other words the LLMs were able to catch
and correct errors which had not been corrected by
the original annotators. These human evaluations
are tentative only, since they involve only small
samples of 100 sentences at a time from each test
set.

While more fluent corrections may be preferred
by human evaluators, they may not aid language
learners if they diverge too greatly from the orig-
inal text. Existing annotation guidelines for error
correction state that edits should be as minimal as
possible so that the learner can be helped to express
what they are trying to say, rather than told how
to express it differently (which may otherwise dis-
courage them); i.e. how to amend an error rather
than avoid it (Nicholls, 2003). Consequently, al-
though both minimal and fluent corrections may
be valuable to different user groups, we focus on
minimal corrections for educational applications in
this paper.

3 Datasets

We compare model performance on four pub-
licly available and well-known English language
GEC datasets: CoNLL-14 Test (Ng et al., 2014),
JFLEG Dev and Test (Napoles et al., 2017), FCE
Dev and Test (Yannakoudakis et al., 2011), and
W&I+LOCNESS Dev3 (Bryant et al., 2019). We
additionally sample 2,000 sentences uniformly
from FCE train and W&I+LOCNESS train to con-

3The test set for W&I+LOCNESS is not publicly available.

struct a development set in order to filter the set of
prompt templates. Table 1 presents the number of
sentences and tokens per dataset.

The CoNLL-14 test set contains 50 essays writ-
ten by undergraduate students at the National Uni-
versity of Singapore on one of two topics. It has
featured in multiple GEC studies, and new SOTA
performance was reported by Zhou et al. (2023) in
a recent paper describing decoding interventions.

JFLEG dev and test contain approximately 1.5k
sentences randomly sampled from essays by learn-
ers of English of unknown proficiency levels, and
corrected by crowdworkers. Annotators were per-
mitted to make fluency corrections to the sen-
tences: not just minimal edits for grammaticality.
Stahlberg and Kumar (2021) achieved the current
SOTA performance on JFLEG for a single system
with their guided approach to synthetic generation
of training data based on error type distributions
found in annotated corpora.

FCE dev and test feature essays written by inter-
mediate learners of English (CEFR levels B1 and
B2). It is a subset of the Cambridge Learner Cor-
pus and has also been used in multiple GEC studies.
Current SOTA was established by Yuan and Bryant
(2021) with a multi-encoder model which encodes
a given sentence and the preceding one separately,
integrating them in the decoder.

W&I+LOCNESS is a hybrid dataset made up
of native speaker essays written by undergraduate
students (LOCNESS; Granger (1998)) and essays
submitted to the Write&Improve learning platform
by learners of English at varying levels of profi-
ciency (W&I). It was prepared for the BEA 2019
Shared Task on GEC (Bryant et al., 2019), and
SOTA was achieved by Qorib et al. (2022) with
system combination across multiple GEC models.

Each dataset was processed with ERRANT (Fe-
lice et al., 2016; Bryant et al., 2017), an automatic
error annotation tool, in order to be standardised
into a common format. Consequently the datasets
are in tokenised M2 format, and we first need to
detokenise them as LLMs expect untokenised in-
puts. To carry out this task, we use the Moses
detokeniser4 and a rule-based heuristic to combine
negative contractions which are not fully handled
by the detokeniser5.

4https://github.com/luismsgomes/
mosestokenizer

5The detokeniser transforms token sequences such as
“couldn ’t” to “couldn’t” in a satisfactory manner but sequences
such as “could n’t” are missed.
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Name Prompt

MIN Make minimal changes to the following text such that it is grammatically correct. {text}
ELT† You are an English language teacher. A student has sent you the following text. \n{text}\nProvide a

grammatical correction for the text, making only necessary changes. Do not provide any additional
comments or explanations. If the input text is already correct, return it unchanged.

TOOL∗† You are a grammatical error correction tool. Your task is to correct the grammaticality and spelling in
the input sentence. Make the smallest possible change in order to make the sentence grammatically
correct. Change as few words as possible. Do not rephrase parts of the sentence that are already
grammatical. Do not change the meaning of the sentence by adding or removing information. If the
sentence is already grammatically correct, you should output the original sentence without changing
anything. \n\nInput sentence: {text}\nOutput sentence:

DN Please correct the following text. Do not attempt to rewrite it into perfect English or to interpret the
text. Often, things could be expressed better by paraphrase, but the task is to make minimal changes to
correct the text. Do not change anything that is correct. Please make no changes if there are no errors.

CYN† Reply with a corrected version of the input sentence with all grammatical and spelling errors fixed. If
there are no errors, reply with a copy of the original sentence.\n\nInput sentence: {text}\nCorrected
sentence:

CON This sentence is ungrammatical: {text}. I would correct the sentence with as few changes as possible
like this:

Table 2: The set of prompts used in zero- and few-shot settings. ∗There are two versions of the TOOL prompt: with
and without quotations around the {text}. † indicates prompts used in few-shot evaluation.

4 Models

We evaluate three commercial and seven open-
source LLMs. We include more open-source than
commercial models as we assume that the latter
will have a performance advantage and wish to in-
vestigate whether open-source models can perform
in comparable ways. If so, this would be posi-
tive news from an open-science perspective. For
the commercial LLMs, we include OpenAI’s GPT-
3.5-turbo and GPT-4 models (OpenAI, 2023), and
Cohere’s Command model.6 Many more are avail-
able but due to budget constraints we work only
with these three and we only evaluate GPT-4 in
the zero-shot setting. We choose not to work with
ChatGPT as it has been engineered to function as a
chatbot.

For the open-source models, we select
instruction-tuned models because the majority of
our prompt templates contain instructions, and we
evaluate the largest model from each model type
that fits on a server with two A100 80GB NVIDIA
GPUs. Our upper bound on model size relates to
the computing resources available to us at the time
of writing.

The open-source models are: OPT-IML-Max-
30B (Iyer et al., 2022), Llama-2-70B-chat (Touvron
et al., 2023), Stable Beluga 2 (Mahan et al.), Falcon-
40B-Instruct (Almazrouei et al., 2023), Flan-T5-
XXL (Chung et al., 2022), BLOOMZ-7B1 (Muen-
nighoff et al., 2022), InstructPalmyra-20B (Writer

6Both GPT-3.5-turbo and GPT-4 are the 0613 versions.
Cohere’s Command is “v1”.

Inc., 2023). This is a representative sample of the
models available, with a range of sizes and archi-
tectures. Approximate model sizes are given in
Table 7 in the Appendix. We use HuggingFace
(Wolf et al., 2020) to run the models and load them
with float16 precision.7

4.1 Prompting LLMs for grammatical error
correction

Prior work has shown that prompt format and word-
ing can have a significant impact on task perfor-
mance (Jiang et al., 2020; Shin et al., 2020; Schick
and Schütze, 2021). We therefore evaluate and
compare models across a selection of prompt tem-
plates (hereinafter prompts). In order to constrain
the scope of experiments, we carry out two filtering
and evaluation steps to construct and evaluate a set
of zero- and few-shot prompts as follows.

We collect eleven zero-shot prompts based on
a survey of NLP colleagues and related work.8

We first evaluate the zero-shot prompts with
each model on a development set of 2,000 sen-
tences sampled uniformly from the FCE and
W&I+LOCNESS training sets. From these results
we exclude four prompts with the lowest maximum
scores, leaving seven prompts to evaluate in the
zero-shot setting on the three development datasets:
FCE, JFLEG, and W&I+LOCNESS.9

7We use bfloat16 for Falcon-40B-instruct.
8We considered a wide set of prompts used in related work

but ultimately decided against their inclusion due to the esti-
mated difficulty in replication and time/budget constraints.

9Details are provided in Appendix D.
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We then select the 3 best-performing zero-shot
prompts and create few-shot versions using 1, 2,
3, and 4 examples – 12 few-shot prompts in total.
While related work samples few-shot examples, we
make the decision to use a fixed set and order of
examples to control the experimental parameters.
A dynamic set of few-shot examples would require
multiple samples per sentence in order to obtain a
clear view of few-shot performance for each model.
In addition, we evaluate models using the best per-
forming few-shot prompt from Coyne et al. (2023).

Table 2 lists the prompts we evaluate in zero-
and few-shot settings (see Appendix B for the com-
plete set). Briefly, prompts MIN and DN contain
general instructions to make minimal corrections,
prompt ELT uses an “English language teacher” ex-
pert, TOOL uses a “grammatical error correction
tool” expert, CYN is the prompt from Coyne et al.
(2023), and CON frames the GEC instruction as
a continuation. The set of few-shot examples are
listed in Appendix Table 9.

Generation hyper-parameters We use the fol-
lowing settings for all models – we set tempera-
ture to 0.1, top-K to 50, and top-P to 1.0. Pre-
liminary work has shown that lower temperature
values result in better GEC performance (Coyne
et al., 2023), and importantly, we want the model to
make minimal edits and stay as close as possible to
the original sentence. For some models the lowest
temperature is 0.1, and so we set the parameter to
this value to be constant across all models.

Evaluation As per the recommendations in
Bryant et al. (2023), we evaluate the FCE and W&I
corpus in terms of F0.5 using ERRANT (Bryant
et al., 2017), the CoNLL-2014 test set in terms of
F0.5 using the M2 scorer (Dahlmeier and Ng, 2012),
and the JFLEG corpus using GLEU (Napoles et al.,
2015).

Along with the open search space in prompt de-
sign, a practical question arises as to how much
time and effort to dedicate to implement a model-
or prompt-specific post-processing step to extract
the generated hypothesis sentence from the model
output. Due to the number and variety of models
and prompts, it’s possible that each model–prompt
combination will generate a different output format,
and clearly, the quality of the post-processing step
will impact evaluation measures. For all models,
we replace all new line tokens with blank spaces,
replace sequences of multiple spaces with a sin-

gle space, and remove all trailing quotation marks.
We also remove strings from the start and end of
sentences based on keyword matching – for exam-
ple, we remove “Output sentence: ”, “Corrected
sentence: ”, and “Input sentence: ” from the start
of sentences. The output from Llama-2-chat was
particularly noisy and required more rules – we
detail our processing steps in Appendix C.

5 Results

Table 3 presents the top-1 results for each model
on the development sets for the FCE, JFLEG and
W&I+LOCNESS. From the models we test, the re-
sults show GPT-4 scores highest on every develop-
ment dataset, though Stable Beluga 2 and GPT-3.5
Turbo obtain comparable performance to GPT-4 on
JFLEG. Amongst the open-source models, Falcon-
40B-Instruct and Stable Beluga 2 have relatively
high performance across the board, whilst Flan-T5
scores highly on FCE dev specifically.

Contrary to expectations set by previous work,
adding few-shot examples to the three zero-shot
prompts does not always lead to an improvement
in performance. Indeed for FCE dev, zero-shot
prompts perform best for most models. The pic-
ture is mixed for JFLEG dev, whilst the majority of
models benefit from few-shot learning for W&I dev.
It remains a matter for future work to investigate
whether more dynamic approaches to data sam-
pling (as opposed to a fixed selection of examples)
will aid with few-shot GEC prompting.

Table 5 shows the performance of each model
(except GPT-4) on the three test sets in our study:
FCE, JFLEG and CoNLL-14. We compare with
previous work on GEC with LLMs, and SOTA
results from GEC-specific systems in the litera-
ture. For FCE and JFLEG, we use the prompt
template that resulted in the best performance on
the corresponding development set. For example,
for GPT-3.5 Turbo on the FCE test set, we use
the ELT zero-shot prompt because it resulted in
the best performance on FCE dev. For CoNLL-14,
we do the same based on model performance for
W&I+LOCNESS dev.

Our LLM results are well short of SOTA per-
formance, established by task-specific supervised
models, for FCE test and CoNLL-14 test – the cor-
pora annotated in minimal edit fashion – whereas
the performance of GPT 3.5 Turbo is much closer
to the SOTA on JFLEG test. These findings rein-
force initial experiments by Coyne et al. (2023),
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FCEdev JFLEGdev W&Idev
Model F0.5 N Prompt GLEU N Prompt F0.5 N Prompt

BLOOMZ 0.349 3 CYN 0.456 2 CYN† 0.347 3 CYN
FLAN-T5 0.447 1 TOOL 0.463 1 TOOL 0.423 3 TOOL
InstructPalmyra 0.341 2 CYN 0.517 0 TOOL 0.374 2 CYN

OPT-IML 0.395 0 TOOL 0.506 2 CYN† 0.400 3 ELT
Falcon-40B-Instruct 0.425 2 TOOL 0.548 4 CYN 0.454 4 TOOL
Llama 2 0.323 0 TOOL 0.500 0 TOOL 0.359 0 TOOL
Stable Beluga 2 0.403 0 TOOL 0.563 0 CYN 0.447 0 TOOL

Command 0.353 0 TOOL 0.543 2 CYN† 0.391 0 TOOL
GPT-3.5 Turbo 0613 0.416 0 ELT 0.577 4 TOOL 0.439 1 TOOL
GPT-4 0613∗ 0.474 0 ELT 0.582 0 TOOL 0.510 0 TOOL

C: GPT 3.5 text-davinci-003 – – – 0.582 0 – – – –
C: GPT 3.5 text-davinci-003 – – – 0.590 2 – – – –
C: GPT-4 0314 – – – 0.601 0 – – – –
C: GPT-4 0314 – – – 0.600 2 – – – –

Table 3: Results on the FCE, JFLEG, and W&I dev sets, using the best prompt per model. “N” refers to the number
of few-shot examples. “Prompt” refers to the type of prompt instruction: TOOL is the GEC tool expert, ELT the
English Language Teacher expert, CYN refers to the prompt from Coyne et al. (2023) with our few-shot examples,
and CYN† indicates the template with their few-shot examples. Performance reported in previous work is shown in
the lower part of the table. C: refers to Coyne et al. (2023). GPT-4∗ was only evaluated in a zero-shot setting.

Model P R F0.5

BLOOMZ 0.475 0.169 0.349
FLAN-T5 0.615 0.213 0.447
InstructPalmyra 0.357 0.287 0.341
OPT-IML 0.559 0.182 0.395
Falcon-40B-Instruct 0.438 0.381 0.425
Llama 2 0.304 0.428 0.323
Stable Beluga 2 0.396 0.432 0.403
Command 0.356 0.342 0.353
GPT-3.5 Turbo 0613 0.398 0.504 0.416
GPT-4 0613 0.473 0.477 0.474

Table 4: Performance for models on the FCE develop-
ment set, using their best prompts – models ordered by
increasing size.

Fang et al. (2023) and Loem et al. (2023). It is
apparent that supervised GEC systems, trained on
each corpus, are best for minimal edit style correc-
tions, whereas LLMs generate SOTA fluency cor-
rections more similar to the style found in JFLEG.

We find that the four smallest models are biased
towards precision over recall, while the larger mod-
els are more balanced (Table 4). The GPT∗ models
have the best recall, which is a finding that deserves
further investigation in future work.

5.1 Error type analysis

We use ERRANT to obtain the grammatical er-
ror types found in the W&I+LOCNESS develop-
ment set – the largest development set we evalu-
ate. ERRANT can identify 55 error classes. Ta-
ble 6 presents F0.5 scores for the 18 most frequent
error types for the three best performing models:

Falcon-40B-Instruct, Stable Beluga 2, and GPT-3.5
Turbo. Performance for each error type is compa-
rable across the models, though GPT-3.5 Turbo is
notably better at replacement punctuation errors.

Generally, the LLMs excel at spelling, missing
determiners, replacement subject–verb agreement,
replacement noun number, and orthography errors,
while struggling on the open-class replacement of
nouns and verbs, and the catch-all “other” error
type. It seems that the LLMs perform better on mor-
phological or character-based corrections which are
not too distant from the original form, whereas lex-
ical or phrasal replacement within the minimal edit
paradigm are much more challenging.

6 Discussion

We set out to investigate the performance levels of
LLMs on the task of English GEC. Previous work
has shown that GPT∗ models could perform GEC
with mixed success: outdoing existing SOTA mod-
els on the JFLEG dataset, which contains fluency
corrections, whilst performing poorly on bench-
marks annotated with minimal edit corrections –
namely CoNLL-14, the FCE and W&I+LOCNESS
(Fang et al., 2023; Loem et al., 2023; Coyne et al.,
2023). We aimed to elicit minimal edit corrections
through exploration of different prompting strate-
gies, and evaluated models other than GPT∗ – in-
cluding more open-source than commercial LLMs.

Our findings echo those in previous papers: our
chosen LLMs perform well on JFLEG test – above

11957



FCEtest JFLEGtest CoNLL-14test

Model F0.5 N Prompt GLEU N Prompt F0.5 N Prompt

BLOOMZ 0.358 3 CYN 0.498 2 CYN† 0.405 3 CYN
FLAN-T5 0.463 1 TOOL 0.508 1 TOOL 0.397 3 TOOL
InstructPalmyra 0.396 2 CYN 0.572 0 TOOL 0.499 2 CYN

OPT-IML 0.400 0 TOOL 0.521 2 CYN† 0.396 3 ELT
Falcon-40b-Instruct 0.456 2 TOOL 0.602 4 CYN 0.560 4 TOOL
Llama 2 0.374 0 TOOL 0.560 0 TOOL 0.517 0 TOOL
Stable Beluga 2 0.454 0 TOOL 0.613 0 CYN 0.572 0 TOOL

Command 0.408 0 TOOL 0.592 2 CYN† 0.538 0 TOOL
GPT 3.5 Turbo 0613 0.442 0 ELT 0.625 4 TOOL 0.572 1 TOOL

F: GPT-3.5 Turbo – – – 0.614 0 – 0.517 0 –
F: GPT-3.5 Turbo – – – 0.597 1 – 0.531 1 –
F: GPT-3.5 Turbo – – – 0.635 3 – 0.532 3 –
F: GPT-3.5 Turbo – – – 0.625 5 – 0.528 5 –
L: GPT-3.5 text-davinci-003 – – – 0.670 16 – 0.570 16 –
L: GPT-3.5 text-davinci-003 – – – 0.693 64 – – – –
C: GPT-3.5 text-davinci-003 – – – 0.634 2 – – – –
C: GPT-4 0314 – – – 0.650 2 – – – –

Stahlberg and Kumar (2021) – 0.647 0.666
Yuan and Bryant (2021) 0.626 – 0.629
Zhou et al. (2023) – – 0.696

Table 5: Results on the FCE, JFLEG, and CoNLL-14 test sets. For each model and test set, we use the prompt that
results in the best performance on the corresponding dev set. CYN refers to the prompt from Coyne et al. (2023)
with our few-shot examples listed in Table 9, while CYN† indicates the prompt from Coyne et al. (2023) with their
few-shot examples. Performance reported for GPT∗ in previous work is shown in the middle part of the table, with
the number of few-shot examples where applicable. F: refers to Fang et al. (2023), L: to Loem et al. (2023), C: to
Coyne et al. (2023). The final section of the table shows SOTA performance by a single non-ensemble system for
each test set in the literature. The best scores in each table section are in bold.

all Falcon-40B-Instruct, Stable Beluga 2 and GPT-
3.5 – though not outdoing SOTA, possibly be-
cause our prompts were designed to discourage
fluency style corrections. Based on experiments
with JFLEG dev, GPT-4 might perform best on
JFLEG test, but full investigation of this question
requires additional funding as GPT-4 is currently an
order of magnitude more expensive than GPT-3.5
Turbo.

In contrast, the LLMs perform poorly on the
FCE and CoNLL-14 test sets, lagging far be-
hind SOTA in both cases. For these datasets,
open-source models outperform or compete with
the commercial models: the best performing
model is FLAN-T5 on the FCE, and Stable Bel-
uga 2 matches GPT 3.5 Turbo in the case of
CoNLL-14. Again, performance on the FCE and
W&I+LOCNESS dev sets suggests that GPT-4
could outperform the other LLMs on the test sets.

We narrowed down our initial 11 zero-shot
prompts to the 7 which performed best on a sample
of sentences from the FCE and W&I+LOCNESS
training sets. We created few-shot prompts from
the 3 best performing zero-shot prompts and var-
ied the number of examples from 1 to 4. The re-

sults for zero-shot versus few-shot learning do not
clearly show a best method for prompting. The
open-source models which perform best on the test
sets are FLAN-T5, Falcon-40B-Instruct, and Sta-
ble Beluga 2: of these, FLAN-T5 and Falcon-40B-
Instruct work best with few-shot learning, whereas
Stable Beluga 2 is best with a zero-shot prompt.
For GPT-3.5 Turbo, zero-shot is best for FCE test,
few-shot is best for JFLEG and CoNLL-14 test.

In terms of prompt wording, the TOOL and CYN

prompts are best for the three best open-source
models: FLAN-T5, Falcon-40B-Instruct, and Sta-
ble Beluga 2. For GPT-3.5 Turbo, the ELT prompt
is best for the FCE test set and the TOOL one is
best for JFLEG and CoNLL-14 test. Note that two
of the three best performing prompts are those in
which a role is clearly specified to the LLM – either
as an English language teacher or a grammatical
error correction tool (Table 2).

The fact that the other best performing prompt,
the one from Coyne et al. (2023), replicates the
strong results from that paper is evidence for con-
vergence around optimal prompt crafting. Further
exploration of the huge prompt search space is pos-
sible, but we show that the CYN prompt holds up

11958



Error Falcon GPT-3.5 StableB2

M:DET 0.643 0.620 0.638
M:OTHER 0.155 0.175 0.221
M:PREP 0.447 0.403 0.422
M:PUNCT 0.570 0.475 0.470
R:DET 0.375 0.353 0.362
R:MORPH 0.444 0.395 0.399
R:NOUN 0.291 0.261 0.284
R:NOUN:NUM 0.633 0.570 0.593
R:ORTH 0.597 0.609 0.589
R:OTHER 0.281 0.300 0.296
R:PREP 0.490 0.488 0.466
R:PUNCT 0.365 0.503 0.315
R:SPELL 0.781 0.769 0.761
R:VERB 0.219 0.253 0.258
R:VERB:FORM 0.552 0.486 0.454
R:VERB:SVA 0.641 0.571 0.611
R:VERB:TENSE 0.499 0.471 0.516
U:DET 0.530 0.555 0.554

Table 6: F0.5 for the 18 most frequent error types in the
W&I+LOCNESS development set, for the 3 best per-
forming models: Falcon-40B-Instruct, GPT-3.5 Turbo,
and Stable Beluga 2.

well against a set of alternatives, and can therefore
be considered a strong baseline for future GEC
experiments.

Another provision we make for replication in
future studies is to supply the list of examples we
used in few-shot learning (Table 9). This allows
others to use them for their own novel prompts,
while holding constant the nature of the examples.
Furthermore we believe that alternative methods
for sourcing few-shot examples could be explored
in future work, as discussed below.

Finally, we note that the comparison between
commercial and open-source LLMs is not entirely
even, as the former sit behind APIs and a black
box processing pipeline. We recognise that GPT-
3.5 Turbo shows great promise for English GEC,
at least for fluency corrections, but we also find
that several open-source models perform relatively
well – in fact better than GPT-3.5 on benchmarks
annotated with minimal edits. This is a boon for
open science, because models which researchers
can obtain and work with directly lead to greater
transparency in GEC and beyond.

7 Conclusion

We have shown that LLMs do not always out-
perform existing SOTA models for English GEC:
for minimal edit style datasets such as the FCE,
CoNLL-14 and W&I+LOCNESS, their perfor-
mance is far below that of supervised GEC systems.
We attempted to elicit minimal edit corrections

from LLMs through prompt crafting, but it may be
that LLMs are still biased towards fluency rewrites
as has been shown in previous work (Coyne et al.,
2023; Fang et al., 2023; Loem et al., 2023). This
is consistent with our finding, echoing that of oth-
ers, that LLMs perform best on JFLEG, which was
annotated with a fluency correction style.

We arrive at the following conclusions: (i) Su-
pervised models are still best for English GEC with
minimal edit corrections; (ii) Further explorations
of prompt crafting, few-shot learning, and dynamic
sampling are justified, as is work with open-source
models as opposed to commercial ones; (iii) Meth-
ods for improving LLM performance on specific
error types could be explored.

Other potential areas for future work include
document-level GEC and human evaluation of pro-
posed corrections. We worked with sentence-level
GEC, but this deviates from the greater amount of
essay context given to annotators. Document-level
GEC has been proposed and recommended in pre-
vious work (Yuan and Bryant, 2021; Coyne et al.,
2023). Exploratory work by Fang et al. (2023)
showed that ChatGPT could not perform document-
level GEC well, and speculated that it may not be
able to handle long inputs requiring “high levels
of coherence and consistency between sentences”.
We notice that LLMs are better at GEC on begin-
ner and intermediate texts, rather than advanced or
native-speaker ones (Appendix Table 13): further
investigation is needed on this matter.

Initial human evaluation studies suggest a pref-
erence for the corrections generated by LLMs over
the reference corrections contained in GEC cor-
pora (Coyne et al., 2023; Fang et al., 2023). It
may be that human raters prefer to read the more
fluent LLM-derived corrections but minimal edit
corrections are actually more helpful for language
learning since they are more faithful to the origi-
nal intended meaning of the writer. Investigating
learning benefits from receiving minimal edit gram-
matical feedback as opposed to fluency rewrites is
a matter for future work which will involve longitu-
dinal data collection, a focus on different feedback
styles, and tracking how learners respond.
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A Model sizes

Model Size

bloomz-7b1 7B
flan-t5-xxl 11B
InstructPalmyra-20b 20B
opt-iml-max-30b 30B
falcon-40b-instruct 40B
StableBeluga2 70B
Llama-2-70b-chat-hf 70B

Cohere Command –
OpenAI gpt-3.5-turbo-0613 –
OpenAI gpt-4-0613 –

Table 7: List of models and their approximate sizes.

B Prompt Templates

Table 8 includes the complete list of zero-shot
prompt templates used to perform GEC with
LLMs. While the majority of the models use
these templates, four models recommend a prede-
fined prompt format – we describe model-specific
prompts below. Table 9 contains the list of exam-
ples used in the few-shot prompts.

B.1 OpenAI GPT-∗
We use the OpenAI ChatCompletion endpoint that
formats prompts with separate System and User
messages. We adapt our prompts and put the in-
struction in the System message, and the learner
sentence with any “Input” tags in the User message.
For few-shot prompts, we format each example us-
ing separate User and Assistant messages, to mimic
a chat-history as context – see Table 10 for an ex-
ample.

B.2 Llama-2-chat
Llama-2-chat is trained with the following structure
for the first turn in chat applications:10

<s>[INST] <<SYS>>
{system_prompt}
<</SYS>>

{input} [/INST]

We insert the entire GEC instruction into the
system_prompt, and the learner sentence into
the input. Where a prompt template uses “In-
put:”/“Output:” tags, we append the output tags
after the final [\INST].

For the few-shot prompts, we follow the conver-
sational setup and include examples as:

10https://huggingface.co/blog/llama2#
how-to-prompt-llama-2

{input 1} [/INST] {hypothesis 1}
</s><s>[INST] {input 2} [/INST]

B.3 Stable Beluga 2
Stable Beluga 2 recommends structuring prompts
with System, User, and Response tags:
### System:
This is a system prompt, please behave
and help the user.

### User:
{input}

### Assistant:
{The output of Stable Beluga 2}

B.4 InstructPalmyra-20B
InstructPalmyra recommends the following prompt
format, including a preamble followed by Instruc-
tion, Input, and Response tags:
Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.
\n\n### Instruction:\n {instruction}
\n\n### Input:\n {input}\n\n### Response:

C Post-processing model output

For each model, we process the output with the
following rules:

1. Remove “Output sentence: ”, “Corrected sen-
tence: ”, and “Input sentence: ” from the start
of sentences.

2. Strip double-quotes.

3. If there is an odd number of quotations, we
remove trailing quotations.

4. For Llama 2, we search for and remove strings
from a keyword list (included in Table 11).

5. For Llama 2, we split model generations based
on the keyword list in Table 11.

6. For Falcon-40B-Instruct, we split model gen-
erations based on “Input sentence:” – this
mainly impacts the few-shot setting, where the
model tends to continue the few-shot pattern
and generate a novel learner sentence after the
correction.

D Filtering zero-shot prompts with a
sampled development set

We evaluated a long-list of eleven zero-shot
prompts with each model on a development set
of 2,000 sentences sampled uniformly from the

11963

https://huggingface.co/blog/llama2#how-to-prompt-llama-2
https://huggingface.co/blog/llama2#how-to-prompt-llama-2


Index Shorthand Prompt

1 . Correct the errors. Do not paraphrase.
2 . Grammar.
3 MIN Make minimal changes to the following text such that it is grammatically correct.
4 . You are an English language teacher. A student has sent you the following essay. \n{text}\nCorrect

the errors in the essay that will best help the student to learn from their mistakes.
5 ELT You are an English language teacher. A student has sent you the following text. \n{text}\nProvide a

grammatical correction for the text, making only necessary changes. Do not provide any additional
comments or explanations. If the input text is already correct, return it unchanged.

6 TOOL You are a grammatical error correction tool. Your task is to correct the grammaticality and spelling in
the input sentence. Make the smallest possible change in order to make the sentence grammatically
correct. Change as few words as possible. Do not rephrase parts of the sentence that are already
grammatical. Do not change the meaning of the sentence by adding or removing information. If the
sentence is already grammatically correct, you should output the original sentence without changing
anything. \n\nInput sentence: {text}\nOutput sentence:

7 TOOL You are a grammatical error correction tool. Your task is to correct the grammaticality and spelling in
the input sentence. Make the smallest possible change in order to make the sentence grammatically
correct. Change as few words as possible. Do not rephrase parts of the sentence that are already
grammatical. Do not change the meaning of the sentence by adding or removing information. If the
sentence is already grammatically correct, you should output the original sentence without changing
anything. \n\nInput sentence: “{text}”\nOutput sentence: “

8 DN Please correct the following text. Do not attempt to rewrite it into perfect English or to interpret the
text. Often, things could be expressed better by paraphrase, but the task is to make minimal changes
to correct the text. Do not change anything that is correct. Please make no changes if there are no
errors.

9 . Correct this to standard English:
10 CYN Reply with a corrected version of the input sentence with all grammatical and spelling errors fixed. If

there are no errors, reply with a copy of the original sentence.\n\nInput sentence: {text}\nCorrected
sentence:

11 CON This sentence is ungrammatical: {text}. I would correct the sentence with as few changes as possible
like this:

Table 8: Zero-shot prompts. The prompts without a shorthand were removed after the first evaluation phase on
2,000 trial sentences (Appendix D).

FCE and W&I+LOCNESS training sets. We re-
port F0.5 scores as calculated using the automatic
scorer in ERRANT. Table 12 presents the score for
the top-1 performing prompt for each model and
prompt-type.

We find Stable Beluga 2 and GPT-3.5 Turbo per-
form the best and obtain comparable performance
using different prompts: the former using the “GEC
tool” expert and the latter using the “English lan-
guage teacher”. Indeed, we observe that the two
expert prompts and the prompt from Coyne et al.
(2023) result in the best performance across the
models.

Figure 1a and 1b illustrate F0.5 scores for models
using the zero-shot prompts, evaluated on the sam-
pled development set. In the former, we can see
that Dolly-v2-12B stands out with particularly low
performance across all prompts. While in the latter,
we can see that prompts 2, 4, and 9 have the lowest
maximum scores. Additionally, prompts 4 and 5
are paired: they both use the “English language
teacher” expert template, but prompt 5 contains
more detailed instructions. It is clear from the plot
that the more detailed instructions tend to result in

higher performance.
From these results, we exclude zero-shot

prompts 1, 2, 4, and 9 from the final evaluation
due to their relatively low performance with every
model. We additionally exclude Dolly-v2-12B due
to its low performance across every prompt.
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Index Prompt

1 Input I love this sport. I look forward to the weakened, to go out with my bike and my group of friends.
Output I love this sport. I look forward to the weekend to go out with my bike and my group of friends.

2 Input Lucy Keyes was the last thriller I’ve seen.
Output Lucy Keyes was the last thriller I saw.

3 Input In the biggest cities around the world the traffic nonstop and increase every day.
Output In the biggest cities around the world, the traffic is nonstop and increasing every day.

4 Input Also, the satisfaction of the customers pushes me to work harder and be better at my job.
Output Also, the satisfaction of the customers pushes me to work harder and be better at my job.

Table 9: The list of examples used in few-shot prompts. For example, 3-shot prompts include examples, in order, 1,
2, and 3.

Type Message

System Reply with a corrected version of the input
sentence with all grammatical and spelling
errors fixed. If there are no errors, reply
with a copy of the original sentence.

User Input sentence: I think smoke should to be
ban in all restarants.

Assistant Corrected sentence: I think smoking should
be banned at all restaurants.

User Input sentence: We discussed about the
issu.

Assistant Corrected sentence: We discussed the issue.
User Input sentence: text

Table 10: Example formatting for a few-shot prompt
template with OpenAI’s Chat Completion endpoint.

E Results on the development sets

Table 4 shows precision, recall and F0.5 on the FCE
development set. We find that the four smallest
models have a bias towards precision over recall,
while the larger models are more balanced.

Figure 2 presents the scores for each model on
the FCE, JFLEG and W&I+LOCNESS develop-
ment sets with our seven zero–shot prompts. We
observe that InstructPalmyra and Stable Beluga 2
have much smaller variance in both zero- and few-
shot settings. On the other hand we observe high
variability with different prompts for OPT-IML and
Falcon-40B-Instruct. For most models, we observe
more consistent performance in the few-shot set-
tings.

Figure 3 presents the scores for each model
on the FCE development set with the prompts
CYN, ELT, TOOL in zero- and few-shot settings.
BLOOMZ, OPT-IML, and Falcon-40B-Instruct
stand out as particularly sensitive to the choice
of prompt – in particular, OPT-IML scores ∼0 F0.5

using the MIN, ELT, and DN prompts on each devel-
opment set.11

11OPT-IML generates empty hypotheses for the majority of
sentences with prompts MIN, ELT, and DN.

Start of sentence keyword list

"Sure! Here"
"Sure! The sentence"
"Here is a"
"Here’s a"

Truncation keyword list

"(No changes"
"Explanation:"
"(The corrections"
"(No correction"
"Corrections:"
"Is there anything"
"Here’s a list of"
"Here is a list of"
"The original sentence"
"(The original sentence"
"In the original sentence"
"(The sentence"
"(The only error in"
"(Changes made:"
"(The change made"
"(Note: "
"The main issue"
"The only change I made"
"I changed"
"I made.*changes"

Table 11: List of keywords used to clean generations
from LLama-2-chat.

E.1 Proficiency level analysis
We report performance on the W&I+LOCNESS de-
velopment set grouped by CEFR level in Table 13.
The majority of models perform relatively well on
A-level learner text (beginners), followed by inter-
mediate B-level text, English text written by native
speakers, and finally advanced learner C-level text.

Interestingly, BLOOMZ, FLAN-T5, and OPT-
IML perform best on native speaker text. A closer
inspection of the precision and recall results show
all of these models have a bias towards high preci-
sion and low recall.
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Model Prompt F0.5

BLOOMZ CYN 0.259
FLAN-T5 TOOL 0.398
InstructPalmyra ELT 0.349
OPT-IML TOOL 0.393
Falcon-40B-Instruct TOOL† 0.426
Llama 2 TOOL 0.349
Stable Beluga 2 TOOL† 0.436
Command CYN 0.330
GPT-3.5 Turbo 0613 ELT 0.434

Table 12: Top-1 performing zero-shot prompt for each
model on the sampled development set. Refer to Table 8
for the prompts. † indicates the prompt with quotations
around the input sentence.

Group A B C NS

BLOOMZ 0.349 0.328 0.328 0.396
Flan-T5 0.428 0.386 0.353 0.532
InstructPalmyra 0.408 0.375 0.280 0.388
OPT-IML 0.421 0.359 0.325 0.486
Falcon-40B-instruct† 0.487 0.465 0.373 0.434
Llama-2 0.412 0.380 0.273 0.315
StableBeluga2† 0.490 0.462 0.344 0.434
Command 0.440 0.400 0.284 0.376
GPT-3.5-turbo† 0.488 0.457 0.344 0.401
GPT-4 0.547 0.516 0.427 0.495

Table 13: F0.5 for for each proficiency level in the
W&I+LOCNESS development set. † indicates the top 3
performing models for the dataset: Falcon-40B-Instruct,
GPT-3.5 Turbo, and Stable Beluga 2. A = beginner
learner, B = intermediate, C = advanced, NS = native
speaker of English.

(a) Performance by model.

(b) Performance by prompt.

Figure 1: Performance of models using zero-shot
prompts on 2,000 sentences sampled uniformly from
the FCE and W&I training sets (1,000 sentences each).
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Figure 2: Performance per model and prompt on the FCE development set: F0.5 for each model with our seven
zero-shot prompts on the FCE, JFLEG and W&I+LOCNESS development sets. TOOL0 is prompt 6 in Table 8
(without quote marks); TOOL1 is prompt 7 (with quote marks).

Figure 3: Performance per model and prompt on the FCE development set: F0.5 for each model with the prompts
CYN, ELT, TOOL in zero- and few-shot settings. GPT-4 was only evaluated with zero-shot prompts due to budget
constraints.
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