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Abstract

The rapid growth in natural language process-
ing (NLP) research has led to numerous new
models, outpacing our understanding of how
they compare to established ones. One major
reason for this difficulty is saturating bench-
marks, which may not well reflect differences
in model performance in the wild. In this work,
we introduce a novel framework to compare
two NLP models by revealing their shared in-
variance to interpretable input perturbations tar-
geting a specific linguistic capability. Via ex-
periments on models from the same and differ-
ent architecture families, this framework offers
insights about how changes in models (e.g.,
distillation, size increase) affect linguistic capa-
bilities. Furthermore, our framework enables
evaluation of invariances between commercial
black-box models (e.g., InstructGPT family)
and models that are better understood (e.g.,
GPT-2). Across experiments, we observe that
large language models share many invariances
encoded by models of various sizes, whereas
the invariances by large models are only shared
by other large models. Possessing a wide va-
riety of invariances may be key to the recent
successes of large language models, and our
framework can shed light on the types of invari-
ances retained or emerging in new models. We
make the code publicly available 1.

1 Introduction

A key reason for the tremendous progress and
adoption of natural language processing (NLP)
models has been the ready availability of models
that can be adapted to diverse downstream tasks
and datasets (Wolf et al., 2019). However, with
the increasing number of new models, it is diffi-
cult to know how new models compare to better-
understood ones. This is complicated by the fact
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Figure 1: Proposed shared invariances metrics: Hard-
SCoPE and Soft-SCoPE, for three binary-classifiers
(m1, m2, and m3). For perturbation x → x′, both
m2 and m3 satisfy the Hard-SCoPE criteria. However,
the effect of the perturbation is more aligned for m1 &
m3 compared to m1 & m2.

that standard benchmark datasets are saturating
(Dehghani et al., 2021; Owen, 2023), and small dif-
ferences on these may in fact correspond to large
differences in model performance in the wild (Tay
et al., 2022; Zhang et al., 2022; Liu et al., 2023).

To enable more comprehensive model compar-
isons, we propose a novel framework for compar-
ing two NLP models by investigating their shared
invariance to specific input perturbations. We il-
lustrate the idea of shared invariances with an ex-
ample. Consider a scenario involving social media
content moderation, in which a model is tasked
with classifying whether a sentence is offensive.
Now take two sentences that differ only by a syn-
onym, e.g. “This game is a killer, totally blew my
mind.” and “This game is a slayer, totally blew
my mind.”. A well-understood model, m1, trained
for general social media usage, classifies this pair
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of sentences and other similarly perturbed pairs
as non-offensive, and is thus invariant to synonym-
based perturbations. We would now like to evaluate
a new model, m2, which is specifically finetuned
for children’s content moderation. Our framework
allows us to determine to what degree m2 main-
tains a similar synonym invariance to m1, despite
possible differences in the predictions of m1 and
m2—such as m1 classifying the sentences as non-
offensive and m2 as offensive.

To systematically measure these shared invari-
ances across various perturbations, we introduce
an invariant sample generation approach (see Sec-
tion 3) and propose novel metrics: Hard-SCoPE
and Soft-SCoPE (see Figure 1). These metrics as-
sess shared invariances independently of the agree-
ment between model predictions, i.e., Hard-SCoPE
and Soft-SCoPE can be high even if two models
consistently disagree in their predictions, as long
as they remain invariant to the same perturbations.
Such scenarios present an interesting opportunity
for investigation, as they highlight how significant
design changes, like finetuning, may not necessar-
ily alter the features a model treats invariant (and ir-
relevant), despite changing its specific predictions.

While evaluating shared invariance is important,
not all invariances are created equal: some may be
desirable (e.g., invariance to synonym substitution
for content moderation) while others may be un-
desirable (e.g., invariance to word order of image
captioning). We enable the evaluation of specific
shared invariances via interpretable input perturba-
tions designed to target a specific linguistic capa-
bility (e.g., Synonym-Invariance, Typo-Invariance).
A linguistic capability evaluates a model’s com-
petence on a particular aspect of knowledge and
understanding required to solve an NLP task by
validating its input-output behavior under the cor-
responding scenario. For instance, the linguistic
capability ‘Synonym-Invariance’ evaluates whether
a sentiment analysis model changes its prediction if
the positive verb is replaced by its synonym. Hence,
the generated perturbations along specific linguis-
tic capabilities enable us to measure shared model
invariances along different linguistic capabilities.

We demonstrate our proposed framework’s util-
ity in deriving novel insights on how changes in
models such as distillation and increase/decrease
in size affect shared invariances along multiple
well-defined linguistic capabilities. We also show
how our framework can be used to compare how
invariances along different linguistic capabilities

evolve over the course of pre-training for a particu-
lar model. Additionally, we also demonstrate how
our framework can enable evaluation of the invari-
ances shared between models that are available as
commercial black-box APIs (e.g., InstructGPT fam-
ily) and models that are relatively better understood
(e.g., GPT-2). Across several experiments, we find
that while larger language models share many of
the invariances encoded by models of varying scale,
invariances encoded by large language models are
only shared by other large models of similar sizes.

Our main contributions can be summarized as
follows: (1) We propose a novel framework for
defining linguistic capabilities w.r.t a reference
NLP model to generate interpretable invariant per-
turbations. (2) We propose two novel measures:
Hard-SCoPE and Soft-SCoPE to measure the de-
gree of shared (behavioral) invariances between
two models along a particular linguistic capability.
(3) Through experiments on two NLP tasks—text
classification and language modeling—we uncover
several insights, such as: distilling BERT leads to
loss of shared invariances along certain linguistic
capabilities (such as Typo-Invariance) more than
others (Synonym-Invariance); models (within an
architecture family) tend to have a higher (or sim-
ilar) degree of shared-invariances with models of
larger sizes compared to other models of similar
sizes—a pattern that also holds true for black-box
InstructGPT models. We make our code publicly
available so that other researchers can reproduce
and build on our methodology and findings.

2 Related Works

Similarity measures between two neural networks
usually operate at two levels of abstraction: output
behavior and intermediate layer representations.

Behavior: Many works compare the behavioral
similarity between two models (trained for a given
task) by evaluating the difference between their
average performances on the held-out “test-set”
(e.g., IID accuracy, perplexity, etc). For exam-
ple, previous work has used IID accuracy to evalu-
ate the effect of well-defined design choices such
as model architecture and training scheme (Ding
et al., 2021), training time constraints (Geiping and
Goldstein, 2022), and latency and memory (Sanh
et al., 2019). However, recently many researchers
have highlighted the limitations of IID test-sets in
identifying different failure modes (Hooker et al.,
2019, 2020) and have consequently proposed alter-

11565



native approaches for rigorous evaluation (Rychal-
ska et al., 2019; Prabhakaran et al., 2019; Ribeiro
et al., 2020; Ribeiro and Lundberg, 2022). Most
relevant to our work, Ribeiro et al. (2020) proposed
CheckList–a methodology for evaluating the be-
havior of NLP models along general linguistic ca-
pabilities that are applicable for many NLP tasks.
More recently, La Malfa and Kwiatkowska (2022)
defined linguistic capabilities as symbolic pertur-
bations of an input sentence for a particular task,
and evaluated whether a model’s predictions for
this sentence align with human annotators. While
the above approaches can highlight differences be-
tween the two models’ ability to generalize under
the perturbations introduced by a linguistic capabil-
ity, they perform an indirect behavioral comparison
via the human annotators. In this work, we provide
a complementary approach that directly evaluates
shared behavioral invariances between two models
by defining linguistic capabilities with respect to
an NLP model instead of a human annotator.

Representations: Numerous works have also
proposed methods for analyzing and comparing
NLP models based on their internal representations
(Morcos et al., 2018; Saphra and Lopez, 2019;
Liu et al., 2019; Durrani et al., 2021). Wu et al.
(2020) investigate the representational similarity of
NLP models at both neuron and layer-level output
to quantify the effects of different design choices
across models from both across and within archi-
tectural families. Phang et al. (2021) explore the
effects of fine-tuning a neural language encoder by
comparing representations of a fine-tuned language
encoder with its pre-trained counterpart across lay-
ers. Nanda et al. (2022) proposed a novel measure
(STIR) to quantify the similarity between represen-
tations of two models via measuring their shared
invariances. They achieve this by first generat-
ing a set of perturbations that don’t change the
representations of one model and consequently
measuring the extent to which the other model’s
representations are invariant on them. However,
this setup is not directly applicable to NLP due to
the discrete nature of language input, where rep-
resentation inversion would lead to perturbations
along arbitrary directions in the input space and
consequently linguistically inconsistent samples
(La Malfa and Kwiatkowska, 2022). We address
this by generating invariant perturbations (for a
particular model) along well-characterized and in-
terpretable linguistic capabilities by using discrete
optimization. Finally, while a central theme of our

work is also comparing the similarities and differ-
ences between two NLP models, we present an
orthogonal approach that focuses on behavior.

3 Methodology

Measuring shared invariances along an inter-
pretable linguistic capability necessitates the gener-
ation of controlled, meaningful perturbations to the
input text. However, creating such perturbations
end-to-end using gradient descent is impractical,
due to the discrete nature of language inputs. To
effectively generate these perturbations, one must
first define a transformation class of broadly al-
lowed perturbations (e.g., replacing words with
their synonyms) based on the linguistic capabil-
ity (e.g., Synonym-Invariance) under investigation,
along with the constraints to outline specific exclu-
sion criteria (e.g., ignoring stop words). Moreover,
to automate the generation of these perturbations,
we also need a search method to effectively traverse
the space of all possible perturbations, and choose
the one that maximizes a goal function. Therefore,
each linguistic capability can be decomposed to
four key components: transformation, constraints,
goal function, and search method. This characteri-
zation is connected to insights in NLP adversarial
robustness literature that explore generating pertur-
bations that fools a particular model instead. Next,
we discuss each component in detail.

3.1 Goal Function and Search Method

To effectively quantify measures such as shared
invariances (defined in Sec. 3.3) between a ref-
erence and a target NLP model, we enforce that
the reference model is invariant to the perturba-
tion introduced by the linguistic capability. The
behavioral invariance serves as the goal function
while generating perturbations with respect to the
reference NLP model, ensuring that the perturba-
tion generation process interacts with the refer-
ence NLP model. This formulation is important
as invariance-based measures are otherwise diffi-
cult to measure using purely observational data
(Nanda et al., 2022). Additionally, this also lends
directionality to our shared-invariance measures
as the perturbations generated w.r.t two different
reference models would be different, allowing us
to delineate invariances unique to any model and
measure their degree of overlap with others.

We define the goal of behavioral invariance at
the level of the output softmax probabilities i.e., the
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reference model m is behaviorally invariant if there
is a negligible difference between the predicted
probability distribution on the base and perturbed
sample. More formally, consider an NLP model
m that outputs probability distribution m(x) for
an input text x. A linguistic capability C perturbs
x ∈ X s.t. m is invariant to the perturbed text x′

C(x;m) = argmin
x′

L(m(x),m(x′)),

subject to x ̸= x′
(1)

where L is the goal function that guides the op-
timization process. Since x is a sequence of to-
kens, we use a greedy search algorithm for finding
x′ that minimizes L(m(x),m(x′)) in the finitely
large transformation space. In our experiments, we
define L(m(x),m(x′)) = ∥m(x) − m(x′)∥1. In
practice, we observe that minimizing this objective
leads to x′ that are at least invariant in argmax pre-
dictions (refer supplementary Sec. E). As detailed
in the supplementary Sec. J, the goal function can
take other forms if it captures differences in both
direction and magnitude between m(x) and m(x′).

3.2 Transformations and Constraints
Next, we fully formalize different linguistic ca-
pabilities by specifying the corresponding trans-
formations and constraints. In this work, we pri-
marily focus on two such linguistic capabilities:
Synonym-Invariance and Typo-Invariance that per-
form perturbations at multiple levels (i.e., character-
level transformations to word-level substitutions).
Synonym-Invariance perturbs words by replacing
them with their synonyms. More specifically, we
adopt the transformation strategy proposed by Ren
et al. (2019) that determines candidate synonyms
for a particular word based on WordNet (e.g., A
man laughs out loud. → A man laughs out loudly.).
Typo-Invariance perturbs a word in the input text
by swapping its middle characters (i.e., all charac-
ters in a word except the first and last one). Thus,
while Synonym-Invariance perturbs input text at
a word level, Typo-Invariance produces transfor-
mations at a character level (e.g., A man laughs
out loud. → A man laughs out luod.). For both
linguistic capabilities, we disregard modifications
of words that are stopwords, have lengths less than
four, or are already perturbed. We focus on these
two capabilities because there is a rich literature
studying them, albeit from an adversarial robust-
ness perspective as they concern the reliability of
many real-world systems, such as spam detection,

toxicity classification (Lee and Ng, 2005; Pruthi
et al., 2019). We perform experiments along an
additional linguistic capability: Fairness and re-
port our insights in the supplementary Sec. C due
to space constraints. We would like to emphasize
that the list of linguistic capabilities (e.g., negation,
word order) can be easily expanded by defining the
specific transformation and constraints.

3.3 Metrics for Quantifying
Behavioral-Similarity

We perform experiments with a number of popu-
lar metrics (such as accuracy and agreement-rates)
as well as propose novel ones (behavioral shared
invariances). These metrics can be broadly catego-
rized into three classes: performance-based (Gap
in IID accuracy), agreement-based (IID and OOD
(Out-of-Distribution) agreement), and invariance-
based (Hard-SCoPE, Soft-SCoPE). The invariance-
based metrics offer a complementary lens on the
behavioral similarity between two NLP models as
we empirically observe that the existing metrics of-
ten fail to adequately capture them for many kinds
of models one would want to investigate. Due to
space constraints, we present the correlation results
between different metrics in supplementary Sec. I.
Next, we discuss all the metrics in detail.

Notation: Consider a task T with an IID test set
denoted as (Xtest, ytest) ∼ Dtest. Models M =
{m1,m2} are fine-tuned on training samples for
this task, where each model m maps an input x to
output a probability distribution m(x) ∈ Rn over
n unique labels/vocabulary for T . The model’s
prediction ym(x) is defined as: ym(x) = argmax

k∈[n]
m(x)k where m(x)k denotes the probability score
for kth label. We aim to assess the behavioral sim-
ilarity between m1 and m2 along a particular lin-
guistic capability C. Perturbations are applied to a
set of base samples X (typically Xtest).

3.3.1 Performance-based Metrics
Comparing the gap between aggregate
performance-based measures is one of the
most common ways to characterize behavioral
similarity between two models as models with
lower performance gaps are generally thought of
as more behaviorally similar (Ding et al., 2021;
Klabunde et al., 2023). Specifically, the Gap in
IID accuracy is the absolute difference in the
accuracies of the reference and target models, i.e.,
Gap in IID Accuracy: |acc(m1) − acc(m2)|,
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where accuracy of a model m is defined as
acc(m) = Ex,y∼Dtest1[y = ym(x)].

3.3.2 Agreement-based Metrics
Instead of focusing on the average differences in
performance, the agreement rates (between m1 &
m2) explore the behavioral similarity directly at
the instance level. We calculate model agreement
rate on both base and perturbed samples.

IID Agreement:
Ex∈X1[ym1(x) = ym2(x)]

OOD Agreement:
Ex∈X1[ym1(C(x;m1)) = ym2(C(x;m1))]

Evaluating agreement rates is akin to comparing
the similarity between their decision regions, es-
pecially for out-of-distribution (OOD) data, repre-
senting points sampled along linguistic capabilities
in the data manifold (Somepalli et al., 2022).

3.3.3 Proposed Invariance-based Metrics
Shared invariances can reveal similarities and dif-
ferences in the finer-grained instance properties
used by two models for their predictions. For ex-
ample, consider the example from the introduction
section, "This game is a killer, totally blew my
mind," perturbed to "This game is a slayer, totally
blew my mind" through synonym swaps. Two mod-
els, differing in design choices such as finetuning,
may predict differently depending on their intended
use case (e.g., general social media vs. children’s
social media moderation). However, if both models
treat the perturbed sentence the same as the orig-
inal, they demonstrate a shared invariance. This
indicates a common underlying invariance mecha-
nism between the models to certain types of pertur-
bations, despite their differing individual decision
outcomes (i.e., zero agreement rates). Thus, mea-
suring shared invariances involves evaluating the
effect of a perturbation within each model individ-
ually and then comparing if both models exhibit
invariance. Consequently, this framework can also
highlight if a model becomes sensitive to certain
perturbations after a design choice or if it acquires
new invariances not present in the original model.
Agreement rates are inadequate for such investiga-
tions as they directly compare the behavior of two
models on a particular set of samples, usually either
original or perturbed, without accounting for within
model invariances on a perturbation. Since behav-
ior itself can be measured at different granularity

i.e., with respect to exact class prediction or pre-
dicted softmax probabilities, we propose two novel
notions (Hard and Soft) of measuring behavioral
shared-invariance: SHared-Capabilities-thrOugh-
Perturbed-Examples (SCoPE)

Hard-SCoPE: We want to measure to what de-
gree target model m2’s prediction remains invari-
ant to a change in the input for which the refer-
ence model m1 was invariant, i.e., x → x′, where
x′ = C(x;m1). We define this quantity as Hard-
SCoPE as it considers the ‘hard’ argmax predic-
tions to determine behavioral shared-invariances.

Hard-SCoPE(m2 |m1) = Ex∈XH(m2 |m1, x, C).
(2)

H(m2 |m1, x, C), the hard shared-invariance for
a particular sample, is defined as:

1[ym2(x)=ym2(C(x;m1))
∣∣

ym1(x)=ym1(C(x;m1))].
(3)

Note that the Hard-SCoPE is not calculated be-
tween two models (like agreement-rates), but rather
between the base and perturbed samples for a par-
ticular target model m2. For a binary-classification
setup, Hard-SCoPE can be seen as “agreement be-
tween agreement-rates” i.e., Hard-SCoPE would
be 1 if either both IID and OOD agreement are 0
or both are 1 for a particular base-perturbed sam-
ple pair. We discuss the relationship between IID-,
OOD-agreements and Hard-SCoPE in more detail
in the supplementary Sec. E.

Soft-SCoPE: A softer notion of shared-
invariances is to look beyond argmax predictions
and investigate whether the perturbation in
input space produces the same effect (change)
in the output probability distributions of both
models. The effect of the perturbation x → x′,
where x′ = C(x;m) is generated with reference
model m, in the output probability distribu-
tions for a model m is denoted by ∆m⃗ i.e.,
∆m⃗ = m(x′)−m(x). We present an intuition of
utility of soft shared invariance in Fig. 1 (left).

In Fig. 1 (left), we visualize the predicted proba-
bility distributions of three models m1, m2, and m3

trained on a binary classification task on both base
– m1(x), m2(x), m3(x) and perturbed samples –
m1(x

′), m2(x
′), m3(x

′), where the perturbation
x′ is generated by a linguistic capability C and
reference model m1 i.e., x′ = C(x;m1). While
the input perturbation qualifies as a (hard) shared

11568



invariance for both (m2 | m1) and (m3 | m1) since
both m2 and m3 remain invariant in their argmax
predictions; the effect (change in the predicted out-
put probability distribution) of the perturbation is
much more aligned for one pair (i.e., ∆m⃗3 and
∆m⃗1 ) than the other (i.e., ∆m⃗2 and ∆m⃗1 ). Thus,
the reliance on (argmax) predictions to quantify
shared-invariances by Hard-SCoPE could obscure
key differences about the effect of the perturbation.

As motivated by this example, a desiderata
for the soft shared-invariance metric is to obtain
high values if the change in both models (∆m⃗1 ,
∆m⃗2 ) is similar in both direction and magnitude
and lowvalues otherwise. Thus, we define Soft-
SCoPE(m2 | m1) as:

Ex∈Xdecay(dist(∆m⃗1 ,∆m⃗2 ))H(m2 | m1, x, C),
(4)

where decay(dist(∆m⃗1 ,∆m⃗2 )) is an additional
term that weighs the contribution of each pair
of base and perturbed samples by a function of
the corresponding changes in model probabili-
ties ∆m⃗1 and ∆m⃗2 . More specifically, the
decay(dist(.)) term is composed by two functions:
a function dist that computes the difference be-
tween the changes in model probabilities, and a
decay function decay, which has a range [0, 1]
i.e., 0 ≤ decay(dist(∆m⃗1 ,∆m⃗2 )) ≤ 1 and
is monotonically decreasing to ensure lower dist
values correspond to higher similarity as in all
previous metrics. In our experiments, we chose
dist(∆m⃗1 ,∆m⃗2 ) = ∥∆m⃗1 −∆m⃗2 ∥1 and decay
as a linear function. Thus, Soft-SCoPE has an
overall range of [0, 1]. We visualize how the Soft-
SCoPE landscape varies for two different model
pairs in the supplemenaty Sec. L.

4 Effect of Model Design Choices on
Shared-Invariances

In this section, we investigate the effect of different
design choices on the invariances shared by two
models. Thus, we experiment with a range of NLP
models varying in training objective (BERT (De-
vlin et al., 2019), DistilBERT (Sanh et al., 2019)),
and size (BERT-Tiny, Mini, Small, Medium, Base).
Unless otherwise stated, we finetune all architec-
tures for 5 epochs on Stanford Sentiment Treebank
(SST2 a binary sentiment classification dataset)
(Socher et al., 2013). SST2 has a train/test split of
67.3k and 872, respectively. We present additional
results for different datasets (AG-News) and tasks
(language modeling) in the supplementary Sec. B

and Sec. G. We build upon the "textattack" library
(Morris et al., 2020) to implement several linguistic
capabilities based on our requirements. For each
capability and reference-model pair we generate
the perturbed examples three times and report the
average results with standard errors.

4.1 Different Linguistic Capabilities

Hard-SCoPE Soft-SCoPE
0.0

0.2

0.4

0.6

0.8

1.0

0.
96

0.
810.
84

0.
61

Synonym-Invariance Typo-Invariance

Figure 2: [Reference Model: BERT, Target Model: Dis-
tilBERT]. Comparing shared-invariances between Dis-
tilBERT and BERT on Synonym-Invariance and Typo-
Invariance defined w.r.t BERT. Distillation hurts some
capabilities (Typo-Invariance) substantially more than
others (Synonym-Invariance).

In this section, we aim to investigate whether
a design choice (i.e., distillation) that has a nomi-
nal impact on the IID accuracy, preserves shared
invariances along different linguistic capabilities.
Specifically, we fix BERT as the reference model
& DistilBERT as the target model and compare
shared capabilities along Synonym-Invariance and
Typo-Invariance.

Gap in IID accuracy may overestimate the de-
gree of shared invariances: Both BERT and Dis-
tilBERT achieve high accuracies on the SST2 test-
set i.e., 93% and 89.49% respectively (3.51% Gap
in IID accuracy). However, in Fig 2, we note that a
low gap in generalization performance on the IID
test-set doesn’t necessarily ensure high shared in-
variances. For instance, DistilBERT is substantially
less aligned to BERT along Typo-Invariance. Thus,
Gap in IID accuracy may overestimate the degree
of shared invariances between two models along a
linguistic capability.

Distilling BERT affects some linguistic capabil-
ities more than others: In Fig. 2, we also ob-
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a) Reference Model: BERT-Tiny b) Reference Model: BERT-Base c) Average over all possible Reference Models

Figure 3: [Linguistic-Capability: Synonym-Invariance] Analyzing the effect of size on shared-invariances within
the BERT architecture family. The OOD-agreement is higher for target models in similar size ranges as the reference
model. However, shared-invariances are higher for target models of larger size irrespective of the reference model.

serve that DistilBERT is significantly more similar
to BERT along Synonym-Invariance compared to
Typo-Invariance. Thus not only is there a decrease
in shared-invariances after distillation, but distil-
lation also affects different linguistic capabilities
to varying degrees. We posit that this trend can
be attributed to the Masked Language Modelling
(MLM) pre-training procedure that is common to
both BERT and DistilBERT. As the MLM objec-
tive optimizes the model to predict masked words
in a sentence correctly, it’s plausible that during
pre-training a model develops invariances to di-
verse in-context word-substitutions. Since, both
DistilBERT and BERT are pre-trained on the same
corpus (i.e., concatenation of English Wikipedia
and Toronto Book Corpus, (Sanh et al., 2019)), it’s
highly likely that the learnt word-invariances are
shared between them. Similarly, the lower values
for Typo-Invariance may be explained by the lack
of misspelled words in the training corpus.

4.2 Role of Inductive Biases

In this section, we explore the effect of changes
in architectural inductive biases on a model’s be-
havior along a linguistic capability i.e., Synonym-
Invariance. Specifically, we investigate the role
of increasing/decreasing the depth and width of
hidden-layers on the shared-invariances. To control
for potential confounders we finetune a wide array
of models (released by Turc et al. (2019)) belong-
ing to the same architecture family (BERT) varying
significantly in both number (L) and size (H) of the
hidden layers. Specifically, we investigate BERT-
Tiny (L=2, H=128), BERT-Mini (L=4, H=256),
BERT-Small (L=4, H=512), BERT-Medium (L=8,
H=512), and BERT-Base (L=12, H=768).

Different trends across different metrics: In
Fig. 3-a, with BERT-Tiny (smallest model in our
investigation) as the reference model, we observe

that the OOD agreement-rate indicate that mod-
els similar in size to BERT-Tiny (i.e., BERT-Mini,
BERT-Small) have higher similarity with BERT-
Tiny than other larger models (i.e., BERT-Medium,
BERT-Base). In contrast, the shared-invariances
metrics don’t follow the same trend as Hard-SCoPE
values tend to increase for larger model sizes, and
there isn’t a substantial difference between the Soft-
SCoPE values across different target models.

Larger models share more invariances with
models of any size: In Fig. 3-b, we repeat the
same experiment with the largest model in our
investigation–BERT-Base–as the reference model.
Surprisingly, we observe that all metrics indicate
that models become less similar to BERT-Base as
their size decreases. This is in contrast to previ-
ous results with BERT-Tiny (smallest model) as
the reference model where larger models had poor
OOD-agreement and higher (or similar) shared-
invariances. Thus, we hypothesize that even though
larger models don’t agree with the behavior of
smaller models from an agreement perspective,
they still share the invariances generated by smaller
models. Interestingly, the opposite is not true i.e.,
smaller models don’t necessarily share invariances
generated w.r.t larger models as well as other larger
models. To understand this more generally, we re-
port the average results for all models (as target
models) by marginalizing them over all the dif-
ferent reference models. We expect that metrics
depending on model size (i.e., agreement rates)
should have uniform values across different tar-
get models. In contrast, metrics that are tied to
larger model sizes (i.e., shared-invariances) should
peak for larger models even after averaging. We
report the result in Fig. 3-c, which are consistent
with our proposition. It’s especially interesting that
larger models are able to share a more diverse set
of invariances (both from other larger and smaller
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Figure 4: [Reference Model: GPT-2, Capability: Synonym-Invariance]. Comparing shared-invariances between
GPT-2 and various OpenAI models differing in size and finetuning along Synonym-Invariance. Larger InstructGPT
models share more invariances with GPT-2. Also, state-of-the-art models finetuned with reinforcement learning
(text-davinci-003) share more invariances than their supervised finetuned counterparts (text-davinci-002).

models) even when they are pretrained/finetuned
on the same corpus as the smaller models.

5 Relationship of Familiar Models with
Black Box APIs

In the previous sections we discussed specialist
models that are tuned to perform well on a specific
task (e.g., sentiment analysis on SST2). However,
in recent years the NLP community has shifted fo-
cus towards building more generalist models that
can perform a diverse set of tasks when prompted
with appropriate instructions and exemplars. How-
ever, the state-of-the-art of these models are primar-
ily available in the form of black-box APIs, with
little information available about their training. We
explore how one can quantify the behavioral simi-
larity between models released via black-box APIs
(InstructGPT family) and models that are widely
adopted in practice (e.g. GPT-2). We follow the
methodology in Cheng et al. (2023) for estimating
output probability distribution over the task-labels
(positive and negative sentiment) from InstructGPT
models. Specifically, we sample the output mul-
tiple times for each input and take the mode as
the final prediction and its frequency as the prob-
ability score for that particular label. We perform
all experiments in a zero-shot manner. To reduce
costs, we perform experiments on 100 randomly
selected samples from the SST2 test-set. The fine-
tuned GPT-2 achieves 96% accuracy on this subset.
It cost us ≈ $55 to compute all the results for this
section.

Larger InstructGPT models share more in-
variances with GPT-2: We use InstructGPT mod-
els text-ada-001, text-babbage-001, text-curie-001,

text-davinci-001 that roughly correspond to model
sizes: 350M, 1.3B, 6.7B, and 175B respectively
(Gao et al., 2021). We note that there’s a sub-
stantial difference in IID performance between the
smaller models (text-ada-001) and larger models
(text-curie-001, text-davinci-001). Moreover, text-
ada-001 is not only less agreeable to the GPT-2
model, but also seems to be substantially less in-
variant to perturbations that GPT-2 is invariant on
i.e., low Hard-SCoPE and Soft-SCoPE. Interest-
ingly, even though text-curie-001 and text-davinci-
001 achieve similar IID accuracy (i.e., 94%) there’s
substantial differences in their shared-invariances.
Thus, even though both models seem equivalent
based on IID performance, using text-davinci-001
would ensure higher behavioral similarity from the
perspective of shared-invariances. Also, this result
ties back to our previous observations in Sec. 4.2
about larger models sharing more invariances.

RL based finetuning may retain more invari-
ances: We explore the effect of different finetun-
ing methods for instruction following on shared-
invariances in Fig. 4 (right). For this, we per-
form experiments on text-davinci-001, text-davinci-
002, and text-davinci-003 models released by Ope-
nAI. text-davinci-001 is finetuned using supervised
learning on human and selected model written
demonstrations. While, text-davinci-002 utilizes
the same objective function, it’s pretrained on a
mix of text and code. text-davinci-003 differs from
text-davinci-002 by using reinforcement learning
for finetuning instead of supervised learning. We
note that both text-davinci-002 and text-davinci-
003 have similar performances across IID accuracy,
agreement rates, and Hard-SCoPE. Interestingly,
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there’s a substantial gap in their Soft-SCoPE values,
indicating that even though both models remain in-
variant on an equivalent number of samples (similar
hard-scope), text-davinci-003’s output probability
distribution is more invariant to perturbations gen-
erated along Synonym-Invariance.

6 Conclusion

We propose a framework for evaluating inter-
pretable shared-invariances between two NLP mod-
els by evaluating the degree to which a target model
shares behavioral similarity on a linguistic capa-
bility defined with respect to a reference model.
We conduct extensive experiments to highlight the
implications of different design choices (e.g. distil-
lation) and find that shared-invariances tend to be
affected more along certain linguistic capabilities
than others. Furthermore, we also analyze models
of different sizes and find that larger target models
in general tend to share more invariances. Lastly,
we demonstrate the use of our framework in ana-
lyzing relationships between black-box APIs and
familiar models.

7 Limitations

In this section, we discuss key limitations of our
work and potential for future improvements. One
limitation of our current work is inefficient search
methods as they need many queries to generate per-
turbations. Efficient search methods are necessary
for generating perturbed samples with reference
to a black box APIs. Additionally, we adopt the
approach of (Cheng et al., 2023) for estimating pre-
dicted probabilities for instruction-tuned models.
Since, evaluating semantic uncertainty over task-
labels using language models is an open problem
in itself, it would be interesting to evaluate whether
our insights vary across different probability esti-
mation methods.

8 Ethics and Broader Impact

In this work, we introduce a novel framework for
comparing NLP models by assessing their invari-
ances to interpretable input perturbations, aimed
at better understanding their linguistic capabilities.
Our framework sheds light on how various design
choices influence a model’s sensitivity to specific
perturbations, whether intentionally or unintention-
ally, offering deeper insights into the subtle effects
of these choices on model behavior. This aids in

enhancing the overall comprehension of NLP mod-
els. Moreover, practitioners can use our framework
to quantitatively assess whether the newer models
they plan to integrate into their pipeline show signif-
icant differences in any linguistic capability of inter-
est, compared to existing, well-understood models.
Finally, we do not introduce any new classes of
transformations, improved search methods, or op-
timization algorithms for generating perturbations.
Therefore, we do not anticipate any increased risk
of our work making deployed NLP models more
vulnerable to attacks by malicious actors.
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A Additional Implementation Details

In this section, we provide an overview of our im-
plementation details. For all our experiments, we
use two NVIDIA A40 GPUs with 48GB of memory
each. We use the standard model implementations
provided by the Hugging Face transformers library
(Wolf et al., 2019). We finetune all models for 5
epochs with a batch size of 64 using Adam opti-
mizer and a linear-drop learning rate schedule with
initial value of 2e-5.

B Additional Dataset: AG’s News

In this section, we present results on an additional
dataset – AG’s news topic classification dataset
(Zhang et al., 2015). It’s a multi-class text clas-
sification task, where the goal is to classify text
from an article into one of four categories i.e.,
World, Sports, Business, and Sci / Tech. It contains
120, 000 training samples and 7, 600 test samples.
Due to compute and time constraints, we randomly
sample a subset of 2, 000 samples from the test-
set and conduct our experiments on them as base
samples. We train models using the same hyper-
parameters (learning rate, epochs, etc) as SST2 on
the full training set. We repeat the experiments
from the main paper and plot the results in Fig. 5
and Fig. 6. We note that the results are qualitatively
similar across both the datasets.
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Figure 5: [Dataset: AG’s News, Reference Model:
BERT, Target Model: DistilBERT]. Comparing
shared-invariances between DistilBERT and BERT on
Synonym-Invariance and Typo-Invariance defined w.r.t
BERT trained on AG’s news dataset. Similar to our ob-
servations for SST2 in the main paper, we observe that
distillation hurts some capabilities (Typo-Invariance)
substantially more than others (Synonym-Invariance).

C Additional Linguistic Capability:
Fairness

In the main paper, we performed experiments along
two linguistic capabilities i.e., Synonym-Invariance

and Typo-Invariance. In this section, we explore an
additional linguistic capability i.e., Fairness. Fair-
ness perturbs the input text (“Men love sports.”) by
substituting words corresponding to protected cate-
gories (such as men) with protected categories (e.g.
‘women’ ≈ "Women love sports.") from within the
same stereotype domain (i.e. Gender). We use
a greedy search approach for efficiently finding
suitable transformations. We do not adopt any ad-
ditional constraints on this linguistic capability.

Synonym-Invariance and Typo-Invariance are
agnostic to the domain of base samples x ∈ X
i.e., they can be evaluated on any arbitrary set
of base samples. In contrast, Fairness is only
well defined if x contains words corresponding
to different protected categories. Thus, we use
the corpus released by Sotnikova et al. (2021) con-
taining sentences with words corresponding to 71
protected categories from 6 different stereotype
domains as base-samples X for experiments per-
taining to evaluation of Fairness capability. Note,
previous work on evaluating linguistic capabilities
for a particular model (Ribeiro et al., 2020) also
perform a change in base samples (i.e., use sam-
ples not necessarily from the test-split) for evalu-
ating certain capabilities in order to decouple test-
ing from implementation. Additionally, We con-
trol for the change in base samples (X) by con-
ducting additional experiments on previously stud-
ied capabilities, such as Synonym-Invariance and
Typo-Invariance, using the new set of base sam-
ples. We label them Synonym-Invariance∗ and
Typo-Invariance∗ respectively. This allows us to
draw meaningful comparisons across different ca-
pabilities.

In Fig. 7 (left), we first investigate the differences
between different linguistic capabilities for a par-
ticular design choice. Thus, similar to Sec. 4.1
in the main paper, we fix BERT as the refer-
ence model and DistilBERT as the target model.
We observe that while Fairness has lower OOD-
agreement rate compared to Synonym-Invariance∗,
there isn’t a substantial difference between the
shared-invariances (Hard-SCoPE & Soft-SCoPE).
Thus, even though DistilBERT disagrees in its pre-
dictions with BERT for Fairness more (compared to
Synonym-Invariance∗), DistilBERT is invariant in
its behavior on perturbations generated along Fair-
ness to a similar degree as Synonym-Invariance.
Additionally, we also note that Typo-Invariance∗

shares invariances to a lower degree compared to
both Synonym-Invariance∗ and Fairness further
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a) Reference Model: BERT-Tiny b) Reference Model: BERT-Base c) Average over all possible Reference Models

Figure 6: [Dataset: AG’s News, Linguistic-Capability: Synonym-Invariance] Analyzing the effect of size on
shared-invariances within the BERT architecture family. Similar to results on the SST2 dataset in the main paper,
we observe that larger target models tend to share higher invariances irrespective of the reference model.

Figure 7: Left: [Reference Model: BERT, Target Model: DistilBERT]. Comparing shared-invariances between
DistilBERT and BERT on Synonym-Invariance∗, Typo-Invariance∗, and Fairness defined w.r.t BERT. While there
isn’t a substantial difference between shared-invariances along Synonym-Invariance∗ and Fairness, Typo-Invariance∗

is lower than both. Right: [Linguistic-Capability: Fairness] Analyzing the effect of size on shared-invariances
within the BERT architecture family. Similar to results on Synonym-Invariance in the main paper, we observe that
larger target models share more invariances irrespective of the reference model. Whereas OOD-agreement is higher
for models in similar size ranges.

highlighting the role of MLM based training ob-
jective as word-substitution is a common pertur-
bation in both Fairness and Synonym-Invariance∗.
In Fig. 7 (right), we report the shared-invariances
between models across different sizes belonging to
the same architecture family. Specifically, for each
target model we report the averaged results over all
possible reference models. Similar to our observa-
tions in Sec. 4.2 and Sec. 5 in the main paper for
Synonym-Invariance, we observe that larger target
models seem to share more invariances (with mod-
els of any size) on perturbations generated along
Fairness.

D Pretraining Dynamics

In the main paper we focused on evaluating shared
capabilities between two models differing in de-
sign choices along different linguistic capabilities.
Additionally, we can also utilize our framework to
empirically understand the dynamics of these lin-
guistic capabilities over the course of pre-training
of a language model. This line of analysis can help

us probe questions such as: Which linguistic capa-
bilities are learnt earlier during pre-training?, How
does a linguistic capability evolve over the course
of pretraining?, etc. To probe such questions effec-
tively, we utilize 21 (equally-spaced) intermediate
pre-training checkpoints for BERT released by Sel-
lam et al. (2022). Since, we are primarily interested
in quantifying the effect of pre-training (up to a par-
ticular checkpoint) in capturing different linguistic
capabilities, we refrain from finetuning the full
model (on SST2) and rather only train the linear
probe layer on top of the frozen base network.

The curious case of 0% pretraining: In Fig. 8,
we report values for all the checkpoints evaluated
along Synonym-Invariance capability defined with
the final-checkpoint (i.e., 100% pretraining) as the
reference model (e.g. Soft-SCoPE (mt | m100% for
tth timestamp). We note that the model correspond-
ing to 0% pre-training (finetuned using random ini-
tialization) behaves as a random baseline ≈ 0.5 (or
50%) IID accuracy. We find that even though the
network is akin to a random baseline, during predic-
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tion it outputs only one label: ‘positive’ (in contrast
to predicting both classes with equal probabilities)
irrespective of the input. Surprisingly, this model
has high IID and OOD agreement rates (≈ 0.8 or
80%) and the highest possible Hard-SCoPE value
i.e. 1 with respect to the final-checkpoint. On a
deeper look, we find that the prediction distribution
for the final distribution is also biased towards the
‘positive’ label. In contrast, the Soft-SCoPE mea-
sure increases in a monotonically sublinear fash-
ion over the course of pre-training, indicating that
even though the predictions in both IID and OOD
states might be similar (high IID/OOD-Agreement
rates) and invariant (high Hard-SCoPE) the change
in output probability vectors between the IID and
OOD predictions varies significantly for the 0%
and 100% (final) checkpoints. These observations
further reinforce the importance of evaluating a
wide range of metrics to gain a holistic understand-
ing of the behavioral similarities between models
as certain metrics can be especially deceptive in
the low-accuracy regime due to larger possible vari-
ance in the underlying model structure.
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Figure 8: [Reference Model: final-checkpoint
i.e. 100% pre-training, Target Model: mt for
t% pre-training, Linguistic-Capability: Synonym-
Invariance] Comparing different metrics to analyze
how intermediate-checkpoints share capabilities on
Synonym-Invariance defined w.r.t the final-checkpoint.
Even though the initial-checkpoint (0% pre-training)
is not much better than a random-baseline, it shares a
high-degree of Hard-SCoPE and IID/OOD-Agreements.
Whereas Soft-SCoPE grows in a gradual manner over
the course of pre-training.

Invariances for some capabilities are acquired
earlier than others: Next in Fig. 9 we look
at differences in evolution of different linguistic-
capabilities over the course of pre-training. Firstly,
in Fig. 9 (left), we observe that Soft-SCoPE
(shared-invariances) along Synonym-Invariance is
significantly higher compared to Typo-Invariance

for the major chunk of pre-training. Note, both
of them converge to 1 at 100% pretraining as the
Soft-SCoPE of a model with itself is 1 (irrespective
of the linguistic-capability). Similar to our obser-
vations in Sec. 4.1, we posit that the shared pre-
training objective (i.e. MLM) and training corpus
leads to a higher degree of shared invariances much
earlier in the pre-training for Synonym-Invariance
compared to Typo-Invariance, which remains stag-
nant during most of the pretraining, with a sudden
increase towards the end.

Retaining previously acquired invariances:
Till now our discussions have revolved around an-
alyzing shared-invariances across different met-
rics (for a particular capability) and different
capabilities (for a particular metric) with the
final-checkpoint (i.e. 100% pre-training) as the
reference-model. Thus, the central question for pre-
vious experiments has been: How (behaviorally)
similar is an intermediate checkpoint to the final
checkpoint? (w.r.t a particular metric along a par-
ticular linguistic capability). However, this setup
provides little insight regarding whether the models
retain their behavioral similarity w.r.t their previous
counterparts as well (e.g. Soft-SCoPE (mt | mt−1

for t% pre-training). Thus to probe questions such
as: How (behaviorally) similar is an intermediate
checkpoint to its previous counterpart?, we calcu-
late values of Soft-SCoPE for each checkpoint with
the previous checkpoint as the reference-model and
report the results in Fig. 9 (right). A low value for
a particular checkpoint indicates that the model
has changed a lot w.r.t its predecessor while a high
value would indicate that the model has retained the
previously acquired behavioral invariances. We ob-
serve that the Soft-SCoPE values remain centered
around mild values for most of the pre-training, in-
dicating that while models are becoming more sim-
ilar to the final-checkpoint they are only retaining
a minor extent of their previously acquired behav-
ioral shared invariances. We note that the shared
invariances show a linear increase only towards the
very end of the pre-training.

E Additional Explanation for
Shared-Invariances

E.1 Generating Invariant Perturbations
In this section, we analyze properties of perturba-
tions generated along different linguistic capabil-
ities. While the primary goal of generated pertur-
bations is to maintain behavioral invariance with
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Figure 9: Left: [Reference Model: final-checkpoint i.e. 100% pre-training, Target Model: mt for t% pre-
training, Metric: Soft-SCoPE] Comparing the evolution of soft shared-invarinces (i.e. Soft-SCoPE) for different
linguistic-capabilities (i.e. Synonym-Invariance, Typo-Invariance) during pre-training. While all trends grow at a
monotonically sub-linear pace, invariances for some are acquired earlier than others. Right [Reference Model: mt−1

for t% pre-training, Target Model: mt for t% pre-training, Soft-SCoPE] Investigating the retention of previously
acquired shared-invariances for different linguistic-capabilities (i.e. Synonym-Invariance, Typo-Invariance) during
pre-training. Mild values indicate that many invariances are not retained during the first-half of pre-training, whereas
checkpoints become more similar to the final-checkpoint as well as their previous counterparts during the end of
pre-training.

respect to the reference model, it is possible that
the search method is unable to find candidates that
fulfill this criterion in the finitely large transforma-
tion space. Thus, in order to verify whether the
generated perturbations are truly behaviorally in-
variant for the reference model we visualize the dis-
tribution of L(m(x),m(x′)) – refer Fig. 10. Note,
L(m(x),m(x′)) = ∥m(x)−m(x′)∥1 is an objec-
tive function that penalizes the difference between
reference model’s output softmax probabilities (be-
havior) on base and perturbed inputs i.e., lower
L(m(x),m(x′)) implies more behavioral invari-
ance (refer Eq. 1).

In Fig. 10 (left) we note that for Synonym-
Invariance, the distribution is highly skewed to-
wards lower L(m(x),m(x′)) values indicating that
most generated perturbations have minimal differ-
ence between the predicted probability distribution
on the base and perturbed samples for the reference
model and all of them are argmax-invariant i.e.,
have same prediction on each base-perturbed sam-
ple pair. While, for Typo-Invariance (Fig. 10 right),
the L(m(x),m(x′) values are higher and there are
a few argmax-variant samples as well. Note, the
argmax-variant samples would be ignored while

evaluating measures such as Hard-SCoPE and Soft-
SCoPE (refer Eq. 2 & Eq. 4).

E.2 Relationship between Agreement-Rates
and Shared-Invariances

In this section, we delve deeper into the rela-
tionship between agreement-based metrics i.e.,
IID-agreement & OOD-agreement and invariance-
based measures i.e., Hard-SCoPE & Soft-SCoPE.
While, Hard-SCoPE doesn’t solely depend on any
one of IID-agreement or OOD-agreement, looking
at both of them together can give indications about
the Hard-SCoPE value. For instance, consider a bi-
nary classification setup with labels ‘Class-A’ and
‘Class-B’ and two models m1 and m2 that have pre-
dictions ym1(x) & ym1(x

′) and ym2(x) & ym2(x
′)

for a particular base-perturbed sample pair (x, x′),
where x′ = C(x;m1).

In such a setup, the Hard-SCoPE can be seen
as “agreement between agreement-rates” i.e., Hard-
SCoPE is 1 only when both agreement-rates are
either 0 or both are 1. Hard-SCoPE reaches a
value of 1 when m2 has consistent predictions for
both IID and OOD inputs (ym2(x) = ym2(x

′)),
on samples where m1’s predictions are invariant
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a) Capability: Synonym-Invariance b) Capability: Typo-Invariance
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Figure 10: [Reference Model: BERT] Distribution of L(m(x),m(x′)) for x′ = C(x;m1) generated along
Synonym-Invariance and Typo-Invariance. We note that the distribution is skewed towards lower L(m(x),m(x′))
values and most samples generated are at least invariant in predictions (argmax-invariant).

Setup
m1’s prediction m2’s prediction

IID-Agreement OOD-Agreement Hard-SCoPE
ym1(x) ym1(x

′) ym2(x) ym2(x
′)

Binary Classification

Class-A Class-A Class-B Class-B 0 0 1

Class-A Class-A Class-B Class-A 0 1 0

Class-A Class-A Class-A Class-B 1 0 0

Class-A Class-A Class-A Class-A 1 1 1

Multi-class Classification
Class-A Class-A Class-B Class-B 0 0 1

Class-A Class-A Class-B Class-C 0 0 0

Table 1: Relationship between IID-agreement & OOD-agreement (agreement-rates) and Hard-SCoPE (shared-
invariance). In a binary classification scenario, Hard-SCoPE can be seen as “agreement between agreement-rates”
as it’s 1 when either IID- and OOD- agreement are both 0 or both 1. However, this relationship doesn’t hold for
multi-class classification setup.

(ym1(x) = ym1(x
′)). In a binary classification

scenario where only two predictions are possible
(Class-A or Class-B), achieving a Hard-SCoPE
value of 1 requires either both m1 and m2 to pre-
dict the same label, resulting in IID-Agreement and
OOD-Agreement both being 1, or they exhibit dif-
ferent predictions, leading to both IID-Agreement
and OOD-Agreement being 0 (row 1 and 4 in
Tab. 1). In cases where m2 agrees with m1 for
IID(OOD) inputs but disagrees on OOD(IID) in-
puts, the Hard-SCoPE would be 0 as m2 must have
changed its prediction after the perturbation, given
that m1 is invariant to the perturbation by design
(row 2 and 3 in Tab. 1). Importantly, this behavior
does not hold for multi-class classification as it’s
possible for m2 to change its prediction even when
both IID and OOD agreement are 0 (row-5 and 6
in Tab. 1).

We also discuss the relationship between Hard-
SCoPE and Soft-SCoPE. Soft-SCoPE weighs the
contribution of each base-perturbed pair by a func-
tion of similarity in their changes in the output soft-

max probability under a perturbation. Importantly,
this weight lies between [0, 1]. Thus, Soft-SCoPE
is upper-bounded by Hard-SCoPE i.e., 0 ≤ Soft-
SCoPE ≤ Hard-SCoPE.

F Shared-Invariances Across
Architecture Families

In this section, we aim to investigate how differ-
ences in the architecture family of the reference and
target models affect their shared-invariances. Intu-
itively, one would expect a higher degree of shared-
invariances for models having similar architectures,
courtesy of common inductive biases induced by
the architectural family. Thus, to validate this in-
tuition we fix the reference model as BERT and
compare shared-invariances of target models both
from the same architecture family (DistilBERT)
and a different one (GPT-2). We report the results
in Fig. 11.

Models from same architecture family share
higher behavioral similarity & invariances:
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a) Capability: Synonym-Invariance b) Capability: Typo-Invariance

Figure 11: [Reference Model: BERT, Linguistic-Capability (left): Synonym-Invariance, Linguistic-Capability
(right): Typo-Invariance] Even though the IID performance gap is smaller between GPT-2 & BERT compared to
DistilBERT & BERT. For Synonym-Invariance & Typo-Invariance defined w.r.t BERT, DistilBERT (model from
same architecture family) has a higher degree of shared capabilities than GPT-2 (model from different architecture
family)

We observe that the difference between the IID-
Accuracies (Gap in IID-Accuracy) is higher for
DistilBERT compared to GPT-2 indicating that
when evaluated conventionally, the gap between
generalization ability of GPT-2 and BERT would
perceived to be smaller than DistilBERT and BERT.
However across both linguistic capabilities i.e.,
Synonym-Invariance and Typo-Invariance, Distill-
BERT achieves higher IID and OOD agreement
rates compared to GPT-2 highlighting when com-
pared at an instance level DistilBERT behaves more
similarly to BERT. Interestingly, even though Dis-
tilBERT only slightly edges GPT-2 in Hard-SCoPE,
there is a substantial difference between their Soft-
SCoPE values. This implies that DistilBERT is
not only invariant on a large number of samples
(that BERT is invariant on), but also the change in
the output probability between base and perturbed
predictions for DistilBERT is quite similar to that
of BERT compared to GPT-2 and BERT.

G Additional Task: Language Modelling

In the main paper, we presented results across mul-
tiple linguistic-capabilities for different reference
and target model combinations for one particular
task i.e., sentiment classification. In this section,
we present results on an additional task i.e., lan-
guage modeling. More specifically, rather than fine-
tuning the pre-trained language models on a down-
stream task and defining a linguistic-capability w.r.t
them, we treat language modeling as a task in it-
self and define linguistic-capabilities w.r.t the pre-
trained language models. We use cosine-similarity
for computing agreements as language models have

Hard-SCoPE Soft-SCoPE0.0

0.2

0.4

0.6

0.8
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0.
67

0.
58

Synonym-Invariance Typo-Invariance

Figure 12: [Dataset: SST-2, Reference Model: GPT-2,
Target Model: DistilGPT-2, Task: Language Model-
ing] Similar to results on sentiment-classification, we
note that distillation affects shared-invariances across
some linguistic-capabilities more than others.

a large vocabulary with many tokens repeating with
minor variations. We repeat the experiments pre-
sented in the main paper with models from the
GPT-2 language modeling architecture family on
the SST-2 dataset and plot the results in Fig. 12
and Fig. 13. We note that the results are quali-
tatively similar to those observed with the BERT
model in a classification setup in the main paper
highlighting that the effects of design choices on
linguistic-capabilities investigated in this paper are
beyond task-specificities.

H Sample Complexity for Framework
Effectiveness

In this section, we examine the impact of “number
of base samples” on our proposed metrics and re-
port the results in Fig. 14. Specifically, we report
the mean metric values and the 95% confidence
interval of this estimate computed over 100 trials
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b) Reference Model: GPT-2 b) Reference Model: GPT-2 XL c) Average over all possible Reference Models

Figure 13: [Dataset: SST-2, Linguistic-Capability: Synonym-Invariance, Task: Languag Modeling] Similar to
results on sentiment-classification, we find that larger target models tend to share higher invariances irrespective of
the size of the reference model.

Figure 14: [Reference Model: BERT, Target Model: DistilBERT]. Examining the impact of base-samples /
instances (X) count on the proposed metrics i.e., Hard-SCoPE (left) and Soft-SCoPE (right). We report an estimate
of the mean metric values and the 95% confidence-interval (y-axis) around this estimate computed over 100 trials
for each base-sample count (x-axis). We find that both the metrics are stable for as low as 50 base-samples with
tight confidence-intervals.

for many values of base-samples count. We find
that our metrics provide tight confidence intervals
for as low as 50 base samples. Please note that for
the previous experimental results in the main paper
and the supplementary we utilize ≈ 1000 samples.

I Additional Correlation Results

Here, we explore whether the proposed invariance-
based measures are tightly coupled with metrics
previously explored in the literature such as agree-
ment rates. We evaluate the Pearson correlation
between OOD-agreement and Soft-SCoPE for dif-
ferent reference and target model pairs from the
BERT architecture family and plot the results in
Fig. 15. Each column consists of results for dif-
ferent target-reference model pairs for a particular
reference model – BERT-Base or BERT-Tiny. We
experiment with multiple different target models
varying in size with BERT-Base being the largest
and BERT-Tiny the smallest.

We find that OOD-agreement and Soft-SCoPE
are poorly correlated when using comparatively
smaller models as reference models i.e., r=0.011
for BERT-Tiny, whereas they are positively corre-
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Figure 15: Correlation between proposed invariance-
based metrics (Soft-SCoPE) and existing metrics (OOD-
Agreement) for different reference and target model
pairs. Existing metrics poorly correlate with invariance-
based metrics as the size of the reference model is re-
duced.

11581



0.02 0.04 0.06 0.08
Gap in 

IID-Accuracy

0.5

0.6

0.7

0.8

So
ft

-S
Co

PE
BERT-Base

0.02 0.04 0.06 0.08
Gap in 

IID-Accuracy

BERT-Medium

0.02 0.04 0.06 0.08
Gap in 

IID-Accuracy

BERT-Small

0.02 0.04 0.06 0.08
Gap in 

IID-Accuracy

BERT-Mini

0.02 0.04 0.06 0.08
Gap in 

IID-Accuracy

BERT-Tiny

Figure 16: Correlation between proposed invariance-based metrics (Soft-SCoPE) and existing metrics (Gap in
IID-Accuracy) for different reference and target model pairs. Similar to results noted int he main paper with
OOD-Agreement, Gap in IID-Accuracy also poorly correlate with invariance-based metrics as the size of the
reference model is reduced.
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Figure 17: Correlation between proposed invariance-based metrics (Soft-SCoPE) and existing metrics (IID-
Agreement) for different reference and target model pairs. Similar to results noted int he main paper with
OOD-Agreement, IID-Agreement also poorly correlate with invariance-based metrics as the size of the refer-
ence model is reduced.

lated when using relatively larger models as refer-
ence models i.e., r=0.97 for BERT-Base. Thus, the
invariances shared between two NLP models are
not necessarily explained by existing metrics.

Importantly, the finding that existing metrics are
especially poor at capturing shared invariance when
the reference model is smaller than the target model
further highlights the need for separately evaluat-
ing shared-invariances as smaller models are more
amenable to controlled analysis (such as circuit
analysis (Wang et al., 2022)) and hence likely to
be used as reference models. We present results
for correlations with other metrics such as IID-
agreement and Gap in IID accuracy in the Fig. 16
and Fig. 17.

J Additional Goal Function Results

In the main paper we performed experiments with
the L1 norm as the objective function described in
Eq. 1. However, it can take other forms as well
as long as it captures differences in both direction
and magnitude between the reference model’s out-
put on base and perturbed samples i.e., m(x) and
m(x′). In this section, we explore whether our in-
sights are sensitive to the choice of the objective
function by employing KL-divergence as the objec-
tive function instead. We report the results for one
of the analyses in Fig. 18 and observe that there

are minimal effects on the overall takeaway when
using different objective functions.

K Compute Costs

In this section, we disucss the computational costs
of generating invariant samples for a reference
model across different linguistic capabilities.

Linguistic Capability Time (seconds per sample)

Synonym-Invariance 1.2

Typo-Invariance 0.48

Table 2: [Reference Model: BERT-Base, Dataset:
SST2] Time taken in seconds, required to generate a
perturbed sample on a NVIDIA-A100 GPU. The dura-
tion varies depending on distinct linguistic capabilities,
as certain capabilities are more amenable to the search
techniques in generating invariant perturbations than
others.

L Soft-SCoPE Landscape Visualization

In this section, we visualize the the variation in
Soft-SCoPE values between different model pairs
i.e., (m2 | m1) and (m3 | m1). For this, we plot the
2-D plane spanned by vectors v⃗1 = ∆m⃗2 −∆m⃗1

and v⃗2 = ∆m⃗3 −∆m⃗1 . Here, ∆m⃗1 corresponds
to BERT (reference model), and ∆m⃗2 & ∆m⃗3
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Figure 18: [Reference Model: BERT, Target Model: DistilBERT]. Analyzing the effect of different objective
functions (L) that guide the optimization process of the goal function while generating perturbations for a given
reference model. We observe that different objective functions (L1 norm on the left, KL-divergence on the right)
have minimal effect on the overall takeaway, i.e., distilling BERT affects some capabilities more than others.

Soft-SC
oPE

BERT DistilBERT GPT-2

Figure 19: 2-D Soft-SCoPE surface for a pair of base and perturbed samples, where the reference model BERT is
compared with DistilBERT and GPT-2.

refer to DistilBERT and GPT-2 respectively. In
Fig. 19, we note that unlike Hard-SCoPE of two
models that can only take binary values i.e., either
0 or 1 for a particular base-perturbed sample pair,
Soft-SCoPE varies smoothly. We also observe that
models from the same architectural family (BERT
and DistilBERT) have higher Soft-SCoPE com-
pared to models from different architectural fami-

lies (BERT and GPT-2).
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Original Sample Synonym-Invariance Typo-Invariance

a fast, funny, highly enjoyable
movie.

a fast, funny, highly enjoyable
film.

a fsat, funny, highly enjoyable
movie.

my reaction in a word:
disappointment.

my response in a word: disap-
pointment.

my reaction in a word:
disappointemnt.

allows us to hope that nolan is
poised to embark a major career
as a commercial yet inventive
filmmaker.

allows us to trust that nolan is
poised to embark a major career
as a commercial yet inventive
filmmaker.

allows us to hpoe that nolan is
poised to embark a major career
as a commercial yet inevntive
filmmaker.

too slow, too long, and too little
happens.

too tiresome, too long, and too
little happens.

too solw, too long, and too liltte
happens.

a warm, funny, engaging film. a warm, comic, engaging film. a warm, fnuny, engaging film.

Table 3: [Reference Model: BERT-Base, Dataset: SST2] Examples of perturbed sentences that are invariant w.r.t
the reference model BERT-Base for multiple linguistic capabilities i.e., Synonym-Invariance and Typo-Invariance.

M Perturbation Examples

In this section, we present a table with some origi-
nal and perturbed examples from different linguis-
tic capabilities.
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