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Abstract

The Spoken Language Understanding Evalua-
tion (SLUE) suite of benchmark tasks was re-
cently introduced to address the need for open
resources and benchmarking of complex spo-
ken language understanding (SLU) tasks, in-
cluding both classification and sequence gener-
ation tasks, on natural speech. The benchmark
has demonstrated preliminary success in using
pre-trained speech foundation models (SFM)
for these SLU tasks. However, the commu-
nity still lacks a fine-grained understanding of
the comparative utility of different SFMs. In-
spired by this, we ask: which SFMs offer the
most benefits for these complex SLU tasks,
and what is the most effective approach for
incorporating these SFMs? To answer this,
we perform an extensive evaluation of multi-
ple supervised and self-supervised SFMs using
several evaluation protocols: (i) frozen SFMs
with a lightweight prediction head, (ii) frozen
SFMs with a complex prediction head, and (iii)
fine-tuned SFMs with a lightweight prediction
head. Although the supervised SFMs are pre-
trained on much more speech recognition data
(with labels), they do not always outperform
self-supervised SFMs; the latter tend to per-
form at least as well as, and sometimes better
than, supervised SFMs, especially on the se-
quence generation tasks in SLUE. While there
is no universally optimal way of incorporating
SFMs, the complex prediction head gives the
best performance for most tasks, although it
increases the inference time. We also intro-
duce an open-source toolkit and performance
leaderboard, SLUE-PERB, for these tasks and
modeling strategies.

1 Introduction

Spoken language understanding (SLU) refers to
tasks that require extracting semantics from spoken
utterances. SLU systems have important applica-
tions, for example, in voice assistants and conversa-
tional agents, and have attracted increasing interest

in recent years (Yu et al., 2019; Coucke et al., 2018).
SLU encompasses a wide range of tasks, such as
predicting intents and slots (Lugosch et al., 2019;
Bastianelli et al., 2020; Saade et al., 2018), recog-
nizing entity mentions and labels (Bastianelli et al.,
2020; Del Rio et al., 2021), detecting the speaker’s
sentiment (Busso et al., 2008) and modeling the
topic of a spoken dialogue (Ortega and Vu, 2018;
Stolcke et al., 2000). More recently, there has been
significant interest in tackling more complex tasks
like question answering (Li et al., 2018; Shon et al.,
2023) or summarization (Sharma et al., 2022).

The Spoken Language Understanding Evalua-
tion (SLUE) (Shon et al., 2022, 2023) suite of
benchmark tasks was recently proposed to address
the lack of sufficiently complex and varied tasks
on natural (rather than synthetic or read) speech
from public datasets. SLUE uses annotated nat-
ural speech from conversations and monologues
and includes both classification and sequence gen-
eration tasks. Traditional SLU models use a
pipeline (Palmer and Ostendorf, 2001; Horlock
and King, 2003; Béchet et al., 2004) of an auto-
matic speech recognition (ASR) system followed
by a natural language understanding (NLU) system.
End-to-end (E2E) SLU systems (Arora et al., 2022;
Ghannay et al., 2018) have also been explored to
mitigate the impact of error propagation observed
in pipeline approaches and take advantage of the
information in the audio signal beyond the word
content.

A recent trend in E2E models has been the use of
pre-trained speech foundation models (SFM) (Mo-
hamed et al., 2022; Chen et al., 2021b; Hsu
et al., 2021; Radford et al., 2022; Peng et al.,
2023b) that can learn useful representations for
a large number of tasks. Due to the increasing
diversity of models, benchmarks are important to
compare the performance of SFMs on multiple
downstream tasks. Performance benchmarks like
SUPERB (Speech processing Universal PERfor-
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mance Benchmark) (Yang et al., 2021) have fa-
cilitated standardized comparison of pre-trained
SFMs across a diverse range of speech-processing
tasks. However, such benchmarks lack coverage
of challenging and realistic SLU tasks. Hence, the
community lacks a fine-grained understanding of
the relative merits of different SFMs and different
ways to use them for downstream SLU tasks.

Motivated by these shortcomings, we introduce
SLUE-PERB (Spoken Language Understanding
Evaluation PERformance Benchmark), specifically
designed to evaluate representations extracted from
pre-trained SFMs on complex SLU tasks. We
use this benchmark to answer two main ques-
tions: (i) which SFMs are most useful for these
tasks, and (ii) how do different ways of using these
SFMs, varying in their compute budget, compare.
Our study addresses various questions concerning
SLU systems, such as whether supervised SFMs
are more beneficial than self-supervised SFMs,
whether SFMs are effective as frozen feature extrac-
tors or should be fine-tuned on downstream tasks,
and whether the complexity of prediction heads
affects the performance trends.

We conduct a comprehensive analysis by exam-
ining three types of SFMs: (i) self-supervised learn-
ing (SSL) speech models (Baevski et al., 2020; Hsu
et al., 2021; Chen et al., 2021b) trained on unla-
beled speech data; (ii) (weakly) supervised ASR
(and speech translation) models (Radford et al.,
2022; Peng et al., 2023b) pre-trained on large la-
beled corpora; and (iii) supervised SLU models pre-
trained on external SLU corpora (Chen et al., 2020;
Bastianelli et al., 2020). Our extensive experiments
are performed on the SLUE benchmark (Shon et al.,
2022, 2023), which provides curated data for Sen-
timent Analysis (SA), Named Entity Recognition
(NER), Named Entity Localization (NEL), Dia-
logue Act Classification (DAC), Question Answer-
ing (QA) and Summarization (SUMM). The key
contributions are:

• We compare representations extracted from
various pre-trained SFMs across all SLUE
tasks. Our experiments reveal that pre-trained
ASR SFMs excel in classification tasks, while
SSL SFMs either outperform or perform com-
parably to supervised ASR SFMs in sequence
generation tasks.

• We evaluate different modeling strategies and
find that the performance improves, and the

performance gap between different SFMs re-
duces, as we increase the prediction head size
or fine-tune the pre-trained SFMs instead of
using frozen representations.

• While no single method is universally optimal
for all tasks, employing a complex prediction
head is the best performing strategy for most
tasks when inference speed is not a limiting
factor. On the other hand, fine-tuned SFMs
with a lightweight prediction head are a good
option if latency is a concern.

• We release our code publicly so that re-
searchers can easily reproduce our results and
test their own pre-trained SFMs.

2 Related Work

2.1 Pre-trained speech foundation models

The earliest self-supervised speech model, pre-
trained on large amounts of unlabeled data, to
show improvements in large-scale ASR was
wav2vec (Schneider et al., 2019). Since then, the
community has developed a variety of pre-trained
self-supervised SFMs (Mohamed et al., 2022) and
their representations have been successfully incor-
porated into task-specific models spanning many
applications.

Recently, supervised SFMs pre-trained on large
amounts of paired or weakly paired speech-text
data have gained in popularity. Studies (Arora
et al., 2023a,b) have shown that these supervised
SFMs can be fine-tuned to achieve state-of-the-
art (SOTA) performance on certain downstream
tasks. But it remains to be seen how supervised pre-
training compares with self-supervised SFMs on
complex language understanding tasks like those
in SLUE.

The few studies so far on SFMs for SLU (Yang
et al., 2021; Shon et al., 2022, 2023; Wu et al., 2023;
Chien et al., 2023; Chou et al., 2023) focus on only
selected SLU tasks, a single pre-trained SFM, or
simpler SLU tasks. With SLUE-PERB, we aim to
fill this knowledge gap by studying the applicability
of different types of SFMs and modeling strategies
on a variety of SLU tasks.

2.2 Performance benchmarks

Performance benchmarks have been widely used
to study performance on downstream tasks and
the information encoded in SFMs. Among them,
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Dataset Speaking Style
Size (hours)

Tasks Output Metric
Train Dev Test

SLUE-VoxCeleb Conversational 12.8 2.1 9.0
SA∗ sentiment class F1
ASR† text transcript WER

SLUE-VoxPopuli Orated Speech 14.5 5.0 4.9
NER† (entity phrase, entity tag) pairs Label F1, F1
NEL§ (entity start time, entity end time) pairs Frame F1
ASR† text transcript WER

SLUE-HVB Scripted conversation 6.8 1.0 3.6 DAC∗ dialogue act classes F1

SLUE-SQA-5 Read speech 244.0 21.2 25.8 QA§ (answer start time, answer end time) Frame F1

SLUE-TED Orated Speech 664.0 81.0 84.0 SUMM† text summary ROUGE-L,
BERTScore

∗: Classification, †: Sequence generation, §: Temporal Alignment

Table 1: Overview of the datasets (Shon et al., 2022, 2023) and tasks in SLUE-PERB. "WER" = "word error rate."

SUPERB (Yang et al., 2021) is a popular bench-
mark developed for SSL SFMs. It includes a vari-
ety of downstream tasks from speech recognition,
speaker recognition, emotion recognition, to simple
SLU tasks like intent classification and slot filling.
It uses a shared evaluation protocol, combining a
frozen SFM with a lightweight prediction head for
each task. Extensions of the benchmark to differ-
ent languages (LeBenchmark, IndicSUPERB, ML-
SUPERB (Parcollet et al., 2023; Javed et al., 2023;
Shi et al., 2023)), modalities (AV-SUPERB (Tseng
et al., 2023)), and tasks (SUPERB-SG (Tsai et al.,
2022)) have been proposed.

Though such benchmarks have tremendous
value, they lack coverage of challenging and prac-
tical SLU tasks. Motivated by this, SLUE (Shon
et al., 2022, 2023) was proposed to focus on more
challenging SLU tasks on freely available anno-
tated natural speech datasets, including conversa-
tional or long-discourse speech, as shown in Tab. 1.
However, the original SLUE tasks do not have a
standardized evaluation protocol with an interface
to a benchmark. Additionally, SLUE primarily
aimed to compare various pipeline and E2E SLU
systems rather than analyze the comparative effi-
cacy of different SFMs. To address these issues, we
introduce SLUE-PERB, which exhaustively eval-
uates various pre-trained SFMs across different
evaluation settings on these complex SLU tasks.

3 The SLUE-PERB benchmark

SLUE-PERB is an open-source testbed for evaluat-
ing SFMs on SLU tasks.

3.1 Tasks

Our benchmark currently focuses on the datasets
from SLUE (Shon et al., 2022) and SLUE Phase-
2 (Shon et al., 2023). We provide support for 6

SLUE tasks, shown in Tab. 1. SA is an utterance-
level classification task of identifying the sentiment
of an utterance. NER is a sequence prediction task
of detecting the named entities and labeling their
tags in a spoken utterance. NEL involves locat-
ing the entities, i.e., predicting the start and end
timestamps of any entity in the audio. DAC is an
utterance-level multi-label, multi-class classifica-
tion task that identifies the function(s) of an utter-
ance in a spoken conversation, such as a statement,
a question, etc. QA involves locating the answer
(i.e. predicting the start and end timestamps) in a
spoken document given a spoken question. SUMM
is a sequence prediction task that involves generat-
ing a text summary of a long speech input. Sec. A.2
in the Appendix provides additional dataset details.

3.2 Pre-trained speech foundation models

We experiment with the following three types of
pre-trained SFMs, summarised in Tab. 2, with ad-
ditional details in Sec. A.1 in the Appendix.
Self-supervised SFMs: To incorporate SSL SFMs,
we follow prior work (Yang et al., 2021) and use a
weighted sum of the hidden layer representations
of SSL encoder to generate speech representations.
Supervised ASR SFMs: We use representations
derived from the hidden layers of the encoder of
supervised encoder-decoder ASR SFMs. The use
of the encoder alone makes the comparisons with
SSL-based encoders more straightforward, and also
follows the practice of prior work using supervised
ASR SFMs for other downstream tasks (Gong et al.,
2023). However, in future work, we plan to study
the use of the pre-trained decoder as well.
Supervised SLU SFMs: Since most SLU tasks
have limited labeled data, our benchmark also eval-
uates the impact of pre-training using an exter-
nal SLU corpus. As in the case of supervised
ASR models, we use the encoder of the pre-trained
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Type Speech Foundation Model Architecture Model size Dataset (size in hours) Objective

SSL
Wav2Vec2 (large) (Baevski et al.) 7-Conv 24-Trans 317.4M LibriLight 60k (60k) contrastive

HuBERT (large) (Hsu et al.) 7-Conv 24-Trans 316.6M LibriLight 60k (60k) masked prediction
WavLM (large) (Chen et al.) 7-Conv 24-Trans 315.5M Mix 94k (94k) masked prediction

+ de-noising

ASR
Whisper (med.) (Radford et al.) 2-Conv 24-Trans 315.7M Web data (680k) ASR, ST

OWSM (3.1) (Peng et al.) 2-Conv 18-Branch 560.8M Open-source ASR + ST
data (180k)

ASR, ST

SLU
SWBD Sentiment (Arora et al.) 2-Conv 12-Conf 82.2M SWBD Sentiment (260) SLU

SLURP (Arora et al.) 2-Conv 12-Conf 83.2M SLURP (58) SLU

Table 2: Summary of the encoder of self-supervised and supervised pre-trained SFMs used in this work. The Mix
94k dataset is a mixture of LibriLight 60k (Kahn et al., 2020), GigaSpeech 10k (Chen et al., 2021a), and VoxPopuli
24k (Wang et al., 2021).

model to extract speech representations. For SLU
SFMs, we choose pre-training SLU corpora de-
signed for the same task as the target SLU data.
Hence, we use SLU model pre-trained on the
SWBD Sentiment dataset for the SA task and SLU
model pre-trained on SLURP for all other tasks.

3.3 Evaluation Protocols

This section provides a high-level overview of the
various prediction heads and approaches for lever-
aging SFMs investigated in this study. We consis-
tently employ a learned weighted sum of hidden
layers of SFMs to generate speech representations
across all 3 approaches. Further details about the
evaluation setup are in Sec. 4.
Lightweight prediction head: We first experiment
with using a similar evaluation protocol to SU-
PERB, where the pre-trained SFM is kept frozen,
with a lightweight prediction head learned on top of
it to perform classification or sequence generation.
Depending on the task, this lightweight prediction
head usually consists of a classification layer or a
shallow encoder with CTC. As in SUPERB, we use
weighted combinations of hidden layer activations
as the input to the classifier or encoder. This evalua-
tion protocol not only facilitates quick comparison
of various SFMs but also promotes the develop-
ment of models capable of performing well across
multiple tasks without the need for task-specific
fine-tuning. Unlike SUPERB, SLUE-PERB does
not restrict its evaluation solely to SSL SFMs.
Fine-tuned representations: Another popular
paradigm for incorporating pre-trained SFMs is
fine-tuning the SFMs along with a lightweight pre-
diction head. While there are multiple approaches
to fine-tune SFMs, including parameter-efficient
approaches like LoRA (Hu et al., 2022), full fine-
tuning has been most commonly used in prior

works (Ott et al., 2019; Shon et al., 2022). However,
this approach significantly increases the computa-
tion cost during fine-tuning, which might make
it challenging to use in scenarios with a limited
computation budget.
Complex prediction head: Motivated by prior
works (Zaiem et al., 2023b,a) that show a change in
benchmark results with a change in prediction head
architectures, we investigate increasing the com-
plexity of the prediction head while keeping the
SFMs frozen. In this protocol, we experiment with
a “prediction head” based on an encoder-decoder
architecture. The input to this prediction head is
a sequence of pre-trained speech representations
and the output is a sequence of text tokens denot-
ing the SLU label sequence. While this setting
does increase inference time, it serves as a middle
ground between the “Lightweight prediction head”
and “Fine-tuned representations” settings in terms
of the number of trainable parameters and has been
used in prior works on SLU (Arora et al., 2022).

4 Experiments

We conduct our analysis by examining various
SFMs as introduced in Tab. 2. Training hyper-
parameters are selected based on validation perfor-
mance. More details can be found in Sec. A.3 in
the Appendix. All our models and config files will
be publicly available upon acceptance of the paper.
Lightweight prediction head: For the SA task, we
mean-pool the extracted features from the SFMs
across time, and then pass the pooled representation
through a linear layer to compute the probability
for each sentiment class. The lightweight classifica-
tion layers are trained using cross-entropy loss. In
the case of DAC, we follow a similar procedure of
mean-pooling followed by a linear layer. As this is
a multi-label classification task, we use a sigmoid
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Evaluation Pre-Trained SLUE-VoxCeleb SLUE-VoxPopuli SQA-5 SLUE-TED SLUE-HVB

Protocol Model SA ASR NER ASR NEL QA SUMM DAC
F1 ↑ WER ↓ Label F1 ↑ F1 ↑ WER ↓ Frame F1 ↑ Frame F1 ↑ ROUGE-L ↑ BERTScore ↑ F1 ↑

Lightweight
HuBERT (large) 41.0 19.0 76.5 59.3 14.2 67.7 12.0 ✗ ✗ 48.0

Wav2Vec2 (large) 40.6 21.7 73.6 57.5 16.0 64.1 6.0 ✗ ✗ 51.2

prediction
WavLM (large) 43.3 14.1 80.6 64.5 10.4 72.0 17.4 ✗ ✗ 54.6

Whisper (medium) 49.6 15.0 79.6 63.1 12.5 71.8 0.1 ✗ ✗ 59.7

head
OWSM (3.1) 47.2 17.4 78.4 61.7 12.8 70.5 14.0 ✗ ✗ 66.3

Pre-trained SLU 36.4 47.5 60.8 45.5 39.1 47.8 2.0 ✗ ✗ 54.4

Complex
HuBERT (large) 52.2 15.5 78.5 63.1 13.0 69.8 21.4 16.0 83.4 66.1

Wav2Vec2 (large) 53.3 17.2 78.2 63.7 14.0 71.2 18.8 16.2 83.0 65.8

prediction
WavLM (large) 52.0 11.4 82.7 69.7 10.1 72.6 22.5 16.4 83.0 67.4

Whisper (medium) 51.0 14.9 79.2 64.1 13.2 70.1 1.6 16.0 83.8 67.8

head
OWSM (3.1) 52.8 16.5 79.6 66.0 12.6 68.6 20.3 16.5 83.6 69.4

Pre-trained SLU 49.7 36.4 68.7 54.8 28.5 54.4 3.2 15.4 82.9 66.3

Fine-tuning
HuBERT (large) 46.5 14.8 78.8 62.6 12.0 69.4 ✗ ✗ ✗ 72.7

Wav2Vec2 (large) 45.0 14.7 78.2 62.9 11.7 68.6 ✗ ✗ ✗ 71.3
WavLM (large) 47.9 12.1 82.5 66.3 9.7 71.7 ✗ ✗ ✗ 71.5

representations
Whisper (medium) 51.8 20.5 76.9 59.8 18.2 56.6 ✗ ✗ ✗ 69.8

OWSM (3.1) 47.8 15.0 78.5 61.5 14.3 65.1 ✗ ✗ ✗ 72.1
Pre-trained SLU 46.1 34.6 60.8 47.6 37.1 49.1 ✗ ✗ ✗ 68.7

Table 3: Performance of various SSL, supervised ASR, and SLU representations on the test set of SLUE tasks using
various evaluation protocols in SLUE-PERB. The symbol ✗ indicates that the results were not computed, either due
to the inability to perform summarization without a decoder or because fine-tuning representations on SQA-5 and
SLUE-TED corpora is not feasible within our computational budget.

activation to compute the probability for each dia-
logue class and train the linear layer using binary
cross entropy loss. During inference, classes with a
probability greater than 0.5 are considered positive.

For sequence prediction and temporal alignment
tasks like ASR, NER, NEL and QA, we pass the ex-
tracted features through a shallow encoder trained
with CTC loss. NER and ASR models use a 2-
layer conformer encoder as the prediction head
and follow a similar input-output formulation as
in Peng et al. (2023a). For NEL, following Shon
et al. (2023), we perform greedy CTC decoding on
the NER model to obtain frame-level alignments,
which are used to get entity start and end time-
stamps. For the QA task, the input to the model
is the concatenation of the question and document
audio, and the output is the concatenation of the
question and document transcript where the answer
is delimited by a special character (See Sec. A.3).
Since QA involves more complex language under-
standing, we use a 4-layer conformer encoder1 and
again get timestamps using greedy CTC decoding.
We experimented with encoder-only CTC training
for SUMM as well but found that coherent sum-
maries cannot be produced without a decoder and,
hence, we do not report results with a lightweight
prediction head for SUMM.
Complex prediction head: The complex predic-
tion head is an encoder-decoder architecture con-
sisting of a 12-layer conformer encoder and a 6-
layer transformer decoder, which takes as input the

12-layer conformer encoder achieved poor performance

weighted sum of representations from pre-trained
speech models and outputs the SLU label sequence.
For classification tasks, the SLU label sequence
comprises the ASR transcript concatenated after
the SLU class label, following prior work (Arora
et al., 2022). The SLU label sequences for se-
quence generation and temporal alignment tasks
are identical to those in the "lightweight prediction
head". For the SUMM task, the TED talks are too
long to fit in a GPU, and prior work (Sharma et al.,
2023) has shown that very little performance is lost
by using only the first 30 seconds of input audio
in the SLUE-TED dataset.2 Hence, we truncate
all the audios to 30 seconds since the TED talks
were too long to fit in a GPU. Since we experiment
with various SFMs using the same setup (i.e. using
only 30-second input), we believe it is a fair com-
parison for gaining insights into the relative utility
of various SFMs. Our approach can be extended
to use more than 30 seconds of input by devel-
oping additional strategies to deal with long-form
inputs, which will be an interesting future direction.
We follow prior works (Shon et al., 2023) to first
pre-train the model for ASR on the TEDLIUM-3
corpus, and then train the model for summarization
on the SLUE-TED dataset.
Fine-tuned representations: The prediction head

2This may be partly attributed to the dataset characteristics,
where both the audio and ground truth summaries are sourced
from TED talks. Upon manual inspection, we observe that the
summaries often serve as an introduction to the talk, and the
key information in the talk summary is often found within the
first 30 seconds.
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Figure 1: Performance of various SSL SFMs with a
lightweight prediction head on SLUE tasks.
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Figure 2: Performance of various supervised ASR SFMs
with a lightweight prediction head on SLUE tasks.

architecture and model inputs/outputs are identical
to those of the "lightweight prediction head" setup
for all the tasks. We omit the QA and SUMM tasks
in this setting, as fine-tuning representations on the
SQA-5 and SLUE-TED corpora is too computa-
tionally expensive.

5 Results

In this section, we analyze the performance of vari-
ous SFMs on our performance leaderboard SLUE-
PERB, as detailed in Sec. 3. This analysis provides
insights into the types of SFMs that prove most
effective for complex understanding tasks and how
this trend varies across tasks and modeling settings.
Figs. 1-7 summarize our results. In all figures, bars
with sparse stripes correspond to the “lightweight
prediction head” setting, dense striped bars corre-
spond to “complex prediction head”, and solid bars
correspond to “fine-tuned representations". Test
and development set results for all experiments are
shown in Tabs. 3 and 5 (in the Appendix) respec-
tively.

5.1 Lightweight prediction head

What is the best SSL SFM for SLU? We first
compare SSL SFMs using the “lightweight predic-
tion head” evaluation protocol (Sec. 3.3) in Fig. 1.
We observe that among all SSL models, WavLM
features consistently demonstrate superior perfor-
mance across all tasks, probably since it was pre-
trained on larger and more diverse corpora (see
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Figure 3: Performance of best performing SSL and ASR
SFMs with a lightweight prediction head on SLUE tasks.
The label for each bar is the specific SFM chosen.
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Figure 4: ASR performance of SFMs with a lightweight
prediction head on VoxCeleb and VoxPopuli datasets.

Tab. 2). We further observe that HuBERT features
outperform Wav2Vec2 on all tasks except DAC.
Prior work (Yang et al., 2021) has also noted the
superior performance of WavLM and HuBERT’s
representations.
What is the best supervised SFM for SLU?
Fig. 2 compares models that use supervised ASR
SFMs and are trained with lightweight prediction
heads. Our results show that while OWSM is
slightly worse than Whisper on SA, NER, and
NEL tasks, it significantly outperforms Whisper
for DAC and QA. As shown in Tab. 2, the two mod-
els differ in encoder architecture (branchformer
in OWSM (Peng et al., 2024b) vs. transformer
in Whisper (Radford et al., 2022)), training ob-
jective (joint Connectionist Temporal Classifica-
tion (CTC) loss in OWSM (Peng et al., 2024b)),
and pre-training data, which may contribute to the
difference in their downstream performance. No-
tably, Whisper performs significantly worse on QA.
This may result from Whisper’s pre-training on 30-
second speech segments, while the input audios
for QA tasks are typically longer than 30 seconds.
While OWSM is also pre-trained on 30 second seg-
ments, our results show that Whisper representa-
tions particularly struggle to perform well on longer
utterances; we discuss this further in Sec. A.3.
SSL vs. supervised SFMs for SLU: Fig. 3 reports
the performance of the best performing SSL and
ASR SFMs using a lightweight prediction head.
We can observe that supervised ASR SFMs ex-
hibit the best performance on the classification
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tasks. The label for each bar is the specific SFM chosen. 1

Sentiment  
Analysis 

(F1↑)

Named Entity 
Recognition 

(F1↑)

Named Entity 
Localization 
(Frame F1↑)

Dialogue Act 
Classification 

(F1↑)

72.1
65.161.5

51.8

72.771.7
66.3

47.9

SSL ASR

WavLM Whisper

WavLM OWSM
WavLM

OWSM
OWSMHuBERT

Figure 6: Performance of best performing SSL and ASR
SFMs with fine-tuned representations on SLUE tasks.
The label for each bar is the specific SFM chosen.

tasks (SA, DAC). Meanwhile, SSL SFMs, WavLM,
demonstrate strong performance on temporal align-
ment and sequence generation tasks, comparable
to or better than supervised ASR SFMs. Since SSL
SFMs have an encoder-only architecture, the SLU
tasks could leverage all the information learned dur-
ing pre-training as we use the representations from
all encoder layers. Supervised SFMs, on the other
hand, employ an encoder-decoder architecture and
may also retain semantic information within their
decoder, which is not used for feature extraction
in our experiments. We anticipate that SLU tasks
could benefit from integrating the pre-trained de-
coder of supervised SFMs , although we leave this
exploration to future work.

Additionally, Tab. 3 shows that the supervised
SLU SFMs consistently underperform across all
tasks, probably due to their much smaller pre-
training data. However, they are comparable to
SSL SFMs on DAC. This result may be attributed
to the scripted nature of conversations in DAC, that
resemble the scripted recordings in the SLURP data
used for pre-training our SLU model.

We also report the ASR performance for the
SLUE Phase-1 datasets in Fig. 4. Surprisingly,
we observe that features extracted from supervised
ASR SFMs exhibit worse WER than an SSL SFM,
namely WavLM. As in sequence generation tasks,
we speculate that this may be attributed to the use
of representations from the encoder layers alone.

5.2 Do performance trends change with
different modeling strategies?

Complex prediction head: Tab. 3 and Fig. 5 show
the performance trends of models with a complex
prediction head. We observe that the trends re-
main similar to the setting with simple prediction
heads, where WavLM features consistently achieve
the best performance across most tasks. Among
supervised ASR SFMs, OWSM now outperforms
Whisper on most tasks. SSL SFMs demonstrate
slight superiority on most temporal alignment and
sequence generation tasks, while supervised ASR
SFMs excel on classification tasks (Fig. 5). We
note a reduction in the performance gap between
different SFMs compared to the lightweight pre-
diction head setting. For example, all models now
exhibit very similar performance on the SA task.
Similarly for SUMM, the performance of all mod-
els is very close, but the models that use supervised
ASR SFMs are slightly better, reinforcing prior
work showing the benefits of ASR pre-training for
SUMM (Sharma et al., 2023).
Fine-tuned representations: Similarly to the
trends with frozen representations, Tab. 3 and Fig. 6
demonstrate that WavLM features continue to ex-
hibit superior performance among SSL representa-
tions, while OWSM performs better than Whisper
when we fine-tune SFMs. Additionally, Fig. 6 illus-
trates that even with complete fine-tuning of SFMs,
SSL SFMs (WavLM) still performs optimally on
sequence generation and temporal alignment tasks,
whereas supervised ASR SFMs perform better or
equally well on classification tasks.

6 Discussion

6.1 Is there an overall best model?

When comparing the performance between
lightweight and complex prediction heads (refer
to Figs. 3 and 5), we notice an improvement in per-
formance across all SFMs and tasks. Upon closer
examination, it becomes evident that the perfor-
mance improvement is more pronounced for the
SSL SFMs compared to supervised ASR SFMs on
classification tasks, resulting in an overall decrease
in the performance gap.

When comparing performance of frozen and fine-
tuned representations under the lightweight predic-
tion head protocol (Figs. 3 and 6), we generally
observe an improvement in performance across all
SFMs and tasks. However, a notable exception is
observed with the supervised ASR SFMs, which
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perform worse on the NER and NEL tasks. This
discrepancy may be attributed to the presence of
an excessive number of trainable parameters, es-
pecially for the OWSM model, when the entire
supervised ASR encoder is fine-tuned.

We further compare the performance achieved
by frozen representations with a complex predic-
tion head (Fig. 5) against fine-tuned representations
with a lightweight prediction head (Fig. 6). In-
terestingly, complex prediction heads demonstrate
superior performance compared to fine-tuned rep-
resentations across most tasks. However, for the
DAC task, fine-tuning a pre-trained encoder yields
better results across all SFMs.

Overall, our findings indicate that there is no
universal optimal method for incorporating pre-
trained SFMs across all tasks. When we take both
SFMs and prediction heads into consideration, the
optimal SFMs and method of incorporating them is
task-dependent for our complex SLU tasks. This is
in contrast to some prior works (Yang et al., 2021),
where a single model, WavLM, emerged as the
universal best performing model.

6.2 Performance-compute tradeoffs

We also compare the training and inference effi-
ciency of using a complex prediction head and fine-
tuned representations, both of which outperform
frozen representations with a lightweight predic-
tion head. Models with a complex prediction head
offer overall better performance, as well as greater
training efficiency due to their significantly fewer
trainable parameters (Tab. 6 in Appendix). How-
ever, it’s important to note that the use of complex
prediction heads leads to a substantial increase in
inference time compared to simple prediction heads
(> 2.5x for all tasks). In summary, employing a

complex prediction head is, in general, better when
inference speed is not a bottleneck. On the other
hand, if latency is a concern, fine-tuned represen-
tations with a lightweight prediction head serve
as a good option, enhancing performance without
compromising on inference time.

6.3 Training data tradeoffs

The SLUE benchmark comprises datasets with
varying amounts of training data, which enables us
to consider the effects of both low-resource settings
and scenarios where we have sufficient labeled data
(> 200 hours). We observe certain trends in the
utility of SFMs for lower- vs. higher-resource tasks
in Table 3. For example, the DAC task, with only
7 hours of training data, has the smallest training
set. Supervised SFMs appear to be particularly
beneficial for DAC across all settings incorporating
pre-trained representations. Conversely, for tasks
with more abundant labeled data, such as SQA and
SUMM, we observe a narrower performance gap
between different SFMs. Interestingly, in some
cases, SSL SFMs like WavLM even outperform
supervised SFMs. We plan to perform a more thor-
ough examination of the effects of varying data size
within each task in future work.

6.4 Comparison with SOTA and E2E baseline

Fig. 7 compares the best results in our SLUE-PERB
benchmark with the best E2E results in the orig-
inal SLUE toolkit (Shon et al., 2022, 2023) and
SOTA results published in prior works. The best
performing E2E models in our benchmark either
outperform or achieve comparable performance to
existing E2E baselines in the SLUE toolkit. For
SA, the SOTA results (Shon et al., 2022) are ob-
tained by a pipeline consisting of an ASR system,
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fine-tuned from Wav2Vec2-large, and a NLU sys-
tem fine-tuned from Deberta-large, on the SLUE-
Voxceleb dataset. It is notable that the SOTA results
significantly outperform the SLUE-PERB results,
likely due to a significantly larger number of train-
able parameters (700 million vs. 32.41 million in
our best model), as well as stronger semantic pro-
cessing ability due to the incorporation of a large
pre-trained text encoder. Regarding ASR tasks, we
achieve similar performance to SOTA results (Shon
et al., 2022), and the small performance difference
can be attributed to the fact that SOTA models use
external language models (LMs) during decoding.

For NER and NEL tasks, the SOTA re-
sults (Pasad et al., 2022) perform better than our
benchmark models since they leverage external
speech and text data to significantly boost perfor-
mance. There is a significant difference between
SOTA results and our best performing benchmark
model for QA tasks. The SOTA model (Shon et al.,
2023) is a pipeline system similar to the SOTA SA
model. We hypothesize that the performance gap
can be attributed to a larger number of trainable
parameters (700 million vs. 32.41 million for in
best model) as well as the fact that QA is the most
semantically challenging among all SLUE tasks
and, hence, greatly benefits from incorporating an
LM. For SUMM, the SOTA results (Sharma et al.,
2023) are achieved by using Whisper-base as the
ASR model and a fine-tuned T5-base model for text
summarization. The SOTA results outperform our
best results, potentially because we do not incorpo-
rate a pre-trained LM. We also demonstrate that we
outperform the current SOTA (Shon et al., 2023)
on DAC despite having fewer trainable parameters
(700M in the SOTA pipeline model vs. 561.91M
in our best model).

These findings highlight that the benchmark
models are strong baseline E2E models and out-
perform typical E2E baselines reported in prior
work (Shon et al., 2022, 2023). By giving open
access to these strong baselines as part of SLUE-
PERB, we facilitate faster research and develop-
ment on SLUE tasks. We further show that E2E
models can outperform pipeline systems for cer-
tain tasks despite having fewer trainable parame-
ters, indicating that the utility of pre-trained LMs
is task-dependent. However, pipeline SOTA mod-
els currently outperform end-to-end models on se-
mantically challenging SLU tasks like QA and SA.
Hence, we plan to extend our benchmark to include
pipeline systems in future work to further explore

their effectiveness.

7 Conclusion

In this paper, we address the lack of performance
benchmarks for evaluating pre-trained SFMs on
SLU tasks. We introduce SLUE-PERB to compare
multiple pre-trained SSL and supervised SFMs on
complex SLU tasks. Our experiments demonstrate
that supervised ASR SFMs like OWSM produce
the best performing representations for classifica-
tion tasks, while SSL SFMs like WavLM can out-
perform or perform comparably to supervised ASR
SFMs on temporal alignment and sequence gener-
ation tasks. The trends generally remain similar
across different evaluation settings, but the perfor-
mance gap between different SFMs decreases as
we increase the size of the prediction head or fine-
tune the SFMs. We also find that while there is no
universal best approach for incorporating SFMs,
a complex prediction head gives the best perfor-
mance for most tasks, at the price of higher infer-
ence latency.

In addition to providing guidance for researchers
working on SLU tasks, we believe that our findings
will spark innovation in developing SFMs for SLU
tasks. (i) SSL SFM representations either outper-
form or perform comparably to supervised SFM
representations for sequence generation tasks. This
suggests that supervised SFMs, which employ an
encoder-decoder architecture, may retain meaning-
ful information within their decoder, which is not
straightforward to use for feature extraction. Hence,
developing encoder-only supervised SFMs (Peng
et al., 2024a) could be a promising future research
direction. (ii) SFMs like Whisper demonstrate no-
tably poor performance on QA since Whisper’s pre-
training is on 30-second speech segments, while
the input audios for QA tasks are typically longer
than 30 seconds. This suggests the need for SFMs
pre-trained on longer speech utterances (Chen et al.,
2024). (iii) Using a complex prediction head with
a frozen SFM outperforms full fine-tuning on most
tasks, which suggests the exploration of modeling
strategies that can utilize SFMs without signifi-
cantly changing the pre-trained parameters, such
as using parameter-efficient tuning approaches (Hu
et al., 2022). By making all our code public, we
aim to facilitate future research and development
on SLUE tasks. In future work, we plan to extend
SLUE-PERB to include more data and models, in-
cluding pipeline systems.
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Limitations

Our approach currently uses only the encoder of
the supervised SFMs to generate speech represen-
tations. A potential limitation is that supervised
SFMs are encoder-decoder architectures and may
also retain some information within their decoder,
which is currently not being used in generating
speech representations. We plan to delve deeper
into generating representations from the pre-trained
decoders in future work. Fig. 7 also illustrates
that pipeline models incorporating large pre-trained
text encoders can outperform E2E SLU models on
many tasks. Hence, a limitation of our benchmark
is that we currently do not include pipeline systems,
and we plan to extend our benchmark to incorpo-
rate these systems in future work. Further, we
observe that full fine-tuning of SFMs might be too
computationally expensive for some tasks, and we
plan to explore the efficacy of parameter-efficient
fine-tuning approaches in future work.

Broader Impact and Ethics

In this work, we compare various SFMs on many
complex SLU tasks and gain insights on which
SFMs perform the best and what is the optimal way
of incorporating SFMs in E2E SLU systems. Our
investigations aim to provide valuable insights to re-
searchers regarding which SFMs are best suited for
their experiments and how to achieve optimal per-
formance with minimal experimentation. Further,
by incorporating SFMs, they can perform the task
with a significantly smaller number of trainable pa-
rameters and without the need for large amounts of
task-specific labeled data. Additionally, we adhere
to the ACL Ethics Policy. Our experiments are
based on open-source datasets with no violation of
privacy, and we will make all our code and models
publicly available.
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A Appendix

A.1 Model details

Wav2Vec2 (Baevski et al., 2020) is a SSL speech
model which employs a contrastive loss during
pre-training and has shown improvements in large-
scale ASR.
HuBERT (Hsu et al., 2021) is another SSL model
that predicts discrete targets of masked speech re-
gions, similar to the masked language model objec-
tive.
WavLM (Chen et al., 2021b) expands on HuBERT
by increasing pre-training data and adopting a
masked speech denoising and prediction frame-
work.
Whisper (Radford et al., 2022) is one large speech
foundation model that has been pre-trained on huge
amounts of labeled data for ASR and speech trans-
lation (ST) tasks.
OWSM (Peng et al., 2023b, 2024b) is a reproduc-
tion of Whisper using publicly available data and
open-source toolkits.

A.2 Datasets, Tasks and Metrics

All the datasets are released under Creative Com-
mon license to give the best freedom of use.
SLUE-VoxCeleb (Shon et al., 2022): SLUE-
VoxCeleb is constructed from YouTube videos. In
this dataset, each spoken utterance is labeled with
one of three sentiment classes: positive, negative,
and neutral. To assess SA performance, we calcu-
late macro-averaged F1 scores.
SLUE-Voxpopuli (Shon et al., 2022, 2023): SLUE-
Voxpopuli consists of European Parliament event
recordings. It includes 7 named-entity tags and
13 sub-tags (fine-grained tagging labels). Prior
work (Shon et al., 2023) extends SLUE-VoxPopuli
to also evaluate NEL systems by including word-
level timestamps for entities. NEL performance is
evaluated either as a frame-level overlap between
the predicted and the ground-truth entity spans and
is reported as an F1 score (frame-F1), tuned with
an offset hyperparameter (Shon et al., 2023). The
NEL evaluation is purely based on the time stamps
and does not consider the entity tags or the en-
tity phrases. Complementary to NEL, NER perfor-
mance is evaluated on the predicted named entity
phrase and the corresponding tags using a micro-
averaged F1 score (Ghannay et al., 2019; Shon
et al., 2022). In addition, we also report label-F1
that only considers the tag predictions and excuses
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misspellings or segmentation errors in the decoded
text.
SLUE-HVB (Shon et al., 2023): HarperValley-
Bank corpus consists of scripted dialogues between
bank employees and customers. The dialog act la-
bels in SLUE-HVB include 5 actions and 18 sub-
actions (fine-grained labeling scheme). We evalu-
ate DAC on the fine-grained labeling scheme using
macro-averaged (unweighted) F1 score.
SLUE-SQA-5 (Shon et al., 2023): SLUE-SQA-5
is a spoken question answering (QA) corpus where
both document and question consist of real speech
data. The question-answer pairs are collected from
the text QA dataset; spoken documents are col-
lected from the Spoken Wikipedia dataset (Köhn
et al., 2016) whereas the spoken versions of ques-
tions are obtained by crowdsourcing. Similar to
NEL, we measure the performance using the frame-
F1 score.
SLUE-TED (Shon et al., 2023): SLUE-TED is a
corpus of summaries for TED-talks. The ground
truth summary is obtained by concatenating the title
and abstract of TED talks, which are publicly avail-
able. We evaluate summarisation performance us-
ing ROUGE (Lin, 2004) and BERTScore (Zhang*
et al., 2020).

A.3 Experimental Setups
All our experiments are conducted with ESPnet-
SLU toolkit (Arora et al., 2022). We apply
SpecAugment (Park et al., 2019) and use dropout
(Srivastava et al., 2014) and label smoothing
(Müller et al., 2019) techniques. The models are
trained using an NVIDIA A40 (40GB) GPU. All
model, training, and inference parameters are se-
lected based on validation performance. Table 4
shows training and inference hyperparameters for
our hyperparameter search. We perform extensive
tuning of training parameters, particularly warmup
and learning rate. Full details about models, con-
figuration files, and data preparation will be made
publicly available prior to publication.
Lightweight prediction head: For classification
tasks, the prediction head is a linear classifier that
takes in the pooled representations as discussed
in Sec. 4. The output of the classifier layer is the
number of classes, which is 3 for SA and 18 for
DAC. For NER and NEL, the output is the text
transcript, where entity phrases are delimited by
entity tags and special characters. An example of
NER label sequence is “we welcome ORG FILL
parliament SEP ’s agreement” where “ORG” is the

entity tag, “parliament” is the entity mention, and
FILL and SEP are special characters.

For QA, the input is the concatenation of the
question and document audio, and the output is the
concatenation of the question and document tran-
script, where special characters again delimit the
answer. An example output sequence is “who is the
present quarterback of the broncos SEP nature and
persistence of the tennessee volunteers quarterback
at the time ANS peyton manning ANS having ...”
where the “SEP” token separate the question and
document transcript and “peyton manning” is the
answer to the question delimited by special tokens
“ANS”. Since each spoken document is nearly 40
seconds long, we cannot use Whisper’s original
sinusoid positional embedding since it cannot ac-
cept inputs greater than 30 seconds. Hence, we
defined our own sinusoid positional embedding
that can accept inputs that are as long as 2 minutes
to generate speech representations from the Whis-
per encoder. Since sinusoid positional embedding
does not have any parameters, we believe that our
modeling design should not affect the quality of
generated speech representations. The architecture
of the prediction head for NER and QA are shal-
low conformer encoders trained with CTC loss, as
described in Sec. 4.

Complex prediction head: The architecture of
the complex prediction head is an encoder-decoder
architecture consisting of a 12-layer conformer
encoder and a 6-layer transformer decoder. For
SUMM task, the output is the concatenation of the
title and abstract of TED talks, which are publicly
available. An example of SUMM label sequence
is “what it’s like to be a parent in a war zone [sep]
how do parents protect their children and help them
feel secure again · · · ”. Further, for SQA, we obtain
the answer tokens from the decoder and then get
the timestamps for the answer tokens from greedy
CTC decoding. The inference setting for all other
non-classification tasks is the same as that with the
“Lightweight prediction head”.

Fine-tuned representations: The architecture of
the prediction head is the same as the lightweight
prediction head; however, now the pre-trained
speech representations are also fine-tuned. Sim-
ilar to prior work (Baevski et al., 2020; Hsu et al.,
2021; Chen et al., 2021b), the convolutional feature
encoder layers for SSL SFMs are kept frozen.
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Hyperparameter Value

Convolution Subsampling [1/2x, 1/4x]
Dropout Rate [0, 0.1, 0.2]
LR schedule [inv. sqrt., exp. lr.]
Max learning rate [1e-1, 1e-2, 5e-3, 1e-3, 4e-4, 1e-4, 1e-5, 1e-6]
Warmup steps [2500, 5000, 10000]
Number of epochs [30, 50, 70]
Adam eps 1e-8
Adam betas (0.9, 0.999)
Weight decay [1e-5, 1e-6, 1e-7]

Beam Size [1, 2, 10]
Length Penalty [0, 0.1]
CTC weight [0.0, 0.3]

Table 4: Training and inference hyper-parameter search for SLUE-PERB Models.

Evaluation Pre-Trained SLUE-VoxCeleb SLUE-VoxPopuli SQA-5 SLUE-TED SLUE-HVB

Protocol Model SA ASR NER ASR NEL QA SUMM DAC
F1 ↑ WER ↓ Label F1 ↑ F1 ↑ WER ↓ Frame F1 ↑ Frame F1 ↑ ROUGE-L ↑ BERTScore ↑ F1 ↑

Lightweight
HuBERT (large) 37.2 16.2 81.8 64.6 13.8 70.9 14.3 ✗ ✗ 46.7

Wav2Vec2 (large) 40.0 18.7 79.9 64.5 15.4 68.4 6.7 ✗ ✗ 50.6

prediction
WavLM (large) 38.9 11.8 87.4 71.4 10.2 74.1 18.9 ✗ ✗ 53.5

Whisper (medium) 44.7 13.0 85.8 68.9 12.0 73.5 0.4 ✗ ✗ 57.2

head
OWSM (3.1) 42.2 14.9 84.6 69.2 12.6 73.1 15.0 ✗ ✗ 69.1

Pre-trained SLU 36.6 44.6 66.6 50.8 37.7 52.2 2.2 ✗ ✗ 56.6

Complex
HuBERT (large) 46.9 12.8 84.6 69.4 12.6 72.7 25.6 16.1 83.4 62.8

Wav2Vec2 (large) 46.5 14.3 83.1 68.9 13.1 74.0 22.1 16.3 83.3 67.0

prediction
WavLM (large) 47.8 9.6 87.9 74.1 9.5 74.7 25.2 16.7 83.4 70.7

Whisper (medium) 45.2 12.8 86.1 69.9 12.7 73.9 2.0 16.3 83.7 69.4

head
OWSM (3.1) 46.8 14.0 84.8 72.2 12.0 70.7 23.7 16.6 83.7 73.5

Pre-trained SLU 45.2 33.5 73.8 61.0 27.5 57.8 4.2 15.8 83.1 66.8

Fine-tuning
HuBERT (large) 42.4 12.3 84.3 68.2 11.6 73.0 ✗ ✗ ✗ 73.8

Wav2Vec2 (large) 41.8 12.5 84.6 70.4 11.3 71.1 ✗ ✗ ✗ 75.3
WavLM (large) 45.0 10.3 88.3 73.5 9.3 73.9 ✗ ✗ ✗ 75.9

representations
Whisper (medium) 48.2 18.2 82.3 65.5 16.7 56.3 ✗ ✗ ✗ 72.5

OWSM (3.1) 44.2 12.6 83.7 68.3 13.7 66.9 ✗ ✗ ✗ 76.8
Pre-trained SLU 41.6 31.1 67.5 54.1 35.3 54.8 ✗ ✗ ✗ 70.3

Table 5: Performance of various SSL, supervised ASR, and SLU representations on the development set of SLUE
tasks using various evaluation protocols in SLUE-PERB. The symbol ✗ indicates that the results were not computed
either due to the inability to perform summarization without a decoder or because fine-tuning representations on
SQA-5 and SLUE-TED corpora were not feasible within our computational budget.

A.4 Number of Trainable Parameters

We present the number of trainable parameters for
all our models in Tab. 6. We observe that the
lightweight prediction head protocol has approxi-
mately 6 million trainable parameters, the complex
prediction head setting has around 30 million train-
able parameters, and fine-tuning representation has
nearly 300 million parameters for most speech rep-
resentations and tasks. Consequently, the com-
plex prediction head settings serves as a middle
ground between lightweight prediction heads and
fine-tuned representation settings in terms of com-
putational cost. Furthermore, we demonstrate that
increasing the number of trainable parameters does
not always result in improved performance. Inter-

estingly, models with complex prediction heads
can outperform models with fine-tuned representa-
tions on some SLU tasks, namely NER and NEL.
This observation highlights the need to explore di-
verse methods of incorporating pre-trained speech
representations to achieve optimal performance.
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Evaluation Pre-Trained SLUE-VoxCeleb SLUE-VoxPopuli SQA-5 SLUE-TED SLUE-HVB

Protocol Model SA ASR NER QA SUMM DAC

Lightweight
HuBERT (large) 1.1 6.5 6.5 9.7 ✗ 1.1

Wav2Vec2 (large) 1.1 6.5 6.5 9.7 ✗ 1.1

prediction
WavLM (large) 1.1 6.5 6.5 9.7 ✗ 1.1
Pre-trained SLU 0.3 9.1 9.1 12.2 ✗ 0.3

head
Whisper (medium) 1.1 9.1 9.1 9.7 ✗ 1.1

OWSM (3.1) 1.1 9.1 9.1 12.3 ✗ 1.1

Complex
HuBERT (large) 32.4 32.4 32.4 32.4 31.9 114.3

Wav2Vec2 (large) 32.4 32.4 32.4 32.4 31.9 114.3

prediction
WavLM (large) 32.4 32.4 32.4 32.4 31.9 114.3
Pre-trained SLU 34.9 34.9 34.9 34.9 34.4 124.5

head
Whisper (medium) 32.4 32.4 32.4 32.4 31.9 114.3

OWSM (3.1) 32.4 32.4 35.0 35.0 34.5 124.5

Fine-tuning
HuBERT (large) 313.4 318.9 318.9 ✗ ✗ 313.5

Wav2Vec2 (large) 314.2 319.7 319.7 ✗ ✗ 314.3
WavLM (large) 312.3 317.8 317.8 ✗ ✗ 312.3

representations
Pre-trained SLU 83.5 93.3 92.3 ✗ ✗ 83.5

Whisper (medium) 306.7 314.8 314.8 ✗ ✗ 306.8
OWSM (3.1) 561.9 569.9 569.9 ✗ ✗ 561.9

Table 6: Number of trainable parameters (in million of parameters) in models using various SSL, supervised ASR,
and SLU representations across different evaluation protocols in SLUE-PERB. The symbol ✗ indicates that the
results were not computed either due to the inability to perform summarization without a decoder or because
fine-tuning representations on SQA-5 and SLUE-TED corpora were not feasible within our computational budget.
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